SGD without Replacement: Sharper Rates for General Smooth Convex Functions

Dheeraj Nagaraj 1 Praneeth Netrapalli 2 Prateek Jain 2

Abstract

We study stochastic gradient descent without replacement (SGDo) for smooth convex functions. SGDo is widely observed to converge faster than true SGD where each sample is drawn independently with replacement (??) and hence, is more popular in practice. But it’s convergence properties are not well understood as sampling without replacement leads to coupling between iterates and gradients. By using method of exchangeable pairs to bound Wasserstein distance, we provide the first non-asymptotic results for SGDo when applied to general smooth, strongly-convex functions. In particular, we show that SGDo converges at a rate of $O(1/K^2)$ while SGD is known to converge at $O(1/K)$ rate, where K denotes the number of passes over data and is required to be large enough. Existing results for SGDo in this setting require additional Hessian Lipschitz assumption (??). For small K, we show SGDo can achieve same convergence rate as SGD for general smooth strongly-convex functions. Existing results in this setting require $K = 1$ and hold only for generalized linear models (??). In addition, by careful analysis of the coupling, for both large and small K, we obtain better dependence on problem dependent parameters like condition number.

References

Acknowledgements

This research was partially supported by ONR N00014-17-1-2147 and MIT-IBM Watson AI Lab.

1Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 2Microsoft Research, Bengaluru, Karnataka, India. Correspondence to: Dheeraj Nagaraj <dheeraj@mit.edu>, Praneeth Netrapalli <praneeth@microsoft.com>, Prateek Jain <prajain@microsoft.com>.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Guarantee</th>
<th>Assumptions</th>
<th>Step Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gürbüzbalaban et al. 2015</td>
<td>$O \left(\frac{C(n,d)}{K^2} \right)$</td>
<td>Lipschitz, Strong convexity, Hessian Lipschitz</td>
<td>$\frac{1}{K}$</td>
</tr>
<tr>
<td>HaoChen and Sra 2018</td>
<td>$O \left(\frac{n^2 K^2}{n^2 K^2 + \frac{1}{K^2}} \right)$</td>
<td>Smoothness, Strong convexity</td>
<td>$\frac{\log n K}{\mu n K}$</td>
</tr>
<tr>
<td>This Paper</td>
<td>$\tilde{O} \left(\frac{1}{n K^2} \right)$</td>
<td>Lipschitz, Strong convexity, Smoothness, $K > \kappa^2$</td>
<td>$\frac{\log n K}{\mu n K}$</td>
</tr>
<tr>
<td>Shamir 2016</td>
<td>$O \left(\frac{1}{n K} \right)$</td>
<td>Lipschitz, Strong convexity, Smoothness, Generalized Linear Function, $K = 1$</td>
<td>$\frac{1}{\mu n K}$</td>
</tr>
<tr>
<td>This Paper</td>
<td>$O \left(\frac{1}{n K} \right)$</td>
<td>Lipschitz, Strong convexity, Smoothness</td>
<td>$\min \left(\frac{2}{\kappa}, \frac{\log n K}{\mu n K} \right)$</td>
</tr>
<tr>
<td>Shamir 2016</td>
<td>$O \left(\frac{1}{\sqrt{n K}} \right)$</td>
<td>Lipschitz, Generalized Linear Function, $K = 1$</td>
<td>$\frac{1}{\sqrt{n K}}$</td>
</tr>
<tr>
<td>This Paper</td>
<td>$O \left(\frac{1}{\sqrt{n K}} \right)$</td>
<td>Lipschitz, Smoothness</td>
<td>$\min \left(\frac{2}{\kappa}, \frac{1}{\sqrt{n K}} \right)$</td>
</tr>
</tbody>
</table>

Table 1. Comparison of our results with previously known results in terms of number of functions n and number of epochs K. For simplicity, we suppress the dependence on other problem dependent parameters such as Lipschitz constant, strong convexity, smoothness etc.
A. Supplementary Material

Lemma 1. Consider \(\mathbb{R}^d \) endowed with the standard inner product. For any convex set \(\mathcal{W} \subset \mathbb{R}^d \) and the associated projection operator \(\Pi_\mathcal{W} \), we have:

\[
\|\Pi_\mathcal{W}(a) - \Pi_\mathcal{W}(b)\| \leq \|a - b\|
\]

For all \(a, b \in \mathbb{R}^d \)

Proof. By Lemma 3.1.4 in (??), we conclude:

\[
\langle a - \Pi_\mathcal{W}(a), \Pi_\mathcal{W}(b) - \Pi_\mathcal{W}(a) \rangle \leq 0.
\]

Similarly,

\[
\langle b - \Pi_\mathcal{W}(b), \Pi_\mathcal{W}(a) - \Pi_\mathcal{W}(b) \rangle \leq 0.
\]

Adding the equations above, we conclude:

\[
\|\Pi_\mathcal{W}(a) - \Pi_\mathcal{W}(b)\|^2 \leq \langle a - b, \Pi_\mathcal{W}(a) - \Pi_\mathcal{W}(b) \rangle
\]

Using Cauchy-Schwarz inequality on the RHS, we conclude the result. \(\square \)

A.1. Proof of Theorem ??

We have chosen \(\alpha_{k,i} = \alpha = \min\left(\frac{1}{2}, \frac{4L \log nK}{\mu nK} \right) \). By definition: \(x_{k+1}^i = \Pi_\mathcal{W}\left(x_k^i - \alpha \nabla f(x_k^i; \sigma_k(i+1))\right) \).

Taking norm squared and using Lemma ??,

\[
\|x_{k+1}^i - x^*\|^2
\leq \|x_k^i - x^*\|^2 - 2\alpha \langle \nabla f(x_k^i; \sigma_k(i+1)), x_k^i - x^* \rangle
+ \alpha^2 \|\nabla f(x_k^i; \sigma_k(i+1))\|^2
\leq \|x_k^i - x^*\|^2 - 2\alpha \langle \nabla f(x_k^i; \sigma_k(i+1)), x_k^i - x^* \rangle
+ \alpha^2 G^2
\leq \|x_k^i - x^*\|^2(1 - \alpha\mu) - 2\alpha [F(x_k^i) - F(x^*)]
+ 2\alpha R_{i,k} + \alpha^2 G^2
\]

We have used strong convexity of \(F(\cdot) \) in the fourth step.

Here \(R_{i,k} := \langle \nabla f(x_k^i; \sigma_k(i+1)), x_k^i - x^* \rangle \). We will bound \(\mathbb{E}[R_{i,k}] \).

Clearly,

\[
R_{i,k} = \frac{1}{n} \sum_{r=1}^n \langle \nabla f(x_k^i; r), x_k^i - x^* \rangle - \langle \nabla f(x_k^i; \sigma_k(i+1)), x_k^i - x^* \rangle
\]

Recall the definition of \(D_{i,k} \) and \(D_{i,k}^{(r)} \) from Section ???. Let \(Y \sim D_{i,k} \) and \(Z_r \sim D_{i,k}^{(r)} \), with any arbitrary coupling. Taking expectation in the expression for \(R_{i,k} \), we have:

\[
\mathbb{E}[R_{i,k}] = \frac{1}{n} \sum_{r=1}^n \mathbb{E} \left[\langle \nabla f(x_k^i; r), x_k^i - x^* \rangle \right]
- \frac{1}{n} \sum_{r=1}^n \mathbb{E} \left[\langle \nabla f(x_k^i; r), x_k^i - x^* \rangle \right] \sigma_k(i+1) = r
\]

\[
= \frac{1}{n} \sum_{r=1}^n \mathbb{E} \left[\langle \nabla f(Y; r), Y - x^* \rangle - \langle \nabla f(Z_r; r), Z_r - x^* \rangle \right]
\]

Adding the equations above, we conclude:

\[
\|\Pi_\mathcal{W}(a) - \Pi_\mathcal{W}(b)\|^2 \leq \langle a - b, \Pi_\mathcal{W}(a) - \Pi_\mathcal{W}(b) \rangle
\]

Using Cauchy-Schwarz inequality on the RHS, we conclude the result. \(\square \)

We have used smoothness of \(f(\cdot; r) \) and Cauchy-Schwarz inequality in the fourth step and Cauchy-Schwarz inequality in the fifth step. Since the inequality above holds for every coupling between \(Y \) and \(Z_r \), we conclude:
We use the fact that

\[E[R_i,k] \leq \frac{1}{n} \sum_{r=1}^{n} LD_{W}^{(2)}(D_{i,k}, D_{i,k}^{(r)}) \sqrt{E[\|x_i^k - x^*\|^2]} \]

+ GD_{W}^{(2)}(D_{i,k}, D_{i,k}^{(r)})

\[\leq \frac{1}{n} \sum_{r=1}^{n} \frac{L^2}{\mu} [D_{W}^{(2)}(D_{i,k}, D_{i,k}^{(r)})]^2 + \frac{\mu}{2} E[\|x_i^k - x^*\|^2] \]

+ GD_{W}^{(2)}(D_{i,k}, D_{i,k}^{(r)})

by our hypothesis we have \(\alpha \leq \frac{\mu}{L} \). So we can apply Lemma 1. Equation (2) along with equation (3) implies:

\[E[\|x_i^{k+1} - x^*\|^2] \]

\[\leq E[\|x_i^k - x^*\|^2] (1 - \alpha) - 2\alpha E [F(x_i^k) - F(x^*)] \]

+ \(2\alpha E R_{i+1} \)

\[\leq \|x_i^k - x^*\|^2 (1 - \alpha) - 2\alpha E [F(x_i^k) - F(x^*)] \]

\[+ 3G^2 \alpha^2 \frac{4L^2G^2\alpha^2}{\mu} \]

We use the fact that \(F(x_i^k) - F(x^*) \geq 0 \) and unravel the recursion above to conclude:

\[E[\|x_i^{k+1} - x^*\|^2] \leq (1 - \alpha) \frac{\alpha}{2} \|x_i^1 - x^*\|^2 \]

\[+ \sum_{i=0}^{\infty} \frac{\alpha}{2} \|x_i^1 - x^*\|^2 \]

\[= (1 - \alpha \frac{\alpha}{2})^{nk} \|x_i^1 - x^*\|^2 \]

\[\leq e^{-\frac{\alpha}{2} nk} \|x_i^1 - x^*\|^2 \]

\[\leq e^{-\frac{\alpha}{2} nk} \|x_i^1 - x^*\|^2 + \frac{6G^2 \alpha}{\mu} + \frac{8L^2G^2 \alpha^2}{\mu^2} \]

Using the fact that \(\alpha = \min \left(\frac{\mu}{L}, \frac{4\log n}{n\mu K} \right) \), we conclude that when \(k \geq \frac{K}{\mu} \),

\[E[\|x_i^{k+1} - x^*\|^2] \leq \|x_i^1 - x^*\|^2 \frac{6G^2 \alpha}{\mu} + \frac{8L^2G^2 \alpha^2}{\mu^2} \]

(3)

We can easily verify that equation (3) also holds in this case (because all other assumptions hold). Therefore, for \(k \geq \frac{K}{\mu} \),

\[E[\|x_i^{k+1} - x^*\|^2] \leq E[\|x_i^k - x^*\|^2] - 2\alpha E [F(x_i^k) - F(x^*)] \]

\[+ 5\alpha^2 G^2 \]

Summing this equation for \(0 \leq i \leq n - 1 \), \(\frac{k}{2} \leq k \leq K \), we conclude:

\[\sum_{k=\frac{K}{2}}^{K} \sum_{i=0}^{n-1} E(F(x_i^k) - F(x^*)) \]

\[\leq \sum_{k=\frac{K}{2}}^{K} \frac{1}{n(K - \frac{K}{2} + 1)} \sum_{i=0}^{n-1} E(F(x_i^k) - F(x^*)) \]

\[\leq \frac{1}{2n\alpha(K - \frac{K}{2} + 1)} \sum_{i=0}^{n-1} E(F(x_i^k) - F(x^*)) \]

\[\leq \frac{1}{2n\alpha(K - \frac{K}{2} + 1)} \sum_{i=0}^{n-1} E(F(x_i^k) - F(x^*)) + \frac{5}{2} \alpha G^2 \]

\[= O \left(\frac{\mu}{(nK)^2} \right) + L \left(x_0^k - x^* \right) \]

\[+ O \left(\frac{G^2 \log n K}{\mu n K} + \frac{L^2 G^2 \log n K}{\mu n^2 K^2} \right) \]

In the last step we have used Equation (2) and the fact that \(\alpha \leq \frac{4\log n}{n\mu K} \) and \(\frac{1}{\alpha} \geq \frac{n\mu K}{4\log n} \). Using convexity of \(F \), we conclude that:

\[F(\bar{x}) \leq \frac{1}{n(K - \frac{K}{2} + 1)} \sum_{k=\frac{K}{2}}^{K} \sum_{i=0}^{n-1} E(F(x_i^k)). \]

This proves the result.

B. Proofs of useful lemmas

Proof of Lemma 1. For simplicity of notation, we denote \(y_i \equiv x_i(\sigma_k) \) and \(z_i \equiv x_i(\sigma_j) \). We know that \(\|y_0 - z_0\| = 0 \) almost surely by definition. Let \(j < i \). First we suppose \(\tau_{y}(j + 1) = r \neq s = \tau_{z}(j + 1) \). Then, by Lemma 1,

\[\|y_{j+1} - z_{j+1}\| \]

\[= \| \Pi_{W}(y_j - \alpha_{k,j} \nabla f(y_j; r)) \]

\[- \Pi_{W}(z_j - \alpha_{k,j} \nabla f(z_j; s)) \|

\[\leq \|\| y_j - z_j - \alpha_{k,j} \nabla f(y_j; r) \| + \| \alpha_{k,j} \nabla f(z_j; s) \|

\[\leq 2G\alpha_{k,j} + \|y_j - z_j\|

\leq 2G\alpha_{k,0} + \|y_j - z_j\|

In the last step above, we have used monotonicity of \(\alpha_t \).

Now, suppose \(\tau_{y}(j + 1) = \tau_{z}(j + 1) = r \). Then,

\[\|y_{j+1} - z_{j+1}\|^2 \]

\[= \| \Pi_{W}(y_j - \alpha_{k,j} \nabla f(y_j; r)) \]

\[- \Pi_{W}(z_j - \alpha_{k,j} \nabla f(z_j; r)) \|^2 \]

\[\leq \| y_j - z_j \|^2 - (z_j - \alpha_{k,j} \nabla f(z_j; r)) \|^2 \]

\[= \| y_j - z_j \|^2 - 2\alpha_{k,j} \nabla f(y_j; r) - \nabla f(z_j; r), y_j - z_j \]

\[+ \alpha_{k,j} \nabla f(y_j; r) - \nabla f(z_j; r) \|^2 \]

\[\leq \|y_j - z_j\|^2 \]

\[- \|\| (2\alpha_{k,j} - L\alpha_{k,j}^2) \nabla f(y_j; r) - \nabla f(z_j; r), y_j - z_j \|

\[\leq \|y_j - z_j\|^2 \]
In the second equation we have used Lemma ?? and in the third equation we have used the fact that when \(\alpha_{k,0} \leq \frac{2}{r} \), \(2\alpha_{k,1} - L\alpha_{k,1}^2 \geq 0 \) and \(\langle \nabla f(y_i; r) - \nabla f(z_i; r), y_i - z_i \rangle \geq 0 \) by convexity. This proves the lemma.

Proof of Lemma ??. For the sake of clarity of notation, in this proof we take \(R_j := \sigma_k(j) \) for all \(j \in [n] \). By definition, \(x_{j+1}^k - x_0^k = \Pi_{W} (x_j^k - \alpha_{k,j} \nabla f(x_j^k; R_{j+1})) - x_0^k \). Taking norm squared on both sides, we have:

\[
\begin{align*}
\|x_{j+1}^k - x_0^k\|^2 &\leq \|x_j^k - x_0^k\|^2 - 2\alpha_{k,j} \langle f(x_j^k; R_{j+1}, x_j^k - x_0^k) + \alpha_{k,j} G^2 \\
&\leq \|x_j^k - x_0^k\|^2 + 2\alpha_{k,j} (f(x_0^k; R_{j+1}) - f(x_j^k; R_{j+1})) + \alpha_{k,j} G^2
\end{align*}
\]

Taking expectation on both sides, we have:

\[
\begin{align*}
\mathbb{E}[\|x_{j+1}^k - x_0^k\|^2] &\leq \mathbb{E}[\|x_j^k - x_0^k\|^2] + \alpha_{k,j}^2 G^2 \\
&+ 2\alpha_{k,j} \mathbb{E} [f(x_0^k; R_{j+1}) - f(x_j^k; R_{j+1})] \\
&= \mathbb{E}[\|x_j^k - x_0^k\|^2] + 2\alpha_{k,j} \mathbb{E} [F(x_0^k) - F(x_j^k)] \\
&+ \alpha_{k,j} G^2 \\
&\leq \mathbb{E}[\|x_j^k - x_0^k\|^2] + 2\alpha_{k,j} \mathbb{E} [F(x_0^k) - F(x_j^k)] + 4\alpha_{k,j} \alpha_{k,0} G^2 + \alpha_{k,j}^2 G^2
\end{align*}
\]

In the fourth step we have used Lemma ?? and in the fifth step, we have used the fact that \(x^* \) is the minimizer of \(F \).

We sum the equation above from \(j = 0 \) to \(j = i - 1 \) and use the fact that \(\alpha_{k,0} \geq \alpha_{k,j} \) and that \(\|x_j^k - x_0^k\| = 0 \) when \(j = 0 \) to conclude the result. For the proof of the second equation in the lemma, we use \(x^* \) instead of \(x_0^k \) above and go through similar steps. \(\square \)