
Nearly Optimal Robust Matrix Completion

Yeshwanth Cherapanamjeri 1 Kartik Gupta 1 Prateek Jain 1

Abstract
In this paper, we consider the problem of Ro-
bust Matrix Completion (RMC) where the goal
is to recover a low-rank matrix by observing
a small number of its entries out of which a
few can be arbitrarily corrupted. We propose a
simple projected gradient descent-based method
to estimate the low-rank matrix that alternately
performs a projected gradient descent step and
cleans up a few of the corrupted entries us-
ing hard-thresholding. Our algorithm solves
RMC using nearly optimal number of observa-
tions while tolerating a nearly optimal number
of corruptions. Our result also implies signif-
icant improvement over the existing time com-
plexity bounds for the low-rank matrix comple-
tion problem. Finally, an application of our re-
sult to the robust PCA problem (low-rank+sparse
matrix separation) leads to nearly linear time (in
matrix dimensions) algorithm for the same; ex-
isting state-of-the-art methods require quadratic
time. Our empirical results corroborate our the-
oretical results and show that even for moderate
sized problems, our method for robust PCA is an
order of magnitude faster than the existing meth-
ods.

1. Introduction

In this paper, we study the Robust Matrix Completion
(RMC) problem where the goal is to recover an underlying
low-rank matrix by observing a small number of sparsely
corrupted entries. Formally,

RMC: Find rank-r matrix L∗ ∈ Rm×n

using Ω and PΩ(L∗) + S∗, (1)

where Ω ⊆ [m] × [n] is the set of observed entries
(throughout the paper we assume that m ≤ n), S∗ de-
notes the sparse corruptions of the observed entries, i.e.,
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Supp(S∗) ⊂ Ω and sampling operator PΩ : Rm×n →
Rm×n is defined as:

(PΩ(A))ij =

{
Aij , if (i, j) ∈ Ω

0, otherwise.
(2)

RMC is an important problem with several applications.
It is used to model recommendation systems with outliers
and to perform PCA under gross outliers as well as era-
sures (Jalali et al., 2011). In addition, it is a strict gen-
eralization of the following two fundamental problems in
machine learning:

Matrix Completion (MC): Matrix completion is the task
of completing a low rank matrix given a subset of en-
tries of the matrix. It is widely used in recommender sys-
tems and also finds applications in system identification
and global positioning. Note that it is a special case of
the RMC problem where the matrix S∗ = 0. State-of-the-
art result for MC uses nuclear norm minimization and re-
quires |Ω| ≥ µ2nr2 log2 n under standard µ-incoherence
assumption (see Section 3). But it requires O(m2n) time
in general. The best sample complexity result for a non-
convex iterative method (with at most logarithmic depen-
dence on the condition number of L∗) achieve exact recov-
ery when |Ω| ≥ µ6nr5 log2 n and needs O(|Ω|r) computa-
tional steps.

Robust PCA (RPCA): RPCA aims to decompose a
sparsely corrupted low rank matrix into its low rank and
sparse components. It corresponds to another special case
of RMC where the whole matrix is observed. State-of-
the-art results for RPCA shows exact recovery of a rank-r,
µ-incoherent L∗ (see Assumption 1, Section 3) if at most
ρ = O

(
1
µ2r

)
fraction of the entries in each row/column of

S∗ are corrupted (Hsu et al., 2011; Netrapalli et al., 2014).
Moreover, St-NcRPCA algorithm (Netrapalli et al., 2014)
solves the problem in time O(mnr2).

Therefore, an efficient solution to the RMC problem im-
plies efficient solutions to both the MC and RPCA prob-
lems. In this work, we attempt to answer the following
open question (assuming m ≤ n):

Can RMC be solved exactly by using |Ω| = O(rn log n)
observations out of which O( 1

µ2r ) fraction of the observed
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entries in each row/column are corrupted?

Note that both |Ω| (for uniformly random Ω) and ρ val-
ues mentioned in the question above denote the informa-
tion theoretic limits. Hence, the goal is to solve RMC for
nearly-optimal number of samples and nearly-optimal frac-
tion of corruptions.

The existing state-of-the-art results for RMC with opti-
mal ρ = 1

µ2r fraction of corrupted entries, either require
at least a constant fraction of the entries of L∗ to be ob-
served (Chen et al., 2011; Candès et al., 2011) or require
restrictive assumptions like the support of corruptions be-
ing uniformly random (Li, 2013). (Klopp et al., 2014) also
considers RMC problem but studies the noisy setting and
does not provide exact recovery bounds. Moreover, most
of the existing methods for RMC use convex relaxation for
both low-rank and sparse components, and in general ex-
hibit large time complexity (O(m2n)).

Under standard assumptions on L∗, S∗, Ω and for n =
O(m), we answer the above question in affirmative albeit
with |Ω| which is O(r) (ignoring log factors) larger than
the optimal sample complexity (see Theorem 1). In partic-
ular, we propose a simple projected gradient (PGD) style
method for RMC that alternately cleans up corrupted en-
tries by hard-thresholding and performs a projected gradi-
ent descent update onto the space of low rank matrices; our
method’s computational complexity is also nearly optimal
(O(|Ω|r + (m + n)r2 + r3)). Our algorithm is based on
projected gradient descent for estimating L∗ and alternat-
ing projection on the set of sparse matrices for estimating
S∗. Note that projection is onto non-convex sets of low-
rank matrices (for L∗) and sparse matrices (for S∗), hence
standard convex analysis techniques cannot be used for our
algorithm.

Several recent results (Jain & Netrapalli, 2015; Netrapalli
et al., 2014; Jain et al., 2014; Hardt & Wootters, 2014; Blu-
mensath, 2011) show that under certain assumptions, pro-
jection onto non-convex sets indeed lead to provable algo-
rithms with fast convergence to the global optima. How-
ever, as explained in Section 3, RMC presents a unique
set of challenges as we have to perform error analysis with
the errors arising due to missing entries as well as sparse
corruptions, both of which interact among themselves as
well. In contrast, MC and RPCA only handle noise aris-
ing from one of the two sources. To overcome this chal-
lenge, we perform error analysis by segregating the effects
due to random sampling and sparse corruptions and lever-
age their unique structure to obtain our result (See proof
of Lemma 14). Another consequence of our careful er-
ror analysis is improved results for the MC as well as the
RPCA problem.

Our empirical results on synthetic data demonstrates effec-
tiveness of our method. We also apply our method to the
foreground background separation problem and find that
our method is an order of magnitude faster than the state-
of-the-art method (St-NcRPCA) while achieving similar
accuracy.

In a concurrent and independent work, (Yi et al., 2016)
also studied the RMC problem and obtained similar results.
They study an alternating gradient descent style algorithm
while our algorithm is based on low-rank projected gradi-
ent descent. Our sample complexity, corruption tolerance
as well as time complexity differ along certain critical pa-
rameters: a) Sample complexity: Our sample complexity
bound is dependent only logarithmically on κ, the condi-
tion number of the matrix L∗ (see Table 1). On the other
hand, result of (Yi et al., 2016) depends quadratically on κ,
which can be significantly large. Another difference is that
our sample complexity bound depends logarithmically on
the final error ε (defined as ε = ‖L− L∗‖2); which for typ-
ical finite precision computation only introduces an extra
constant factor. b) Corruption tolerance: Our result allows
the fraction of corrupted entries to be information theoretic
optimal (up to a constant) O( 1

µ2r ), while the result of (Yi

et al., 2016) allows only O
(

min
(

1
µ2r
√
rκ
, 1
µ2κ2r

))
frac-

tion of corrupted entries. c) Time Complexity: As a con-
sequence of the sample complexity bounds, running time
of the method by (Yi et al., 2016) depends quintically on κ
whereas our algorithm only has a polylogarithmic depen-
dence.

In summary, this paper’s main contributions are:
(a) RMC: We propose a nearly linear time method that
solves RMC with |Ω| = O(nr2 log2 n log2 ‖M‖2/ε) ran-
dom entries and with optimal fraction of corruptions upto
constant factors (ρ = O( 1

µ2r )).
(b) Matrix Completion: Our result improves upon the
existing linear time algorithm’s sample complexity by an
O(r3) factor, and time complexity by O(r4) factor, al-
though with an extraO(log ‖L∗‖/ε) factor in both time and
sample complexity.
(c) RPCA: We present a nearly linear time (O(nr3)) al-
gorithm for RPCA under optimal fraction of corruptions,
improving upon O(mnr2) time complexity of the existing
methods.

Notations: We assume that M = L∗ + S̃∗ and PΩ(M) =

PΩ(L∗) + S∗, i.e., S∗ = PΩ(S̃∗). ‖v‖p denotes `p norm
of a vector v; ‖v‖ denotes `2 norm of v. ‖A‖2, ‖A‖F ,
‖A‖∗ denotes the operator, Frobenius, and nuclear norm of
A, respectively; by default ‖A‖ = ‖A‖2. Operator PΩ is
given by (2), operators Pk(A) and HT ζ(A) are defined in
Section 2. σi(A) denotes i-th singular value of A and σ∗i
denotes the i-th singular value of L∗.
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Paper Organization: We present our main algorithm in
Section 2 and our main results in Section 3. We also present
an overview of the proof in Section 3. Section 4 presents
our empirical result. Due to lack of space, we present most
of the proofs and useful lemmas in the appendix.

2. Algorithm
In this section we present our algorithm for solving the
RMC (Robust Matrix Completion) problem: given Ω and
PΩ(M) where M = L∗ + S̃∗ ∈ Rm×n, rank(L∗) ≤ r,
‖S̃∗‖0 ≤ s and S∗ = PΩ(S̃∗), the goal is to recover L∗.
To this end, we focus on solving the following non-convex
optimization problem:

(L∗, S∗) = arg min
L,S
‖PΩ(M)− PΩ(L)− S‖2F

s.t., rank(L) ≤ r,PΩ(S) = S, ‖S‖0 ≤ s. (3)

For the above problem, we propose a simple iterative algo-
rithm that combines projected gradient descent (for L) with
alternating projections (for S). In particular, we maintain
iterates L(t) and S(t), where L(t) is the current low-rank
approximation of L∗ and S(t) is the current sparse approx-
imation of S∗. L(t+1) is computed using gradient descent
step for objective (3) and then projecting back onto the set
of rank k matrices. That is,

L(t+1) = Pk

(
L(t) +

1

p
PΩ(M − L(t) − S(t))

)
, (4)

where Pk(A) denotes projection of A onto the set of rank-
k matrices and can be computed efficiently using SVD of
A, p = |Ω|

mn . S(t+1) is computed by projecting the residual
PΩ(M − L(t+1)) onto set of sparse matrices using a hard-
thresholding operator, i.e.,

S(t+1) = HT ζ(M − L(t+1)), (5)

where HT ζ : Rm×n → Rm×n is the hard thresholding
operator defined as: (HT ζ(A))ij = Aij if |Aij | ≥ ζ and
0 otherwise. Intuitively, a better estimate of the sparse cor-
ruptions for each iteration will reduce the noise of the pro-
jected gradient descent step and a better estimate of the low
rank matrix will enable better estimation of the sparse cor-
ruptions. Hence, under correct set of assumptions, the al-
gorithm should recover L∗, S∗ exactly.

Unfortunately, just the above two simple iterations cannot
handle problems where L∗ has poor condition number, as
the intermediate errors can be significantly larger than the
smallest singular values of L∗, making recovery of the cor-
responding singular vectors challenging. To alleviate this
issue, we propose an algorithm that proceeds in stages. In

the q-th stage, we project L(t) onto set of rank-kq matrices.
Rank kq is monotonic w.r.t. q. Under standard assump-
tions, we show that we can increase kq in a manner such
that after each stage

∥∥L(t) − L∗
∥∥
∞ decreases by at least a

constant factor. Hence, the number of stages is only log-
arithmic in the condition number of L∗. See Algorithm 1
(PG-RMC ) for a pseudo-code of the algorithm.

We require an upper bound of the first singular value for our
algorithm to work. Specifically, we require σ = O (σ∗1).
Alternatively, we can also obtain an estimate of σ∗1 by using
the thresholding technique from (Yi et al., 2016) although
this requires an estimate of the number of corruptions in
each row and column. We also use a simplified version of
Algorithm 5 from (Hardt & Wootters, 2014) to form inde-
pendent sets of samples for each iteration which is required
for our theoretical analysis. Our algorithm has an “outer
loop” (see Line 6) which sets rank kq of iterates L(t) ap-
propriately (see Line 7). We then update L(t) and S(t) in
the “inner loop” using (4), (5). We set threshold for the
hard-thresholding operator using singular values of current
gradient descent update (see Line 12). Note that, we divide
Ω uniformly into Q · T sets, where Q is an upper bound on
the number of outer iterations and T is the number of inner
iterations. This division ensures independence across iter-
ates that is critical to application of standard concentration
bounds; such division is a standard technique in the ma-
trix completion related literature (Jain & Netrapalli, 2015;
Hardt & Wootters, 2014; Recht, 2011). Also, η is a tunable
parameter which should be less than one and is smaller for
“easier” problems.

Note that updating S(t) requires O(|Ω| · r + (m + n) · r)
computational steps. Computation of L(t+1) requires com-
puting SVD for projection Pr, which can be computed in
O(|Ω| · r + (m+ n) · r2 + r3) time (ignoring log factors);
see (Jain et al., 2010) for more details. Hence, the compu-
tational complexity of each step of the algorithm is linear
in |Ω| · r (assuming |Ω| ≥ r · (m + n)). As we show in
the next section, the algorithm exhibits geometric conver-
gence rate under standard assumptions and hence the over-
all complexity is still nearly linear in |Ω| (assuming r is just
a constant).

Rank based Stagewise algorithm: We also provide a
rank-based stagewise algorithm (R-RMC) where the outer
loop increments kq by one at each stage, i.e., the rank is q
in the q-th stage. Our analysis extends for this algorithm as
well, however, its time and sample complexity trades off a
factor of O(log(σ1/ε)) from the complexity of PG-RMC
with a factor of r (rank of L∗). We provide the detailed
algorithm in Appendix 5.3 due to lack of space (see Algo-
rithm 3).
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Algorithm 1 L̂ = PG-RMC (Ω,PΩ(M), ε, r, µ, η, σ)

1: Input: Observed entries Ω, Matrix PΩ(M) ∈ Rm×n,
convergence criterion ε, target rank r, incoherence pa-
rameter µ, thresholding parameter η, estimate of first
singular value σ

2: T ← 10 log 20µ2nrσ
ε , Q← T

3: Partition Ω into Q · T + 1 subsets {Ω0} ∪ {Ωq,t : q ∈
[Q], t ∈ [T ]} with p set to Ω

QT+1 using algorithm 2
4: L(0) = 0, ζ(0) ← ησ
5: M (0) = mn

|Ω0|PΩ0(M −HT ζ(M))

6: k0 ← 0, q ← 0
7: while σkq+1(M (0)) > ε

2ηn do
8: q ← q + 1,

9: kq ←
∣∣∣∣{i : σi(M

(0)) ≥ σkq−1+1(M(0))

2 }
∣∣∣∣

10: for Iteration t = 0 to t = T do
11: S(t) = HT ζ(PΩq,t(M − L(t)))

12: M (t) = L(t) − mn
|Ωq,t|PΩq,t(L

(t) + S(t) −M)

13: L(t+1) = Pkq (M
(t))

14: ζ(t+1) ← η
(
σkq+1(M (t)) +

(
1
2

)t−2
σkq (M

(t))
)

15: end for
16: S(0) = S(T ), L(0) = L(T+1), M (0) = M (T ),

ζ(0) = ζ(T+1)

17: end while
18: Return: L(T )

Algorithm 2 {Ω1, . . . ,ΩT } = SplitSamples(Ω, p, T )

1: Input: Random samples with probability Tp Ω, Re-
quired Sampling Probability p, Number of Sets T

2: Output: T independent sets of entries {Ω1, . . . ,ΩT }
sampled with sampling probability p

3: p′ ← 1− (1− p)T
4: Ω′ be sampled from Ω with each entry being included

independently with probability p′/p
5: for r = 1 to r = T do
6: qr ←

(Tr)p
r(1−p)T−r

p′

7: end for
8: Initialize Ωt ← {} for t ∈ {1, . . . , T}
9: for Sample s ∈ Ω′ do

10: Draw r ∈ {1, . . . , T} with probability qr
11: Draw a random subset S of size r from {1, . . . , T}
12: Add s to Ωi for i ∈ S
13: end for

3. Analysis

We now present our analysis for both of our algorithms PG-
RMC (Algorithm 1) and R-RMC (Algorithm 3). In gen-
eral the problem of Robust PCA with Missing Entries (3)
is harder than the standard Matrix Completion problem and
hence is NP-hard (Hardt et al., 2014). Hence, we need to

impose certain (by now standard) assumptions on L∗, S̃∗,
and Ω to ensure tractability of the problem:
Assumption 1. Rank and incoherence of L∗: L∗ ∈
Rm×n is a rank-r incoherent matrix, i.e.,

∥∥e>i U∗∥∥2
≤

µ
√

r
m ,
∥∥e>j V ∗∥∥2

≤ µ
√

r
n , ∀i ∈ [m], ∀j ∈ [n], where

L∗ = U∗Σ∗(V ∗)> is the SVD of L∗.
Assumption 2. Sampling (Ω): Ω is obtained by sampling
each entry with probability p = |Ω|

mn .
Assumption 3. Sparsity of S̃∗, S∗: We assume that at
most ρ ≤ c

µ2r fraction of the elements in each row and

column of S̃∗ are non-zero for a small enough constant c.
Moreover, we assume that Ω is independent of S̃∗. Hence,
S∗ = PΩ(S̃∗) also has p · ρ fraction of the entries in ex-
pectation.

Assumptions 1, 2 are standard assumptions in the prov-
able matrix completion literature (Candès & Recht, 2009;
Recht, 2011; Jain & Netrapalli, 2015), while Assumptions
1, 3 are standard assumptions in the robust PCA (low-
rank+sparse matrix recovery) literature (Chandrasekaran
et al., 2011; Candès et al., 2011; Hsu et al., 2011). Hence,
our setting is a generalization of both the standard and pop-
ular problems and as we show later in the section, our result
can be used to meaningfully improve the state-of-the-art for
both of these problems.

We first present our main result for Algorithm 1 under the
assumptions given above.
Theorem 1. Let Assumptions 1, 2 and 3 on L∗, S̃∗ and
Ω hold respectively. Let m ≤ n, n = O(m), and let the
number of samples |Ω| satisfy:

E[|Ω|] ≥ Cα2µ4r2n log2 (n) log2

(
µ2rσ1

ε

)
,

where C is a global constant. Then, with probability at
least 1 − n− log α

2 , Algorithm 1 with η = 4µ2r
m , at most

O(log(‖M‖2/ε))) outer iterations and O(log(µ
2r‖M‖2
ε ))

inner iterations, outputs a matrix L̂ such that:∥∥∥L̂− L∗∥∥∥
F
≤ ε.

Note that the number of samples matches information the-
oretic bound upto O(r log n log2 σ∗1/ε) factor. Also, the
number of allowed corruptions in S̃∗ also matches the
known lower bounds (up to a constant factor) and cannot
be improved upon information theoretically.

We now present our result for the rank based stagewise al-
gorithm (Algorithm 3).
Theorem 2. Under Assumptions 1, 2 and 3 on L∗, S̃∗ and
Ω respectively and Ω satisfying:

E[|Ω|] ≥ Cα2µ4r3n log2 (n) log

(
µ2rσ1

ε

)
,
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for a large enough constant C, then Algorithm 3 with η set
to 4µ2r

m outputs a matrix L̂ such that:
∥∥∥L̂− L∗∥∥∥

F
≤ ε, w.p.

≥ 1− n− log α
2 .

Notice that the sample complexity of Algorithm 3 has an
additional multiplicative factor of O(r) when compared to
that of Algorithm 1, but shaves off a factor of O(log(κ)).
Similarly, computational complexity of Algorithm 3 also
trades off a O(log κ) factor for O(r) factor from the com-
putational complexity of Algorithm 1.

Result for Matrix Completion: Note that for S̃∗ = 0, the
RMC problem with Assumptions 1,2 is exactly the same as
the standard matrix completion problem and hence, we get
the following result as a corollary of Theorem 1:
Corollary 1 (Matrix Completion). Suppose we observe Ω
and PΩ(L∗) where Assumptions 1,2 hold for L∗ and Ω.
Also, let E[|Ω|] ≥ Cα2µ4r2n log2 n log2 σ1/ε and m ≤
n. Then, w.p. ≥ 1 − n− log α

2 , Algorithm 1 outputs L̂ s.t.
‖L̂− L∗‖2 ≤ ε.

Table 1 compares our sample and time complexity bounds
for low-rank MC. Note that our sample complexity is
nearly the same as that of nuclear-norm methods while the
running time of our algorithm is significantly better than
the existing results that have at most logarithmic depen-
dence on the condition number of L∗.

Result for Robust PCA: Consider the standard Robust
PCA problem (RPCA), where the goal is to recover L∗

from M = L∗ + S̃∗. For RPCA as well, we can randomly
sample |Ω| entries from M , where Ω satisfies the assump-
tion required by Theorem 1. This leads us to the following
corollary:
Corollary 2 (Robust PCA). Suppose we observe M =
L∗ + S̃∗, where Assumptions 1, 3 hold for L∗ and
S̃∗. Generate Ω ∈ [m] × [n] by sampling each en-
try independently with probability p, s.t., E[|Ω|] ≥
Cα2µ4r2n log2 n log2 σ1/ε. Let m ≤ n. Then, w.p.
≥ 1− n− log α

2 , Algorithm 1 outputs L̂ s.t. ‖L̂−L∗‖2 ≤ ε.

Hence, using Theorem 1, we will still be able to recover L∗

but using only the sampled entries. Moreover, the running
time of the algorithm is only O(µ4nr3 log2 n log2(σ1/ε)),
i.e., we are able to solve RPCA problem in time almost lin-
ear in n. To the best of our knowledge, the existing state-
of-the-art methods for RPCA require at least O(n2r) time
to perform the same task (Netrapalli et al., 2014; Gu et al.,
2016). Similarly, we don’t need to load the entire data ma-
trix in memory, but we can just sample the matrix and work
with the obtained sparse matrix with at most linear number
of entries. Hence, our method significantly reduces both
run-time and space complexities, and as demonstrated em-
pirically in Section 4 can help scale our algorithm to very
large data sets without losing accuracy.

3.1. Proof Outline for Theorem 1

We now provide an outline of our proof for Theorem 1
and motivate some of our proof techniques; the proof of
Theorem 2 follows similarly. Recall that we assume that
M = L∗+ S̃∗ and define S∗ = PΩ(S̃∗). Similarly, we de-
fine S̃(t) = HT ζ(M − L(t)). Critically, S(t) = PΩ(S̃(t))

(see Line 9 of Algorithm 1), i.e., S̃(t) is the set of iterates
that we “could” obtain if entire M was observed. Note that
we cannot compute S̃(t), it is introduced only to simplify
our analysis.

We first re-write the projected gradient descent step for
L(t+1) as described in (4):

L(t+1) = Pkq
(
L∗ + (S̃∗ − S̃(t))︸ ︷︷ ︸

E1

+

(
I −
PΩq,t

p

)
(

E2︷ ︸︸ ︷
(L(t) − L∗) +(S̃(t) − S̃∗))︸ ︷︷ ︸

E3

)
(6)

That is, L(t+1) is obtained by rank-kq SVD of a perturbed
version of L∗: L∗ + E1 + E3. As we perform entrywise
thresholding to reduce ‖S̃∗ − S̃(t)‖∞, we need to bound
‖L(t+1)−L∗‖∞. To this end, we use techniques from (Jain
& Netrapalli, 2015), (Netrapalli et al., 2014) that explicitly
model singular vectors of L(t+1) and argue about the infin-
ity norm error using a Taylor series expansion. However,
in our case, such an error analysis requires analyzing the
following key quantities (H = E1 + E3):

∀1 ≤ j, s.t., j even :

Aj := max
q∈[n]

‖e>q
(
H>H

) j
2 V ∗‖2

Bj := max
q∈[m]

‖e>q
(
HH>

) j
2 U∗‖2,

∀1 ≤ j, s.t., j odd :

Cj := max
q∈[n]

‖e>q H>
(
HH>

)b j2 c U∗‖2
Dj := max

q∈[m]
‖e>q H

(
H>H

)b j2 c V ∗‖2.
(7)

Note that E1 = 0 in the case of standard RPCA which was
analyzed in (Netrapalli et al., 2014), while E3 = 0 in the
case of standard MC which was considered in (Jain & Ne-
trapalli, 2015). In contrast, in our case both E1 and E3

are non-zero. Moreover, E3 is dependent on random vari-
able Ω. Hence, for j ≥ 2, we will get cross terms between
E3 and E1 that will also have dependent random variables
which precludes application of standard Bernstein-style tail
bounds. To overcome this issue, we first carefully segregate
the errors arising due to the randomness in the sampling
process and the deterministic sparse corruptions in S̃∗. We
do this by introducing S̃(t) which is the sparse iterate we
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Table 1: Comparison of PG-RMC and R-RMC with Other Matrix Completion Methods

Sample Complexity Computational Complexity

Nuclear norm (Recht, 2011) O
(
µ2rn log2 n

)
O
(
n3 log 1

ε

)
SVP (Jain & Netrapalli, 2015) O

(
µ4r5n log3 n

)
O
(
µ4r7n log3 n log( 1

ε )
)

Alt. Min. (Hardt & Wootters, 2014) O
(
nµ4r9 log3 (κ) log2 n

)
O
(
nµ4r13 log3 (κ) log2 n

)
Alt. Grad. Desc. (Sun & Luo, 2015) O

(
nrκ2 max{µ2 log n, µ4r6κ4}

)
O
(
n2r6κ4 log

(
1
ε

))
R-RMC (This Paper) O

(
µ4r3n log2 (n) log

(
σ∗1
ε

))
O
(
µ4r4n log2 (n) log

(
σ∗1
ε

))
PG-RMC (This Paper) O

(
µ4r2n log2 (n) log2

(
σ∗1
ε

))
O
(
µ4r3n log2 (n) log2

(
σ∗1
ε

))

would have obtained had the whole matrix been observed.
This allows us to decompose the error term into the sum of
E1 and E3 where E1 represents the error due to the sparse
corruptions and E3 represents the error arising from the
randomness in the sampling procedure. We then incorpo-
rate this decomposition into a careful combinatorial-style
argument similar to that of (Erdos et al., 2013; Jain & Ne-
trapalli, 2015) to bound the above given quantity. That is,
we can provide the following key lemma:
Lemma 1. Let L∗, Ω, and S̃∗ satisfy Assumptions 1, 2 and
3 respectively. LetL∗ = U∗Σ∗(V ∗)> be the singular value
decomposition of L∗. Furthermore, suppose that in the tth

iteration of the qth stage, S̃(t) defined as HTζ(M − L(t))

satisfies Supp(S̃(t)) ⊆ Supp(S̃∗), then we have:

max{Aa, Ba, Ca, Da} ≤ µ
√

r

m

(
ρn ‖E1‖∞

+c

√
n

p
(‖E1 − E2‖∞) log n

)a
,

∀c > 0,∀0 ≤ j ≤ log n w.p. ≥ 1 − n−2 log c
4 +4, where

E1, E2 and E3 are defined in (6), Aa, Ba, Ca, Da are de-
fined in (7).

Remark: We would like to note that even for the stan-
dard MC setting, i.e., when E1 = 0, we obtain bet-
ter bound than that of (Jain & Netrapalli, 2015) as we
can bound maxi ‖eTi (E3)qU‖2 directly rather than the
weaker

√
rmaxi ‖eTi (E3)quj‖ bound that (Jain & Netra-

palli, 2015) uses.

Now, using Lemmas 1 and 7 and by using a hard-
thresholding argument we can bound ‖L(t+1) − L∗‖∞ ≤
2µ2r
m (σ∗kq+1 +

(
1
2

)t
σ∗kq ) (see Lemma 9) in the q-th stage.

Hence, after O(log(σ∗1/ε)) “inner” iterations, we can guar-

antee in the q-th stage:

‖L(T ) − L∗‖∞ ≤
4µ2r

m
σ∗kq+1

‖E1‖∞ + ‖E2‖∞ ≤
20µ2r

m
σ∗kq+1.

Moreover, by using sparsity of S̃∗ and the special structure
of E3 (See Lemma 7), we have: ‖E1 + E3‖2 ≤ c · σ∗kq+1,
where c is a small constant.

Now, the outer iteration sets the next stage’s rank kq+1 as:
kq+1 = |{i : σi(L

∗ +E1 +E3) ≥ 0.5 · σkq+1(L∗ +E1 +
E3)}|. Using the bound on ‖E1 +E3‖2 and Weyl’s eigen-
value perturbation bound (Lemma 2), we have: σ∗kq+1+1

≤
0.6σ∗kq+1. Hence, after Q = O(log(σ∗1/ε)) “outer” itera-
tions, Algorithm 1 converges to an ε-approximate solution
to L∗.

4. Experiments
In this section we discuss the performance of Algorithm
1 on synthetic data and its use in foreground background
separation. The goal of the section is two-fold: a) to
demonstrate practicality and effectiveness of Algorithm 1
for the RMC problem, b) to show that Algorithm 1 in-
deed solves RPCA problem in significantly smaller time
than that required by the existing state-of-the-art algorithm
(St-NcRPCA (Netrapalli et al., 2014)). To this end, we use
synthetic data as well as video datasets where the goal is to
perform foreground-background separation (Candès et al.,
2011).

We implemented our algorithm in MATLAB and the re-
sults for the synthetic data set were obtained by averaging
over 20 runs. We obtained a matlab implementation of St-
NcRPCA (Netrapalli et al., 2014) from the authors of (Ne-
trapalli et al., 2014). Note that if the sampling probability
is p = 1, then our method is similar to St-NcRPCA; the
key difference being how the rank is selected in each stage.
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We also implemented the Alternating Minimzation based
algorithm from (Gu et al., 2016). However, we found it
to be an order of magnitude slower than Algorithm 1 on
the foreground-background separation task. For example,
on the escalator video, the algorithm did not converge in
less than 150 seconds despite discounting for the expen-
sive sorting operation in the truncation step. On the other
hand, our algorithm finds the foreground in about 8 sec-
onds.

Parameters. The algorithm has three main parameters: 1)
threshold ζ, 2) incoherence µ and 3) sampling probabil-
ity p (E[|Ω|] = p · mn). In the experiments on synthetic
data we observed that keeping ζ ∼ µ

∥∥M − S(t)
∥∥

2
/
√
n

speeds up the recovery while for background extraction
keeping ζ ∼ µ

∥∥M − S(t)
∥∥

2
/n gives a better quality out-

put. The value of µ for real world data sets was figured
out using cross validation while for the synthetic data the
same value was used as used in data generation. The sam-
pling probability for the synthetic data could be kept as low
as (θ =)2r log2(n)/n while for the real world data set we
get good results for p = 0.05. We define effective sam-
ple size as the ratio between the sampling probability and
θ. Also, rather than splitting samples, we use the entire
set of observed entries to perform our updates (see Algo-
rithm 1).

Synthetic data. We generate M = L∗ + S̃∗ of two sizes,
where L∗ = UV > ∈ R2000×2000 (and R5000×5000) is a
random rank-5 (and rank-10 respectively) matrix with in-
coherence ≈ 1. S̃∗ is generated by considering a uni-
formly random subset of size

∥∥∥S̃∗∥∥∥
0

from [m]× [n] where
every entry is i.i.d. from the uniform distribution in
[ r
2
√
mn

, r√
mn

]. This is the same setup as used in (Candès
et al., 2011).

Figure 1 (a) plots recovery error (‖L − L∗‖F ) vs com-
putational time for our PG-RMC method (with different
sampling probabilities) as well as the St-NcRPCA algo-
rithm. Note that even for very small values of sampling
p, we can achieve the same recovery error as when using
significantly small values. For example, our method with
p = 0.1 achieve 0.01 error (‖L − L∗‖F ) in ≈ 2.5s while
St-NcRPCA method requires ≈ 10s to achieve the same
accuracy. Note that we do not compare against the convex
relaxation based methods like IALM from (Candès et al.,
2011), as (Netrapalli et al., 2014) shows that St-NcRPCA
is significantly faster than IALM and several other convex
relaxation solvers.

Figure 1 (b) plots time required to achieve different recov-
ery errors (‖L − L∗‖F ) as the sampling probability p in-
creases. As expected, we observe a linear increase in the
run-time with p. Interestingly, for very small values of p,
we observe an increase in running time. In this regime,
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Figure 1: Performance of PG-RMC on synthetic data. 1a:
time vs error for various sampling probabilities; time taken
by St-NcRPCA 1b: sampling probability vs time for con-
stant error; time taken decreases with decreasing sampling
probability upto an extent and then increases 1c: time vs
rank for constant error 1d: incoherence vs time for con-
stant error 1e: success probability vs effective sample size
for various matrix sizes

‖PΩ(M)‖2
p becomes very large (as p doesn’t satisfy the sam-

pling requirements). Hence, the increase in the number of
iterations (T ≈ log ‖PΩ(M)‖2

pε ) dominates the decrease in
per iteration time complexity.

Figure 1 (c), (d) plot computation time required by our
method (PG-RMC , Algorithm 1) versus rank and inco-
herence, respectively. As expected, as these two problem
parameters increase, our method requires more time. Note
that our run-time dependence on rank seems to be linear,
while our results require O(r3) time. This hints at the pos-
sibility of further improving the computational complexity
analysis of our algorithm.

Figure 1 (e) plots the effective sample size against suc-
cess probability. We see that the probability of recovering
the underlying low rank matrix undergoes a rapid phase
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Figure 2: PG-RMC on Shopping video. 2a: a video frame
2c: an extracted background frame 2e: time vs error for dif-
ferent sampling probabilities; PG-RMC takes 38.7s while
St-NcPCA takes 204.4s. PG-RMC on Restaurant video.
2b: a video frame 2d: an extracted background frame
2f: time vs error for different sampling probabilities; PG-
RMC takes 7.9s while St-NcPCA takes 27.8s

transition from 0 to 1 when sampling probability crosses
∼ r log2 n/n.

We also study phase transition for different values of sam-
pling probability p. Figure 3 (a) in Appendix 5.5 show a
phase transition phenomenon where beyond p > .06 the
probability of recovery is almost 1 while below it, it is al-
most 0.

Foreground-background separation. We also applied
our technique to the problem of foreground-background
separation. We use the usual method of stacking up the
vectorized video frames to construct a matrix. The back-
ground, being static, will form the low rank component
while the foreground is considered to be the noise.

We applied our PG-RMC method (with varying p) to sev-

eral videos. Figure 2 (a), (d) show one frame each from two
such videos (a shopping center video, a restaurant video).
Figure 2 (b), (d) show the extracted background from the
two videos by using our method (PG-RMC , Algorithm 1)
with probability of sampling p = 0.05. Figure 2 (c), (f)
compare objective function value for different p values.
Clearly, PG-RMC can recover the true background with
p as small as 0.05. We also observe an order of magni-
tude speedup (≈ 5x) over St-NcRPCA (Netrapalli et al.,
2014). We present results on the video Escalator in Ap-
pendix 5.5.

Conclusion. In this work, we studied the Robust Matrix
Completion problem. For this problem, we provide exact
recovery of the low-rank matrix L∗ using nearly optimal
number of observations as well as nearly optimal fraction
of corruptions in the observed entries. Our RMC result
is based on a simple and efficient PGD algorithm that has
nearly linear time complexity as well. Our result improves
state-of-the-art sample and run-time complexities for the
related Matrix Completion as well as Robust PCA prob-
lem. For Robust PCA, we provide first nearly linear time
algorithm under standard assumptions.

Our sample complexity depends on ε, the desired accu-
racy in L∗. Removing this factor will be an interesting
future work. Moreover, improving dependence of sample
complexity on r (from r2 to r) also represents an impor-
tant direction. Finally, similar to foreground background
separation, we would like to explore more applications of
RMC/RPCA.
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5. Appendix

We divide this section into five parts. In the first part we prove some common lemmas. In the second part we give the
convergence guarantee for PG-RMC . In the third part we give another algorithm which has a sample complexity of
O(µ4r3n log2 n log

µ2rσ∗1
ε ) and prove its convergence guarantees. In the fourth part we prove a generalized form of lemma

1. In the fifth part we present some additional experiments.

For the sake of convenience in the following proofs, we will define some notations here.

We define p =
|Ωk,t|
mn and we consider the following equivalent update step for L(t+1) in the analysis:

L(t+1) := Pk(M (t)) M (t) := L∗ +H

H := E(t) + βG E(t) := S̃∗ − S̃(t)

S̃(t) := HT ζ
(
M − L(t)

)
G := 1

β

(
I − PΩq,t

p

)
D

D := L(t) − L∗ + S̃(t) − S̃∗ β :=
2
√
n ‖D‖∞√
p

The singular values of L∗ are denoted by σ∗1 , . . . , σ
∗
r where |σ∗1 | ≥ . . . ≥ |σ∗r | and we will let λ1, . . . , λn denote the

singular values of M (t) where |λ1| ≥ . . . ≥ |λn|.

5.1. Common Lemmas

We will begin by restating some lemmas from previous work that we will use in our proofs.

First, we restate Weyl’s perturbation lemma from (Bhatia, 1997), a key tool in our analysis:
Lemma 2. Suppose B = A + E ∈ Rm×n matrix. Let λ1, · · · , λk and σ1, · · · , σk be the singular values of B and A
respectively such that λ1 ≥ · · · ≥ λk and σ1 ≥ · · · ≥ σk. Then:

|λi − σi| ≤ ‖E‖2 ∀ i ∈ [k].

This lemma establishes a bound on the spectral norm of a sparse matrix.
Lemma 3. Let S ∈ Rm×n be a sparse matrix with row and column sparsity ρ. Then,

‖S‖2 ≤ ρmax{m,n} ‖S‖∞

Proof. For any pair of unit vectors u and v, we have:

v>Su =
∑

1≤i≤m,1≤j≤n

viujSij ≤
∑

1≤i≤m,1≤j≤n

|Sij |

(
v2
i + u2

j

2

)

≤ 1

2

 ∑
1≤i≤m

v2
i

∑
1≤j≤n

|Sij |+
∑

1≤j≤n

u2
j

∑
1≤i≤m

|Sij |

 ≤ ρmax{m,n} ‖S‖∞

Lemma now follows by using ‖S‖2 = maxu,v,‖u‖2=1,‖v‖2=1 u
TSv.

Now, we define a 0-mean random matrix with small higher moments values.
Definition 1 (Definition 7, (Jain & Netrapalli, 2015)). H is a random matrix of size m× n with each of its entries drawn
independently satisfying the following moment conditions:

E[hij ] = 0, |hij | < 1, E[|hij |k] ≤ 1
max{m,n} ,

for i, j ∈ [n] and 2 ≤ k ≤ 2 log n.

We now restate two useful lemmas from (Jain & Netrapalli, 2015):
Lemma 4 (Lemma 8 and 10 of (Jain & Netrapalli, 2015)). We have the following two claims:

• Suppose H satisfies Definition 1. Then, w.p. ≥ 1− 1/n10+logα, we have: ‖H‖2 ≤ 3
√
α.
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• Let A be a m× n matrix with n ≥ m. Suppose Ω ⊆ [m]× [n] is obtained by sampling each element with probability
p ≥ 1

4n . Then, the following matrix H satisfies Defintion 1:

H :=

√
p

2
√
n ‖A‖∞

(
A− 1

p
PΩ(A)

)
.

Lemma 5 (Lemma 13, (Jain & Netrapalli, 2015)). Let A ∈ Rn×n be a symmetric matrix with eigenvalues σ1, · · · , σn
where |σ1| ≥ · · · ≥ |σn|. Let B = A + C be a perturbation of A satisfying ‖C‖2 ≤

σk
2 and let Pk(B) = UΛU> be the

rank-k projection of B. Then, Λ−1 exists and we have:

1.
∥∥A−AUΛ−1U>A

∥∥
2
≤ |σk+1|+ 5 ‖C‖2,

2.
∥∥AUΛ−aU>A

∥∥
2
≤ 4

(
|σk|

2

)−a+2

∀a ≥ 2.

We now provide a lemma that bounds ‖ · ‖∞ norm of an incoherent matrix with its operator norm.
Lemma 6. Let A ∈ Rm×n be a rank r, µ-incoherent matrix. Then for any C ∈ Rn×m, we have:

‖ACA‖∞ ≤
µ2r√
mn
‖ACA‖2

Proof. Let A = UΣV >. Then, ACA = UU>ACAV V >. The lemma now follows by using definition of incoherence
with the fact that ‖U>ACAV ‖2 ≤ ‖ACA‖2.

We now present a lemma that shows improvement in the error ‖L− L∗‖∞ by using gradient descent on L(t).
Lemma 7. Let L∗, Ω, S̃∗ satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th inner-iteration of
any stage q:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

2.
∥∥∥S̃∗ − S̃(t)

∥∥∥
∞
≤ 8µ2r

m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

3. Supp(S̃(t)) ⊆ Supp(S̃∗)

where z ≥ −3 and σ∗k and σ∗k+1 are the k and (k + 1)th singular values of L∗. Also, let E1 = S̃(t) − S̃∗ and E3 =(
I − PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
be the error terms defined also in (6). Then, the following holds w.p ≥ 1 −

n−(10+logα):

‖E1 + E3‖2 ≤
1

100

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
(8)

Proof. Note from Lemma 4,
1

β
E3 =

1

β

(
I −
PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
,

satisfies Definition 1 with β = 2
√
n√
p · ‖L

(t) − L∗ + S̃(t) − S̃∗‖∞.

We now bound the spectral norm of E1 + E3 as follows:

‖E1 + E3‖2 ≤ ‖E1‖2 + β ·
∥∥∥∥ 1

β
E3

∥∥∥∥
2

(ζ1)

≤ ρn
∥∥∥S̃(t) − S̃∗

∥∥∥
∞

+ 3β
√
α,

(ζ2)

≤ 1

200

(
σ∗kq+1 +

(
1

2

)z
σ∗kq

)
+

60µ2r

m

√
n

p

√
α

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)z ∣∣∣σ∗kq ∣∣∣) ,
(ζ3)

≤ 1

100

(
σ∗kq+1 +

(
1

2

)z
σ∗kq

)
.

where (ζ1) follows from Lemma 3 and 4, (ζ2) follows by our assumptions on ρ,
∥∥L(t) − L∗

∥∥
∞,
∥∥∥S̃(t) − S̃∗

∥∥∥
∞

and our

assumption that n = O (m) and (ζ3) follows from our assumption on p.
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In the following lemma, we prove that the value of the threshold computed using σk(M (t)) = σk(L∗ + E1 + E3), where
E1, E3 are defined in (6), closely tracks the threshold that we would have gotten had we had access to the true eigenvalues
of L∗, σ∗k.
Lemma 8. Let L∗, Ω, S̃∗ satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th inner-iteration of
any stage q:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

2.
∥∥∥S̃∗ − S̃(t)

∥∥∥
∞
≤ 8µ2r

m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

3. Supp(S̃(t)) ⊆ Supp(S̃∗)

where z ≥ −3 and σ∗k and σ∗k+1 are the k and (k + 1)th singular values of L∗. Also, let E1 = S̃(t) − S̃∗ and E3 =(
I − PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
be the error terms defined also in (6). Then, the following holds ∀z > −3 w.p

≥ 1− n−(10+logα):

7

8

(
σ∗k+1 +

(
1

2

)z+1

σ∗k

)
≤

(
λk+1 +

(
1

2

)z+1

λk

)
≤ 9

8

(
σ∗k+1 +

(
1

2

)z+1

σ∗k

)
, (9)

where λk := σk(M (t)) = σk(L∗ + E1 + E3) and E1, E3 are defined in (6).

Proof. Using Weyl’s inequality (Lemma 2), we have: : |λk − σ∗k| ≤ ‖E1 + E3‖2 and
∣∣λk+1 − σ∗k+1

∣∣ ≤ ‖E1 + E3‖2 We
now proceed to prove the lemma as follows:∣∣∣∣∣λk+1 +

(
1

2

)z+1

λk − σ∗k+1 −
(

1

2

)z+1

σ∗k

∣∣∣∣∣ ≤ ∣∣λk+1 − σ∗k+1

∣∣+

(
1

2

)z+1

|λk − σ∗k| ,

≤ ‖E1 + E3‖2

(
1 +

(
1

2

)z+1
)

(ζ)

≤ 1

100

(
σ∗k+1 +

(
1

2

)z
σ∗k

)(
1 +

(
1

2

)z+1
)
,

≤ 1

8

(
σ∗k+1 +

(
1

2

)z+1

σ∗k

)
,

where (ζ) follows from Lemma 7 and the last inequality follows from the assumption that z ≥ −3.

Next, we show that the projected gradient descent update (6) leads to a better estimate ofL∗, i.e., we bound ‖L(t+1)−L∗‖∞.
Under the assumptions of the below given Lemma, the proof follows arguments similar to (Netrapalli et al., 2014) with
additional challenge that arises due to more involved error terms E1, E3.

Our proof proceeds by first symmetrizing our matrices by rectangular dilation. We first begin by noting some properties of
symmetrized matrices used in the proof of the following lemma.
Remark 1. Let A be a m× n dimensional matrix with singular value decomposition UΣV >. We denote its symmetrized

version by As :=

[
0 A>

A 0

]
. Then:

1. The eigenvalue decomposition of As is given by As = UsΣsU
>
s where

Us :=
1√
2

[
V V
U −U

]
Σs :=

[
Σ 0
0 −Σ

]

2. P2k (As) =

[
0 Pk(A>)

Pk(A) 0

]
3. We have A2j

s =

[
(A>A)j 0

0 (AA>)j

]
A2j+1
s =

[
0 (A>A)jA>

(AA>)jA 0

]
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4. We have

UsΣ
−j
s U>s =

[
V Σ−jV > 0

0 UΣ−jU>

]
when j is even

UsΣ
−j
s U>s =

[
0 V Σ−jU>

UΣ−jV > 0

]
when j is odd

Lemma 9. Let L = Pk(L∗ +H), where H is any perturbation matrix that satisfies the following:

1. ‖H‖2 ≤
σ∗k
4

2. ∀i ∈ [n], a ≤ d logn
2 e with υ ≤ σ∗k

4∥∥e>i (H>H)a V ∗∥∥2
,
∥∥e>i (HH>)a U∗∥∥2

≤ (υ)2aµ
√

r
m∥∥e>i H> (HH>)a U∗∥∥2

,
∥∥e>i H (H>H)a V ∗∥∥2

≤ (υ)2a+1µ
√

r
m

where σ∗k is the kth singular value of L∗. Also, let L∗ satisfy Assumption 1. Then, the following holds:

‖L− L∗‖∞ ≤
µ2r

m

(
σ∗k+1 + 20 ‖H‖2 + 8υ

)
where µ and r are the rank and incoherence of the matrix L∗ respectively.

Proof. Let Ls, Hs and L∗s denote the symmetrized forms of L, H and L∗ respectively. Now, we have:

Ls = P2k (L∗s +Hs)

Let l = m+n. Let λ1, · · · , λl be the eigenvalues of Ms = L∗s +Hs with |λ1| ≥ |λ2| · · · ≥ |λl|. Let u1, u2, · · · , ul be the
corresponding eigenvectors of Ms. Using Lemma 2 along with the assumption on ‖Hs‖2, we have: |λ2k| ≥ 3σ∗k

4 .

Let UΛV be the eigen vector decomposition of L. Let UsΛsU>s to be the eigen vector decomposition of Ls. Then, using
Remark 1 we have ∀ i ∈ [2k]:

(L∗s +Hs)ui = λiui, i.e.
(
I − Hs

λi

)
ui =

L∗sui
λi

.

As |λ2k| ≥ 3σ∗k
4 and ‖Hs‖2 ≤

1
4σ
∗
k, we can apply the Taylor’s series expansion to get the following expression for ui:

ui =
1

λi

 ∞∑
j=0

(
Hs

λi

)j L∗sui
λi

.

That is,

Ls =

2k∑
i=1

λiuiu
>
i =

2k∑
i=1

λ−1
i

∑
0≤s,t<∞

(
Hs

λi

)s
L∗suiu

>
i L
∗
s

(
Hs

λi

)t
,

=
∑

0≤s,t<∞

2k∑
i=1

λ
−(s+t+1)
i Hs

sL
∗
suiu

>
i L
∗
sH

t
s =

∑
0≤s,t<∞

Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s.

Subtracting L∗s on both sides and taking operator norm, we get:

‖Ls − L∗s‖∞ =
∥∥UsΛsU>s − L∗s∥∥∞ =

∥∥∥∥∥∥
∑

0≤s,t<∞

Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s − L∗s

∥∥∥∥∥∥
∞

,

=
∥∥L∗sUsΛ−1

s U>s L
∗
s − L∗s

∥∥
∞ +

∑
1≤s+t<∞

∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞
. (10)
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We separately bound the first and the second term of RHS. The first term can be bounded as follows:

∥∥L∗sUsΛ−1
s U>s L

∗
s − L∗s

∥∥
∞

(ζ1)
=

∥∥∥∥L∗s [ 0 V Λ−1U>

UΛ−1V > 0

]
L∗s − L∗s

∥∥∥∥
∞

(11)

≤
∥∥L∗V Λ−1U>L∗ − L∗

∥∥
∞

(ζ2)

≤ µ2r√
mn

∥∥L∗V Λ−1U>L∗ − L∗
∥∥

2

(ζ3)

≤ µ2r√
mn

(∣∣σ∗k+1

∣∣+ 5 ‖H‖2
)
, (12)

where (ζ1) follows Remark 1, (ζ2) from Lemma 6 and (ζ3) follows from Claim 1 of Lemma 5 after symmetrization.

We now bound second term of RHS of (10) which we again split in two parts. We first bound the terms with s+ t > log n:

∥∥∥Hs
sL
∗
sUsΛ

(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞
≤
∥∥∥Hs

sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
2

(ζ1)

≤ ‖Hs‖s+t2 4

(
2

σ∗k

)−(s+t−1)

≤ 4 ‖H‖2

(
‖H‖2

2

σ∗k

)(s+t−1) (ζ2)

≤ 4 ‖H‖2

(
1

2

)(s+t−1)

≤ 4

n
‖H‖2

(
1

2

)(s+t−1−logn)

≤ 4
µ2r

m
‖H‖2

(
1

2

)(s+t−1−logn)

, (13)

where (ζ1) follows from the second claim of Lemma 5 and noting that ‖Hs‖2 = ‖H‖2 and (ζ2) follows from assumption
on ‖H‖2 and using the fact that s+ t ≥ log n.

Summing up over all terms with s+ t > log n, we get from (13) and (12):

‖Ls − L∗s‖∞ ≤
µ2r

m

(∣∣σ∗k+1

∣∣+ 20 ‖H‖2
)

+
∑

0<s+t≤logn

∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞

(14)

where the first inequality follows because m ≤ n.

Now, for terms corresponding to 1 ≤ s+ t ≤ log n, we have:∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞

= max
q1∈[m+n],q2∈[m+n]

∣∣∣e>q1Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
seq2

∣∣∣
≤
(

max
q1∈[m+n]

∥∥e>q1Hs
sU
∗
s

∥∥
2

)∥∥∥Σ∗s(U
∗
s )>UsΛ

−(s+t+1)
s U>s U

∗
sΣ∗s

∥∥∥
2

(
max

q2∈[m+n]

∥∥e>q2HtU∗s
∥∥

2

)
, (15)

We will now bound the terms, max
q1∈[m+n]

∥∥e>q1Hs
sU
∗
s

∥∥
2
. Note from Remark 1.1 that U∗s = 1√

2

[
V ∗ V ∗

U∗ −U∗
]

. Now, we have

the following cases for Hs
s :

Hj
s =

[(
H>H

) s
2 0

0
(
HH>

) s
2

]
when s is even Hj

s =

[
0 H>

(
HH>

)b s2 c
H
(
H>H

)b s2 c 0

]
when s is odd

In these two cases, we have:

Hs
sU
∗
s = 1√

2

[(
H>H

) s
2 V ∗

(
H>H

) s
2 V ∗(

HH>
) s

2 U∗ −
(
HH>

) s
2 U∗

]
Hs
sU
∗
s = 1√

2

[
H>

(
HH>

)b s2 c U∗ −H>
(
HH>

)b s2 c U∗
H
(
H>H

)b s2 c V ∗ H
(
H>H

)b s2 c V ∗
]

This leads to the following 4 cases for max
q1∈[m+n]

∥∥e>q1Hs
sU
∗
s

∥∥
2
:

for s even max
q′∈[n]

∥∥∥e>q′ (H>H) s2 V ∗∥∥∥
2

max
q′∈[m]

∥∥∥e>q′ (HH>) s2 U∗∥∥∥
2

for s odd max
q′∈[n]

∥∥∥e>q′H> (HH>)b s2 c U∗∥∥∥
2

max
q′∈[m]

∥∥∥e>q′H (H>H)b s2 c V ∗∥∥∥
2
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We can now bound the terms in (15) as follows:

∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞

(ζ1)

≤ µ2r

m
υs+t

∥∥∥L∗sUsΛ−(s+t+1)
s U>s L

∗
s

∥∥∥
2

(ζ2)

≤ 4µ2r

m
υs+t

(
2

σ∗k

)s+t−1

≤ 4µ2r

m
υ

(
1

2

)s+t−1

(16)

where (ζ1) follows from the second assumption of the Lemma and the preceding argument and (ζ2) follows from Claim 2
of Lemma 5 and the final step follows from our bound on υ.

Finally, note from the Remark 1 that ‖L∗s − Ls‖∞ =
∥∥L∗ − L(t+1)

∥∥
∞. Now, summing up (16) over all 1 ≤ s+ t ≤ log n

and combining with (14), the lemma is proved.

In the next lemma, we show that with the threshold chosen in the algorithm, we show an improvement in the estimation of
S̃∗ by S̃(t).
Lemma 10. In the tth iterate of the qth stage, assume the following holds:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

2. 7
8η
(
σ∗k+1 +

(
1
2

)z
σ∗k

)
≤ ζ(t) ≤ 9

8η
(
σ∗k+1 +

(
1
2

)z
σ∗k

)
where σ∗k and σ∗k+1 are the k and (k + 1)th singular values of L∗, λk and λk+1 are the k and (k + 1)th singular values of
M (t) and, r and µ are the rank and incoherence of the m× n matrix L∗ respectively. Then we have

1. Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)

2.
∥∥∥S̃(t) − S̃∗

∥∥∥
∞
≤ 8µ2r

m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

Proof. We first prove the first claim of the lemma. Consider an index pair (i, j) /∈ Supp(S̃∗).∣∣∣Mij − L(t)
ij

∣∣∣ ≤ 2µ2r

m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
(ζ1)

≤ 16µ2r

7mη
ζ(t)

(ζ2)

≤ ζ(t)

where (ζ1) follows from the second assumption of the lemma and (ζ2) follows from our setting of η = 4µ2r
m . Hence, we

do not threshold any entry that is not corrupted by S̃∗.

Now, we prove the second claim of the lemma. Consider an index entry (i, j) ∈ Supp(S̃∗). Here, we consider two cases:

1. The entry (i, j) ∈ Supp(S̃(t)): Here the entry (i, j) is thresholded. We know that L(t)
ij + S̃

(t)
ij = L∗ij + S̃∗ij from which

we get ∣∣∣S̃(t)
ij − S̃

∗
ij

∣∣∣ =
∣∣∣L∗ij − L(t)

ij

∣∣∣ ≤ ∥∥∥L∗ − L(t)
∥∥∥
∞

2. The entry (i, j) /∈ Supp(S̃(t)): Here the entry (i, j) is not thresholded. We know that
∣∣∣L∗ij + S̃∗ij − L

(t)
ij

∣∣∣ ≤ ζ(t) from
which we get ∣∣∣S̃∗ij∣∣∣ ≤ ζ(t) +

∣∣∣L∗ij − L(t)
ij

∣∣∣
(ζ2)

≤ 36µ2r

8m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
+

2µ2r

m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
≤ 8µ2r

m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
where (ζ2) follows from the second assumption along with our setting of η = 4µ

2r
m .

The above two cases prove the second statement of the lemma.
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We will now prove Lemma 1
Proof of Lemma 1: Recall the definitions of E1 =

(
S̃∗ − S̃(t)

)
, E2 =

(
L(t) − L∗

)
, E3 =

(
I − PΩq,t

p

)
(E2 − E1) and

β = 2
√

n
p ‖E2 − E1‖∞. Recall that H := E1 +E3 From Lemma 4, we have that 1

βE3 satisfies Definition 1. This implies

that the matrix 1
β (E1 + E3) satisfies the conditions of Lemma 14. Now, we have ∀1 ≤ a ≤ dlog ne and ∀i ∈ [n]:

∥∥ei(HH>)aU∗
∥∥

2
= β2a

∥∥∥∥∥ei
((

1

β
H

)(
1

β
H

)>)a
U∗

∥∥∥∥∥
2

(ζ)

≤ β2a

(
ρn

β
‖E1‖∞ + c log n

)2a

µ

√
r

m
≤ µ

√
r

m

(
ρn ‖E1‖∞ + 2c

√
n

p
(‖E1 − E2‖∞) log n

)2a

where (ζ) follows from the application of Lemma 14 along with the incoherence assumption on U∗. The other statements
of the lemma can be proved in a similar manner by invocations of the different claims of Lemma 14. �

5.2. Algorithm PG-RMC

Proof of Theorem 1: We know that T ≥ log(
20µ2nrσ∗1

ε ). Consider the stage q reached at the termination of the algorithm.
We know from Lemma 11 that:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)T−3
σ∗kq

)
≤ 8µ2r

m σ∗kq+1 + ε
10n

2.
∥∥L(T ) − L∗

∥∥
∞ ≤

2µ2r
m

(
σ∗kq+1 +

(
1
2

)T−3
∣∣∣σ∗kq ∣∣∣) ≤ 2µ2r

m σ∗kq+1 + ε
10n

Combining this with Lemmas 2 and 7, we get:

∣∣∣σkq+1(M (T ))
∣∣∣ ≥ σ∗kq+1 −

1

100

(
σ∗kq+1 +

mε

10nµ2r

)
(17)

When the while loop terminates, ησkq+1

(
M (T )

)
< ε

2n , which from (17), implies that σ∗kq+1 <
mε

7nµ2r . So we have:

‖L− L∗‖∞ =
∥∥∥L(T ) − L∗

∥∥∥
∞
≤ 2µ2r

m
σ∗kq+1 +

ε

10n
≤ ε

2n
.

We will now bound the number of iterations required for the PG-RMC to converge.

From claim 2 of Lemma 12, we have σ∗kq+1 ≤ 17
32σ
∗
kq−1+1 ∀q ≥ 1. By recursively applying this inequality, we get

σ∗kq+1 ≤
(

17
32

)q
σ∗1 . We know that when the algorithm terminates, σ∗kq+1 <

ε
7µ2r . Since,

(
17
32

)q
σ∗1 is an upper bound for

σ∗kq+1, an upper bound for the number of iterations is 5 log
(

7µ2rσ∗1
ε

)
. Also, note that an upper bound to this quantity is

used to partition the samples provided to the algorithm. This happens with probability≥ 1−T 2n−(10+logα) ≥ 1−n− logα.
This concludes the proof. �

In the following lemma, we show that we make progress simultaneously in the estimation of both S̃∗ and L∗ by S̃(t) and
L(t). We make use of Lemmas 9 and 10 to show progress in the estimation of one affects the other alternatively. We also
emphasize the roles of the following quantities in enabling us to prove our convergence result:

1. ‖H‖2 - We use Lemma 7 to bound this quantity

2. The analysis of the following 4 quantities is crucial to obtaining error bounds in ‖‖∞ norm

for j even max
q′∈[n]

∥∥∥∥e>q′ (H>H) j2 V ∗∥∥∥∥
2

max
q′∈[m]

∥∥∥∥e>q′ (HH>) j2 U∗∥∥∥∥
2

for j odd max
q′∈[n]

∥∥∥∥e>q′H> (HH>)b j2 c U∗∥∥∥∥
2

max
q′∈[m]

∥∥∥∥e>q′H (H>H)b j2 c V ∗∥∥∥∥
2

We use Lemma 1 to bound this quantity.
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Lemma 11. Let L∗, Ω, S̃∗ and S̃(t) satisfy Assumptions 1,2,3 respectively. Then, in the tth iteration of the qth stage of
Algorithm 1, S̃(t) and L(t) satisfy:

∥∥∥S̃(t) − S̃∗
∥∥∥
∞
≤ 8µ2r

m

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−3 ∣∣∣σ∗kq ∣∣∣
)
,

Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
,

7

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−2 ∣∣∣σ∗kq ∣∣∣
)
≤ ζ(t+1) ≤ 9

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−2 ∣∣∣σ∗kq ∣∣∣
)

and

∥∥∥L(t) − L∗
∥∥∥
∞
≤ 2µ2r

m

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−3 ∣∣∣σ∗kq ∣∣∣
)
.

with probability ≥ 1− ((q − 1)T + t− 1)n−(10+logα) where T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both q and t. Recall that E(t) = S̃∗ − S̃(t)

Base Case: q = 1 and t = 0
We begin by first proving an upper bound on ‖L∗‖∞. We do this as follows:

∣∣L∗ij∣∣ =

∣∣∣∣∣
r∑

k=1

σ∗ku
∗
ikv
∗
jk

∣∣∣∣∣ ≤
r∑

k=1

σ∗k
∣∣u∗ikv∗jk∣∣ ≤ σ∗1 r∑

k=1

∣∣u∗ikv∗jk∣∣ ≤ µ2r√
mn

σ∗1

where the last inequality follows from Cauchy-Schwartz and the incoherence of U∗. This directly proves the third claim
of the lemma for the base case. Recall, that ζ(0) = ησ∗1 . We now have from the thresholding step and the incoherence
assumption on L∗:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m (σ∗2 + 2σ∗1)

(ζ)

≤ 8µ2r
m

(
8σ∗k1

)
, and

2. Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
.

where (ζ) follows from Lemma 12.

Finally, from Lemma 8, we have:

7

8
η
(
σ∗k1+1 + 4σ∗k1

)
≤ ζ(1) = η

(
σk1+1(M (t)) + 4σk1

(M (t))
)
≤ 9

8
η
(
σ∗k1+1 + 4σ∗k1

)
So the base case of induction is satisfied.

Induction over t
We first prove the inductive step over t (for a fixed q). By inductive hypothesis we assume that:

a)
∥∥E(t)

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)t−3
σ∗kq

)
b) Supp

(
S̃(t)

)
⊆ Supp

(
S̃∗
)

.

c)
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗kq+1 +

(
1
2

)t−3
σ∗kq

)
d) 7

8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)t−2
∣∣∣σ∗kq ∣∣∣) ≤ ζ(t+1) ≤ 9

8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)t−2
∣∣∣σ∗kq ∣∣∣)

with probability 1− ((q − 1)T + t− 1)n−(10+logα). Then by Lemma 9, we have:∥∥∥L(t+1) − L∗
∥∥∥
∞
≤ µ2r

m

(
σ∗kq+1 + 20 ‖H‖2 + 8υ

)
(18)



Nearly Optimal Robust Matrix Completion

From Lemma 1, we have:

υ ≤ ρn
∥∥∥E(t)

∥∥∥
∞

+ 8βα log n
(ζ1)

≤ 1

100

(
σ∗kq+1 +

(
1

2

)t−3

σ∗kq

)
+ 8βα log n

(ζ2)

≤ 1

50

(
σ∗kq+1 +

(
1

2

)t−3

σ∗kq

)
(19)

where (ζ1) follows from our assumptions on ρ and our inductive hypothesis on
∥∥E(t)

∥∥
∞ and (ζ2) follows from our

assumption on p and by noticing that ‖D‖∞ ≤
∥∥E(t)

∥∥
∞ +

∥∥L∗ − L(t)
∥∥
∞. Recall that D = L(t) − L∗ + S̃(t) − S̃∗.

From Lemma 7:

‖H‖2 ≤
1

100

(
σ∗kq+1 +

(
1

2

)t−3

σ∗kq

)
(20)

with probability ≥ 1− n−(10+logα). From Equations (20), (19) and (18), we have:∥∥∥L∗ − L(t+1)
∥∥∥
∞
≤ 2µ2r

m

(
σ∗kq+1 +

(
1

2

)t−2

σ∗kq

)

which by union bound holds with probability≥ 1− ((q−1)T + t)n−(10+logα). Hence, using Lemma 10 and our inductive
hypothesis on ζ(t+1) we have:

1.
∥∥E(t+1)

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)t−2
σ∗kq

)
2. Supp

(
S̃(t+1)

)
⊆ Supp

(
S̃∗
)

.

which also holds with probability ≥ 1− ((q − 1)T + t)n−(10+logα). This concludes the proof for induction over t.

Finally, from Lemma 8 and our bounds on
∥∥E(t+1)

∥∥
∞ and

∥∥L∗ − L(t+1)
∥∥
∞, we have:

7

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−1 ∣∣∣σ∗kq ∣∣∣
)
≤ ζ(t+2) ≤ 9

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−1 ∣∣∣σ∗kq ∣∣∣
)

Induction Over Stages q
We now prove the induction over q. Suppose the hypothesis holds for stage q. At the end of stage q, we have:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)T−3
σ∗kq

)
≤

8µ2rσ∗kq+1

m + ε
10n , and

2. Supp
(
S̃(T )

)
⊆ Supp

(
S̃∗
)

.

3. 7
8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)T−2
∣∣∣σ∗kq ∣∣∣) ≤ ζ(T+1) ≤ 9

8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)T−2
∣∣∣σ∗kq ∣∣∣)

with probability ≥ 1− (qT − 1)n−(10+logα). From Lemmas 2 and 7, we get:∣∣∣σkq+1

(
M (T )

)
− σ∗kq+1

∣∣∣ ≤ ‖H‖2 ≤ 1

100

(
σ∗kq+1 +

mε

10nµ2r

)
(21)

with probability 1− n−(10+logα). We know that ησkq+1

(
M (t)

)
≥ ε

2n which with (21) implies that
∣∣∣σ∗kq+1

∣∣∣ > mε
10nµ2r .

∥∥∥L(T+1) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗kq+1 +

(
1

2

)T−2

σ∗kq

)
≤ 2µ2r

m

(
σ∗kq+1 +

mε

20nµ2rn

)
≤ 2µ2r

m

(
σ∗kq+1 +

σ∗kq+1

2

)
≤ 2µ2r

m

(
2σ∗kq+1

) (ζ4)

≤ 2µ2r

m

(
8σ∗kq+1

)
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where (ζ4) follows from Lemma 12. By union bound this holds with probability ≥ 1− qTn−(10+logα).

Now, from Lemma 10 and the inductive hypothesis on ζT+1, we have through a similar series of arguments as above:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(
8σ∗kq+1

)
2. Supp

(
S̃(0)

)
⊆ Supp

(
S̃∗
)

which holds with probability ≥ 1− qTn−(10+logα).

Recall, now that L(0) = L(T+1). Finally, from Lemma 8 and our bounds on
∥∥E(0)

∥∥
∞ and

∥∥L(0) − L∗
∥∥
∞, we have:

7

8
η
(∣∣∣σ∗kq+1+1

∣∣∣+ 4
∣∣∣σ∗kq+1

∣∣∣) ≤ ζ(1) ≤ 9

8
η
(∣∣∣σ∗kq+1+1

∣∣∣+ 4
∣∣∣σ∗kq+1

∣∣∣)

Lemma 12. Suppose at the beginning of the qth stage of algorithm 1:

1.
∥∥L∗ − L(0)

∥∥
∞ ≤

2µ2r
m

(
2σ∗kq−1+1

)
2.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(
2σ∗kq−1+1

)
Then, the following hold:

1. σ∗kq ≥
15
32σ
∗
kq−1+1

2. σ∗kq+1 ≤ 17
32σ
∗
kq−1+1

with probability ≥ 1− n−(10+logα)

Proof. We know that:

λkq ≤ σ∗kq + ‖H‖2 , λkq−1+1 ≥ σ∗kq−1+1 − ‖H‖2 , λkq ≥
λkq−1+1

2

Combining the three inequalities, we get:

σ∗kq ≥
σ∗kq−1+1 − 3 ‖H‖2

2

Applying Lemma 7, we get the first claim of the lemma.

Similar to the first claim, we have:

λkq+1 ≥ σ∗kq+1 − ‖H‖2 , λkq−1+1 ≤ σ∗kq−1+1 + ‖H‖2 , λkq+1 ≤
λkq−1+1

2

Again, combining the three inequalities, we get:

σ∗kq+1 ≤
σ∗kq−1+1 + 3 ‖H‖2

2

Another application of Lemma 7 gives the second claim.
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Algorithm 3 L̂ = R-RMC(Ω,PΩ(M), ε, r, η, σ): Non-convex Robust Matrix Completion

1: Input: Observed entries Ω, Matrix PΩ(M) ∈ Rm×n, convergence criterion ε, target rank r, thresholding parameter η,
upper bound on σ∗1 σ

2: T ← 10 log 20µ2nrσ
ε /*Number of inner iterations*/

3: Partition Ω into rT + 1 subsets {Ω0} ∪ {Ωq,t : q ∈ [r], t ∈ [T ]} using 2
4: L(0) = 0, ζ(0) ← ησ
5: M (0) ← mn

|Ω0|PΩ0
(M −HT ζ(M))

6: q ← 0
7: while σq+1(M (0)) > ε

2ηm do
8: q ← q + 1
9: for Iteration t = 0 to t = T do

10: S(t) = Hζ(PΩq,t(M − L(t))) /*Projection onto set of sparse matrices*/
11: M (t) = L(t) − mn

|Ωq,t|PΩq,t(L
(t) + S(t) −M) /*Gradient Descent Update*/

12: L(t+1) = Pq(M
(t)) /*Projected Gradient Descent step*/

13: Set threshold ζ(t+1) ← η
(
σq+1(M (t)) +

(
1
2

)t
σq(M

(t))
)

14: end for
15: S(0) = S(T ), L(0) = L(T+1),M (0) = M (T ), ζ(0) = ζ(T+1)

16: end while
17: Return: L(T+1)

5.3. Algorithm R-RMC

Proof of Theorem 2: We know that T ≥ log(
20µ2nrσ∗1

ε ).

Consider the stage q reached at the termination of the algorithm. We know from Lemma 13 that:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗q+1 +

(
1
2

)T−1
σ∗q

)
≤ 8µ2r

m σ∗q+1 + ε
10n

2.
∥∥L(T ) − L∗

∥∥
∞ ≤

2µ2r
m

(
σ∗q+1 +

(
1
2

)T−1
σ∗q

)
≤ 2µ2r

m σ∗q+1 + ε
10n

Combining this with Lemmas 2 and 7, we get:

σq+1(M (T )) ≥ σ∗q+1 −
1

100

(
σ∗q+1 +

mε

10nµ2r

)
(22)

When the while loop terminates, ησq+1

(
M (T )

)
< ε

2n , which from (22), implies that σ∗q+1 <
mε

7nµ2r . So we have:

‖L− L∗‖∞ =
∥∥∥L(T ) − L∗

∥∥∥
∞
≤ 2µ2r

m
|σ∗kq+1|+

ε

10n
≤ ε

2n
.

�

As in the case of the proof of Theorem 1, the following lemma shows that we simultaneously make progress in both
the estimation of L∗ and S̃∗ by L(t) and S̃(t) respectively. Similar to Lemma 11, we make use of Lemmas 10 and
9 to show how improvement in estimation of one of the quantities affects the other and the other five terms, ‖H‖2,

max
q′∈[n]

∥∥∥e>q′ (H>H)j V ∗∥∥∥
2
, max
q′∈[m]

∥∥∥e>q′ (HH>)j U∗∥∥∥
2
, max
q′∈[n]

∥∥∥e>q′H> (HH>)j U∗∥∥∥
2

and max
q′∈[m]

∥∥∥e>q′H (H>H)j V ∗∥∥∥
2

are analyzed the same way:
Lemma 13. Let L∗, Ω, S̃∗ and S̃(t) satisfy Assumptions 1,2,3 respectively. Then, in the tth iteration of the qth stage of
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Algorithm 3, S̃(t) and L(t) satisfy:

∥∥∥S̃(t) − S̃∗
∥∥∥
∞
≤ 8µ2r

m

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
,

Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
,

7

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t ∣∣σ∗q ∣∣
)
≤ ζ(t+1) ≤ 9

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t ∣∣σ∗q ∣∣
)

and

∥∥∥L(t) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
.

with probability ≥ 1− ((q − 1)T + t− 1)n−(10+logα) where T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both q and t.

Base Case: q = 1 and t = 0
We begin by first proving an upper bound on ‖L∗‖∞. We do this as follows:

∣∣L∗ij∣∣ =

∣∣∣∣∣
r∑

k=1

σ∗ku
∗
ikv
∗
jk

∣∣∣∣∣ ≤
r∑

k=1

∣∣σ∗ku∗ikv∗jk∣∣ ≤ σ∗1 r∑
k=1

∣∣u∗ikv∗jk∣∣ ≤ µ2r

m
σ∗1

where the last inequality follows from Cauchy-Schwartz and the incoherence of U∗. This directly proves the third claim
of the lemma for the base case. Recall that ζ(0) = ησ∗1 . We also note that due to the thresholding step and the incoherence
assumption on L∗, we have:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m (σ∗2 + 2σ∗1)

2. Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
.

From Lemma 8 and our bounds on E(0) and
∥∥L(1) − L∗

∥∥
∞, we have:

7

8
η (|σ∗2 |+ |σ∗1 |) ≤ ζ(1) ≤ 9

8
η (|σ∗2 |+ |σ∗1 |)

So the base case of induction is satisfied.

Induction over t
We first prove the inductive step over t (for a fixed q). By inductive hypothesis we assume that:

a)
∥∥E(t)

∥∥
∞ ≤

8µ2r
m

(
|σ∗q+1|+

(
1
2

)t−1 |σ∗q |
)

b) Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)

.

c)
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
|σ∗q+1|+

(
1
2

)t−1 |σ∗q |
)

d) 7
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)t ∣∣σ∗q ∣∣) ≤ ζ(t+1) ≤ 9
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)t ∣∣σ∗q ∣∣)
with probability 1− ((q − 1)T + t− 1)n−(10+logα).

Then by Lemma 9, we have: ∥∥∥L(t+1) − L∗
∥∥∥
∞
≤ µ2r

m

(
|σ∗kq+1|+ 20 ‖H‖2 + 8υ

)
(23)
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From Lemma 1, we have:

υ ≤ ρn
∥∥∥E(t)

∥∥∥
∞

+ 8βα log n
(ζ1)

≤ 1

100

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
+ 8βα log n

(ζ2)

≤ 1

50

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
(24)

where (ζ1) follows from our assumptions on ρ and our inductive hypothesis on
∥∥E(t)

∥∥
∞ and (ζ2) follows from our

assumption on p and by noticing that ‖D‖∞ ≤
∥∥E(t)

∥∥
∞ +

∥∥L∗ − L(t)
∥∥
∞. Recall that D = L(t) − L∗ + S̃(t) − S̃∗.

From Lemma 7:

‖H‖2 ≤
1

100

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
(25)

with probability ≥ 1− n−(10+logα). From Equations (25), (24) and (23), we have:∥∥∥L∗ − L(t+1)
∥∥∥
∞
≤ 2µ2r

m

(
σ∗q+1 +

(
1

2

)t
σ∗q

)

which by union bound holds with probability≥ 1− ((q−1)T + t)n−(10+logα). Hence, using Lemma 10 and the inductive
hypothesis on ζ(t+1) we have:

1.
∥∥E(t+1)

∥∥
∞ ≤

8µ2r
m

(
σ∗q+1 +

(
1
2

)t
σ∗q

)
2. Supp

(
S̃(t+1)

)
⊆ Supp

(
S̃∗
)

.

which also holds with probability ≥ 1− ((q − 1)T + t)n−(10+logα). This concludes the proof for induction over t.

Finally, using Lemma 8 and our bounds on
∥∥E(t+1)

∥∥
∞ and

∥∥L(t+1) − L∗
∥∥
∞, we have:

7

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t+1 ∣∣σ∗q ∣∣
)
≤ ζ(t+2) ≤ 9

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t+1 ∣∣σ∗q ∣∣
)

Induction Over Stages q
We now prove the induction over q. Suppose the hypothesis holds for stage q. At the end of stage q, we have:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗q+1 +

(
1
2

)T−1
σ∗q

)
≤ 8µ2rσ∗q+1

m + ε
10n

2. Supp
(
S̃(T )

)
⊆ Supp

(
S̃∗
)

3. 7
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)T ∣∣σ∗q ∣∣) ≤ ζ(T+1) ≤ 9
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)T ∣∣σ∗q ∣∣)
with probability ≥ 1− (qT − 1)n−(10+logα).

From Lemmas 2 and 7 we get:∣∣∣σq+1

(
M (T )

)
− σ∗q+1

∣∣∣ ≤ ‖H‖2 ≤ 1

100

(
σ∗q+1 +

mε

10nµ2r

)
(26)

with probability 1− n−(10+logα). We know that ησq+1

(
M (t)

)
≥ ε

2n which with (26) implies that σ∗q+1 >
mε

10nµ2r .

∥∥∥L(T+1) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗q+1 +

(
1

2

)T
σ∗q

)
≤ 2µ2r

m

(
σ∗q+1 +

mε

20µ2rn

)
≤ 2µ2r

m

(
σ∗q+1 +

σ∗q+1

2

)
≤ 2µ2r

m

(
2σ∗q+1

)
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By union bound this holds with probability ≥ 1− qTn−(10+logα).

Now, from Lemma 10 and our inductive hypothesis on ζ(T+1), we have through a similar series of arguments as above:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(
2σ∗q+1

)
2. Supp

(
S̃(0)

)
⊆ Supp

(
S̃∗
)

which holds with probability ≥ 1− qTn−(10+logα).

Recall, now that L(0) = L(T+1). Finally, from Lemma 8 and our bounds on
∥∥E(0)

∥∥
∞ and

∥∥L(0) − L∗
∥∥
∞, we have:

7

8
η
(∣∣σ∗q+2

∣∣+
∣∣σ∗q+1

∣∣) ≤ ζ(1) ≤ 9

8
η
(∣∣σ∗q+2

∣∣+
∣∣σ∗q+1

∣∣)

5.4. Proof of a generalized form of Lemma 1

Lemma 14. Suppose H = H1 + H2 and H ∈ Rm×n where H1 satisfies Definition 1 (Definition 7 from (Jain &
Netrapalli, 2015)) and H2 is a matrix with column and row sparsity ρ. Let U be a matrix with rows denoted as
u1, . . . , um and let V be a matrix with rows denoted as v1, . . . , vn. Let eq be the qth vector from standard basis. Let
τ = max{max

i∈[m]
‖ui‖ ,max

i∈[n]
‖vi‖}. Then, for 0 ≤ a ≤ log n:

max
q∈[n]

∥∥∥e>q (H>H)a V ∥∥∥
2
, max
q∈[m]

∥∥∥e>q (HH>)a U∥∥∥
2
≤ (ρn ‖H2‖∞ + c log n)2aτ

max
q∈[n]

∥∥∥e>q H> (HH>)a U∥∥∥
2
, max
q∈[m]

∥∥∥e>q H (H>H)a V ∥∥∥
2
≤ (ρn ‖H2‖∞ + c log n)2a+1τ

with probability n−2 log c
4 +4.

Proof. Similar to (Jain & Netrapalli, 2015), we will prove the statement for q = 1 and it can be proved for q ∈ [n] by
taking a union bound over all q. For the sake of brevity, we will prove only the inequality:

max
q∈[n]

∥∥∥e>q (H>H)a V ∥∥∥
2
≤ (ρn ‖H2‖∞ + c log n)2aτ

The rest of the lemma follows by applying similar arguments to the appropriate quantities.

Let ω : [2a] → {1, 2} be a function used to index a single term in the expansion of (H>H)a. We express the term as
follows:

(H>H)a =
∑
ω

a∏
i=1

H>ω(2i−1)Hω(2i)

We will now fix one such term ω and then bound the length of the following random vector:

vω = e>1

a∏
i=1

(H>ω(2i−1)Hω(2i))V

Let α be used to denote a tuple (i, j) of integers used to index entries in a matrix. Let T (i) be used to denote the parity
function computed on i, i.e, 0 if i is divisible by 2 and 1 otherwise. This function indicates if the matrix in the expansion
is transposed or not. We now introduce Bp,q(i,j),(k,l), p ∈ {1, 2}, q ∈ {0, 1} and Ap(i,j), p ∈ {1, 2} which are defined as
follows:
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Ap(i,j) := δi,1(δp,1 + δp,21{(i,j)∈Supp(H2)})

Bp,q(i,j),(k,l)
:= (δq,1δj,l + δq,0δi,k)(δp,1 + δp,21{(k,l)∈Supp(H2)})

where δi,j = 1 if i = j and 0 otherwise. We will subsequently write the random vector vω in terms of the individual entries
of the matrices. The role of Bp,q(i,j),(k,l) and Ap(i,j) is to ensure consistency in the terms used to describe vω . We will use
hi,α to refer to (Hi)α.

With this notation in hand, we are ready to describe vω .

vω =
∑

α1,...,α2a

α1(1)=1

Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
· · ·hω(2a),α2a

vα2a(2)

We now write the squared length of vω as follows:

Xω =
∑

α1,...,α2a,α
′
1,...,α

′
2a

α1(1)=1,α′1(1)=1

Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
· · ·hω(2a),α2a

Aω(1)
α1

B
ω(2),T (2)
α′1α

′
2

. . . B
ω(2a),T (2a)
α′2a−1α

′
2a

hω(1),α′1
· · ·hω(2a),α′2a

〈vα2a(2), vα′2a(2)〉

We can see from the above equations that the entries used to represent vω are defined with respect to paths in a bipartite
graph. In the following, we introduce notations to represent entire paths rather than just individual edges:

Let α := (α1, . . . , α2a) and

ζα := Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
. . . hω(2a),α2a

Now, we can write:
Xω =

∑
α,α′

α1(1)=α′1(1)=1

ζαζα′〈vα2a(2), vα′2a(2)〉

Calculating the kth moment expansion of Xω for some number k, we obtain:

E[Xk
ω] =

∑
α1,...,α2k

E[ζα1 . . . ζα2k〈vα1
2a(2), vα2

2a(2)〉 . . . 〈vα2k−1
2a (2), vα2k

2a(2)〉] (27)

We now show how to bound the above moment effectively. Notice that the moment is defined with respect to a collection
of 2k paths. We denote this collection by ∆ := (α1, . . . ,α2k). For each such collection, we define a partition Γ(∆) of
the index set {(s, l) : s ∈ [2k], l ∈ [2a]} where (s, l) and (s′, l′) are in the same equivalence class if ω(l) = ω(l′) = 1 and
αsl = αs

′

l′ . Additionally, each (s, l) such that ω(l) = 2 is in a separate equivalence class.

We bound the expression in (27) by partitioning all possible collections of 2k paths based on the partitions defined by them
in the above manner. We then proceed to bound the contribution of any one specific path to (27) following a particular
partition Γ, the number of paths satisfying that particular partition and finally, the total number of partitions. Consider a
partition Γ with non-zero contribution to the kth moment. Since, H1 is a matrix with 0 mean, any equivalence class of
Γ containing an index (s, l) such that ω(l) = 1 contains at least two elements (Otherwise, for any ∆ satisfying Γ has 0
contribution to the kth as the element in the singleton equivalence class has mean 0).

We proceed to bound (27) by taking absolute values:

E[Xk
ω] ≤

∑
α1,...,α2k

E[|ζα1 | . . . |ζα2k ||〈vα1
2a(2), vα2

2a(2)〉| . . . |〈vα2k−1
2a (2), vα2k

2a(2)〉|] (28)
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We now fix one particular partition and bound the contribution to (28) of all collections of paths ∆ that correspond to a
valid partition Γ.

We construct from Γ a directed multigraph G. The equivalence classes of Γ form the vertex set of G, V (G). There are
4 kinds of edges in G where each type is indexed by a tuple (p, q) where p ∈ {1, 2}, q ∈ {0, 1}. We denote the edge
sets corresponding to these 4 edge types by E(1,0), E(1,1), E(2,0) and E(2,1) respectively. An edge of type (p, q) exists
from equivalence class γ1 to equivalence class γ2 if there exists (s, l) ∈ γ1 and (s′, l′) ∈ γ2 such that l′ = l + 1, s = s′,
ω(s′) = p and T (l′) = q.

The summation in 28 can be written as follows:

E[|ζα1 | . . . |ζα2k |
∣∣∣〈vα1

2a(2), vα2
2a(2)〉

∣∣∣ . . . ∣∣∣〈vα2k−1
2a (2), vα2k

2a(2)〉
∣∣∣]

≤ τ2k

(
2k∏
s=1

A
ω(1)
αs1

2a−1∏
l=1

B
ω(l+1),T (l+1)
αsl ,α

s
l+1

)
E

[(
2k∏
s=1

2a∏
l=1

∣∣∣hω(l),αsl

∣∣∣)]
(ζ1)

≤ τ2k

(
2k∏
s=1

A
ω(1)
αs1

2a−1∏
l=1

B
ω(l+1),T (l+1)
αsl ,α

s
l+1

) ∏
γ∈V1(G)

1

n

∏
γ∈V2(G)

‖H2‖∞

=
τ2k ‖H2‖w2

∞
nw1

(
2k∏
s=1

A
ω(1)
αs1

2a−1∏
l=1

B
ω(l+1),T (l+1)
αsl ,α

s
l+1

)

where (ζ1) follows from the moment conditions on H1. V1(G) and V2(G) are the vertices in the graph corresponding to
tuples (i, j) such that ω(j) = 1 and ω(j) = 2 respectively and w1 = |V1(G)|, w2 = |V2(G)|.

We first consider an equivalence class γ1 such that there exists an index (s, l) ∈ γ1 and l = 1. We form a spanning tree
T1 of all the nodes reachable from γ1 with γ1 as root. We then remove the nodes V (T1) from the graph G and repeat

this procedure until we obtain a set of l trees T1, . . . , Tl with roots γ1, . . . , γl such that
l⋃
i=1

V (Gi) = V (G). This happens

because every node is reachable from some equivalence class which contains an index of the form (s, 1). Also, each of
these trees Ti, ∀ i ∈ [l] is disjoint in their vertex sets. Given this decomposition, we can factorize the above product as
follows:

E[Xk
ω|Γ] ≤

τ2k ‖H2‖w2

∞
nw1

l∏
j=1

∑
αγ ,γ∈Tj

Aω(1)
αγj

∏
{γ,γ′}∈E(1,0)(Tj)

B1,0
αγαγ′∏

{γ,γ′}∈E(1,1)(Tj)

B1,1
αγαγ′

∏
{γ,γ′}∈E(2,0)(Tj)

B2,0
αγαγ′

∏
{γ,γ′}∈E(2,1)(Tj)

B2,1
αγαγ′

(29)

where the inner sum is over all possible assignments to the elements in the equivalence classes of tree Tj .

For a single connected component, we can compute the summation bottom up from the leaves. First, notice that as each
Bi,jαγ ,αγ′ is bounded by 1:

∑
αγ′

B2,1
αγαγ′

≤ ρn
∑
αγ′

B2,0
αγαγ′

≤ ρn∑
αγ′

B1,1
αγαγ′

= n
∑
αγ′

B1,0
αγαγ′

= n

Where the first two follow from the sparsity of H2. Every node in the tree Tj with the exception of the root has a single
incoming edge. For the root, γj , we have:
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α1

A
ω(1)
α1 ≤ ρn for ω(1) = 2

∑
α1

A
ω(1)
α1 = n for ω(1) = 1

From the above two observations, we have:

∑
α1,...,αvj

Aω(1)
α1

∏
{γ,γ′}∈E(1,0)(Tj)

B1,0
αγαγ′

∏
{γ,γ′}∈E(1,1)(Tj)

B1,1
αγαγ′

∏
{γ,γ′}∈E(2,0)(Tj)

B2,0
αγαγ′∏

{γ,γ′}∈E(2,1)(Tj)

B2,1
αγαγ′

≤ (ρn)w2,jnw1,j

where wk,j represents the number of vertices in the jth component which contain tuples (y, z) such that ω(z) = k for
k ∈ {1, 2}.

Plugging the above in (29) gives us

E[Xk
ω(Γ)] ≤

τ2k ‖H2‖w2

∞
nw1

(ρn)
∑
j w2,jn

∑
j w1,j = τ2k ‖H2‖w2

∞ (ρn)w2

Let a1 and a2 be defined as |{i : ω(i) = 1}| and |{i : ω(i) = 2}| respectively (Note that w2 = 2a2k). Sum-
ming up over all possible partitions (there are at most (2a1k)2a1k of them), we get our final bound on E

[
X̂k
ω

]
as

τ2k(ρn ‖H2‖∞)2a2k(2a1k)2a1k.

Now, we bound the probability that X̂ω is too large. Choosing k =
⌈

logn
a1

⌉
and applying the kth moment Markov

inequality, we obtain:

Pr
[∣∣∣X̂ω

∣∣∣ > (c log n)2a1τ2(ρn ‖H2‖∞)2a2

]
≤ E

[∣∣∣X̂ω

∣∣∣k]( 1

(c log n)2a1τ2(ρn ‖H2‖∞)2a2

)k
≤
(

2ka1

c log n

)2ka1

≤ n−2 log c
4

Taking a union bound over all the 22a possible ω, over values of a from 1 to log n and over the n values of q, and summing
up the high probability bound over all possible values of ω, we get the required result.

5.5. Additional Experimental Results

We detail some additional experiments performed with Algorithm 1 in this section. The experiments were performed on
synthetic data and real world data sets.

Synthetic data. We generate a random matrix M ∈ R2000×2000 in the same way as described in Section 4. In these
experiments our aim is to analyze the behavior of the algorithm in extremal cases. We consider two of such cases : 1)
sampling probability is very low (Figure 3 (a)), 2) number of corruptions is very large (Figure 3 (b)). In the first case, we
see that the we get a reasonably good probability of recovery (∼ 0.8) even with very low sampling probability (0.07). In
the second case, we observe that the time taken to recover seems almost independent of the number of corruptions as long
as they are below a certain threshold. In our experiments we saw that on increasing the ρ to 0.2 the probability of recovery
went to 0. To compute the probability of recovery we ran the experiment 20 times and counted the number of successful
runs.

Foreground-background separation. We present results for one more real world data set in this section. We applied
our PG-RMC method (with varying p) to the Escalator video. Figure 4 (a) shows one frame from the video. Figure 4
(b) shows the extracted background from the video by using our method (PG-RMC , Algorithm 1) with probability of
sampling p = 0.05. Figure 4 (c) compares objective function value for different p values.
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Figure 3: We run the PG-RMC algorithm with extremal values of sampling probability and fraction of corruptions, and
record the probability with which we recover the original matrix, (a) : time vs probability of recovery for very small values
of sampling probability, (b) : time vs probability of recovery for large number of corruptions (ρn2)
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Ŝ
||
F

-20

-10

0

10

20
µ = 1, r = 5

p = 0.01
p = 0.05
p = 0.1
St-NcRPCA

(a) (b) (c)
Figure 4: PG-RMC on Escalator video. (a): a video frame (b): an extracted background frame (c): time vs error for
different sampling probabilities; PG-RMC takes 7.3s while St-NcRPCA takes 52.9s
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