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Abstract

Several works have proposed Simplicity Bias (SB)—the tendency of standard
training procedures such as Stochastic Gradient Descent (SGD) to find simple
models—to justify why neural networks generalize well [1, 49, 74]. However, the
precise notion of simplicity remains vague. Furthermore, previous settings [67, 24]
that use SB to justify why neural networks generalize well do not simultaneously
capture the non-robustness of neural networks—a widely observed phenomenon in
practice [71, 36]. We attempt to reconcile SB and the superior standard generaliza-
tion of neural networks with the non-robustness observed in practice by introducing
piecewise-linear and image-based datasets, which (a) incorporate a precise notion
of simplicity, (b) comprise multiple predictive features with varying levels of sim-
plicity, and (c) capture the non-robustness of neural networks trained on real data.
Through theoretical analysis and targeted experiments on these datasets, we make
four observations:
(i) SB of SGD and variants can be extreme: neural networks can exclusively rely
on the simplest feature and remain invariant to all predictive complex features.
(ii) The extreme aspect of SB could explain why seemingly benign distribution
shifts and small adversarial perturbations significantly degrade model performance.
(iii) Contrary to conventional wisdom, SB can also hurt generalization on the same
data distribution, as SB persists even when the simplest feature has less predictive
power than the more complex features.
(iv) Common approaches to improve generalization and robustness—ensembles
and adversarial training—can fail in mitigating SB and its pitfalls.
Given the role of SB in training neural networks, we hope that the proposed datasets
and methods serve as an effective testbed to evaluate novel algorithmic approaches
aimed at avoiding the pitfalls of SB.

1 Introduction
Understanding the superior generalization ability of neural networks, despite their high capacity to fit
randomly labeled data [84], has been a subject of intense study. One line of recent work [67, 24] proves
that linear neural networks trained with Stochastic Gradient Descent (SGD) on linearly separable
data converge to the maximum-margin linear classifier, thereby explaining the superior generalization
performance. However, maximum-margin classifiers are inherently robust to perturbations of data
at prediction time, and this implication is at odds with concrete evidence that neural networks, in
practice, are brittle to adversarial examples [71] and distribution shifts [52, 58, 44, 65]. Hence, the
linear setting, while convenient to analyze, is insufficient to capture the non-robustness of neural
networks trained on real datasets. Going beyond the linear setting, several works [1, 49, 74] argue that
neural networks generalize well because standard training procedures have a bias towards learning
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simple models. However, the exact notion of “simple" models remains vague and only intuitive.
Moreover, the settings studied are insufficient to capture the brittleness of neural networks

Our goal is to formally understand and probe the simplicity bias (SB) of neural networks in a setting
that is rich enough to capture known failure modes of neural networks and, at the same time, amenable
to theoretical analysis and targeted experiments. Our starting point is the observation that on real-
world datasets, there are several distinct ways to discriminate between labels (e.g., by inferring shape,
color etc. in image classification) that are (a) predictive of the label to varying extents, and (b) define
decision boundaries of varying complexity. For example, in the image classification task of white
swans vs. bears, a linear-like “simple" classifier that only looks at color could predict correctly on
most instances except white polar bears, while a nonlinear “complex" classifier that infers shape could
have almost perfect predictive power. To systematically understand SB, we design modular synthetic
and image-based datasets wherein different coordinates (or blocks) define decision boundaries of
varying complexity. We refer to each coordinate / block as a feature and define a precise notion of
feature simplicity based on the simplicity of the corresponding decision boundary.

Proposed dataset. Figure 1 illustrates a stylized version of the proposed synthetic dataset with two
features, φ1 and φ2, that can perfectly predict the label with 100% accuracy, but differ in simplicity.

Figure 1: Simple vs. complex features

The simplicity of a feature is precisely determined by the min-
imum number of linear pieces in the decision boundary that
achieves optimal classification accuracy using that feature.
For example, in Figure 1, the simple feature φ1 requires a lin-
ear decision boundary to perfectly predict the label, whereas
complex feature φ2 requires four linear pieces. Along sim-
ilar lines, we also introduce a collection of image-based
datasets in which each image concatenates MNIST images
(simple feature) and CIFAR-10 images (complex feature).
The proposed datasets, which incorporate features of varying
predictive power and simplicity, allow us to systematically
investigate and measure SB in SGD-trained neural networks.
Observations from new dataset. The ideal decision boundary that achieves high accuracy and
robustness relies on all features to obtain a large margin (minimum distance from any point to decision
boundary). For example, the orange decision boundary in Figure 1 that learns φ1 and φ2 attains 100%
accuracy and exhibits more robustness than the linear boundary because of larger margin. Given the
expressive power of large neural networks, one might expect that a network trained on the dataset
in Figure 1 would result in the larger-margin orange piecewise linear boundary. However, in practice,
we find quite the opposite—trained neural networks have a linear boundary. Surprisingly, neural
networks exclusively use feature φ1 and remain completely invariant to φ2. More generally, we
observe that SB is extreme: neural networks simply ignore several complex predictive features in the
presence of few simple predictive features. We first theoretically show that one-hidden-layer neural
networks trained on the piecewise linear dataset exhibit SB. Then, through controlled experiments,
we validate the extreme nature of SB across model architectures and optimizers.

Implications of extreme SB. Theoretical analysis and controlled experiments reveal three major
pitfalls of SB in the context of proposed synthetic and image-based datasets, which we conjecture to
hold more widely across datasets and domains:

(i) Lack of robustness: Neural networks exclusively latch on to the simplest feature (e.g., background)
at the expense of very small margin and completely ignore complex predictive features (e.g., semantics
of the object), even when all features have equal predictive power. This results in susceptibility to
small adversarial perturbations (due to small margin) and spurious correlations (with simple features).
Furthermore, in Section 4, we provide a concrete connection between SB and data-agnostic and
model-agnostic universal adversarial perturbations [47] observed in practice.

(ii) Lack of reliable confidence estimates: Ideally, a network should have high confidence only if
all predictive features agree in their prediction. However due to extreme SB, the network has high
confidence even if several complex predictive features contradict the simple feature, mirroring the
widely reported inaccurate and substantially higher confidence estimates reported in practice [51, 25].

(iii) Suboptimal generalization: Surprisingly, neural networks exclusively rely on the simplest feature
even if it less predictive of the label than all complex features in the synthetic datasets. Consequently,
contrary to conventional wisdom, extreme SB can hurt robustness as well as generalization.
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In contrast, prior works [8, 67, 24] only extol SB by considering settings where all predictive features
are simple and hence do not reveal the pitfalls observed in real-world settings. While our results on
the pitfalls of SB are established in the context of the proposed datasets, the two design principles
underlying these datasets—combining multiple features of varying simplicity & predictive power and
capturing multiple failure modes of neural networks in practice—suggest that our conclusions could
be justifiable more broadly.
Summary. This work makes two key contributions. First, we design datasets that offer a precise
stratification of features based on simplicity and predictive power. Second, using the proposed
datasets, we provide theoretical and empirical evidence that neural networks exhibit extreme SB,
which we postulate as a unifying contributing factor underlying key failure modes of deep learning:
poor out-of-distribution performance, adversarial vulnerability and suboptimal generalization. To the
best of our knowledge, prior works only focus on the positive aspect of SB: the lack of overfitting in
practice. Additionally, we find that standard approaches to improve generalization and robustness—
ensembles and adversarial training—do not mitigate simplicity bias and its shortcomings on the
proposed datasets. Given the important implications of SB, we hope that the datasets we introduce
serve (a) as a useful testbed for devising better training procedures and (b) as a starting point to design
more realistic datasets that are amenable to theoretical analysis and controlled experiments.

Organization. We discuss related work in Section 2. Section 3 describes the proposed datasets
and metrics. In Section 4, we concretely establish the extreme nature of Simplicity Bias (SB) and
its shortcomings through theory and empirics. Section 5 shows that extreme SB can in fact hurt
generalization as well. We conclude and discuss the way forward in Section 6.

2 Related Work
Out-of-Distribution (OOD) performance: Several works demonstrate that NNs tend to learn spuri-
ous features & low-level statistical patterns rather than semantic features & high-level abstractions,
resulting in poor OOD performance [36, 21, 45, 52]. This phenomenon has been exploited to design
backdoor attacks against NNs [6, 12] as well. Recent works [77, 76] that encourage models to learn
higher-level features improve OOD performance, but require domain-specific knowledge to penalize
reliance on spurious features such as image texture [21] and annotation artifacts [26] in vision &
language tasks. Learning robust representations without domain knowledge, however, necessitates
formalizing the notion of features and feature reliance; our work takes a step in this direction.
Adversarial robustness: Neural networks exhibit vulnerability to small adversarial perturba-
tions [71]. Standard approaches to mitigate this issue—adversarial training [23, 42] and ensem-
bles [69, 54, 37]—have had limited success on large-scale datasets. Consequently, several works have
investigated reasons underlying the existence of adversarial examples: [23] suggests local linearity
of trained NNs, [61] indicates insufficient data, [62] suggests inevitability in high dimensions, [9]
suggests computational barriers, [16] proposes limitations of neural network architectures, and [33]
proposes the presence of non-robust features. Additionally, Jacobsen et al. [34] show that NNs exhibit
invariance to large label-relevant perturbations. Prior works have also demonstrated the existence of
universal adversarial perturbations (UAPs) that are agnostic to model and data [55, 47, 73].
Implicit bias of stochastic gradient descent : Brutzkus et al. [8] show that neural networks trained
with SGD provably generalize on linearly separable data. Recent works [67, 35] also analyze the
limiting direction of gradient descent on logistic regression with linearly separable and non-separable
data respectively. Empirical findings [49, 43] provide further evidence to suggest that SGD-trained
NNs generalize well because SGD learns models of increasing complexity. Additional recent works
investigate the implicit bias of SGD on non-linearly separable data for linear classifiers [35] and
infinite-width two-layer NNs [13], showing convergence to maximum margin classifiers in appropriate
spaces. In Section 4, we show that SGD’s implicit bias towards simplicity can result in small-margin
and feature-impoverished classifiers instead of large-margin and feature-dense classifiers.
Feature reliance: Two recent works study the relation between inductive biases of training procedures
and the set of features that models learn. Hermann et al. [31] use color, shape and texture features
in stylized settings to show that standard training procedures can (a) increase reliance on task-
relevant features that are partially decodable using untrained networks and (b) suppress reliance
on non-discriminative or correlated features. Ortiz et al. [53] show that neural networks learned
using standard training (a) develop invariance to non-discriminative features and (b) adversarial
training induces a sharp transition in the models’ decision boundaries. In contrast, we develop a
precise notion of feature simplicity and subsequently show that SGD-trained models can exhibit
invariance to multiple discriminative-but-complex features. We also identify three pitfalls of this

3



Accuracy AUC Logits

S-Randomized 0.50 0.50 randomly shuffled
Sc-Randomized standard accuracy standard AUC essentially identical

Table 1: If the {S, Sc }-randomized metrics of a model behave as above, then
that model relies exclusively on S and is invariant to Sc.

phenomenon—poor OOD performance, adversarial vulnerability, suboptimal generalization—and
show that adversarial training and standard ensembles do not mitigate the pitfalls of simplicity bias.

Multiple works mentioned above (a) differentially characterize learned features and desired features—
statistical regularities vs. high-level concepts [36], syntactic cues vs. semantic meaning [45], robust
vs. non-robust features [33]—and (b) posit that the mismatch between these features results in
non-robustness. In contrast, our work probes why neural networks prefer one set of features over
another and unifies the aforementioned feature characterizations through the lens of feature simplicity.

3 Preliminaries: Setup and Metrics
Setting and metrics: We focus on binary classification. Given samples D̂ = {(xi, yi)}ni=1 from
distribution D over Rd × {−1, 1}, the goal is to learn a scoring function s(x) : Rd → R (such
as logits), and an associated classifier f : Rd → {−1, 1} defined as f(x) = 2h(x)−1 where
h(x) = 1{softmax(s(x)) < 0.5}. We use two well-studied metrics for generalization and robustness:
Standard accuracy. The standard accuracy of a classifier f is: ED [1{f(x) = y}].
δ-Robust accuracy. Given norm ‖·‖ and perturbation budget δ, the δ-robust accuracy of a classifier
f is: ED

[
min‖x̂−x‖≤δ 1{f(x̂) = y}

]
.

Next, we introduce two metrics that quantitatively capture the extent to which a model relies on
different input coordinates (or features). Let S denote some subset of coordinates [d] and DS denote
the S-randomized distribution, which is obtained as follows: given DS , the marginal distribution of
S, DS independently samples ((xS , xS

c

), y) ∼ D and xS ∼ DS and then outputs ((xS , xS
c

), y). In
DS , the coordinates in S are rendered independent of the label y. The two metrics are as follows.

Definition 1 (Randomized accuracy). Given data distribution D, and subset of coordinates S ⊆ [d],
the S-randomized accuracy of a classifier f is given by: EDS [1{f(x) = y}].

Definition 2 (Randomized AUC). Given data distribution D and subset of coordinates S ⊆ [d], the
S-randomized AUC of classifier f equals the area under the precision-recall curve of distribution DS .

Our experiments use {S, Sc }-randomized metrics—accuracy, AUC, logits—to establish that f
depends exclusively on some features S and remains invariant to the rest Sc. First, if (a) S-randomized
accuracy and AUC equal 0.5 and (b) S-randomized logit distribution is a random shuffling of the
original distribution (i.e., logits in the original distribution are randomly shuffled across true positives
and true negatives), then f depends exclusively on S. Conversely, if (a) Sc-randomized accuracy and
AUC are equal to standard accuracy and AUC and (b) Sc-randomized logit distribution is essentially
identical to the original distribution, then f is invariant to Sc; Table 1 summarizes these observations.

3.1 Datasets

One-dimensional Building Blocks: Our synthetic datasets use three one-dimensional data blocks—
linear, noisy linear and k-slabs—shown in top row of Figure 2. In the linear block, positive and
negative examples are uniformly distributed in [0.1, 1] and [−1,−0.1] respectively. In the noisy linear
block, given a noise parameter p ∈ [0, 1], 1− p fraction of points are distributed like the linear block
described above and p fraction of the examples are uniformly distributed in [−0.1, 0.1]. In k-slab
blocks, positive and negative examples are distributed in k well-separated, alternating regions.

Simplicity of Building Blocks: Linear classifiers can attain the optimal (Bayes) accuracy of 1 and
1− p/2 on the linear and p-noisy linear blocks respectively. For k-slabs, however, (k−1)-piecewise
linear classifiers are required to obtain the optimal accuracy of 1. Consequently, the building blocks
have a natural notion of simplicity: minimum number of pieces required by a piecewise linear
classifier to attain optimal accuracy. With this notion, the linear and noisy linear blocks are simpler
than k-slab blocks when k > 2, and k-slab blocks are simpler than `-slab blocks when k < `.
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Figure 2: (Synthetic & Image-based Datasets) One-dimensional building blocks (top row)—linear,
noisy linear, k-slab—are used to construct multi-dimensional datasets (bottom row): LMS-5 (linear &
multiple 5-slabs), L̂MS-5 (noisy linear & multiple 5-slabs) and MS-(5,7) (5-slab & multiple 7-slabs).
MNIST-CIFAR data vertically concatenates MNIST and CIFAR images (see Section 3.1).

Multi-dimensional Synthetic Datasets: We now outline four d-dimensional datasets wherein each
coordinate corresponds to one of three building blocks described above. See Figure 2 for illustration.

• LMS-k: Linear and multiple k-slabs; the first coordinate is a linear block and the remaining d−1
coordinates are independent k-slab blocks; we use LMS-5 & LMS-7 datasets in our analysis.

• L̂MS-k: Noisy linear and multiple k-slab blocks; the first coordinate is a noisy linear block and the
remaining d−1 coordinates are independent k-slab blocks. The noise parameter p is 0.1 by default.

• MS-(5,7): 5-slab and multiple 7-slab blocks; the first coordinate is a 5-slab block and the remaining
d−1 coordinates are independent 7-slab blocks, as shown in Figure 2.

• MS-5: Multiple 5-slab blocks; all coordinates are independent 5-slab blocks.

We now describe the LSN (linear, 3-slab & noise) dataset, a stylized version of LMS-k that is amenable
to theoretical analysis. We note that recent works [53, 20] empirically analyze variants of the LSN
dataset. In LSN, conditioned on the label y, the first and second coordinates of x are singleton linear
and 3-slab blocks: linear and 3-slab blocks have support on {−1, 1} and {−1, 0, 1} respectively. The
remaining coordinates are standard gaussians and not predictive of the label.

The synthetic datasets comprise features of varying simplicity; in LMS-k, L̂MS-k, and MS-(5,7), the
first coordinate is the simplest feature and in MS-5, all features are equally simple. All datasets, even
L̂MS-k, can be perfectly classified via piecewise linear classifiers. Though the k-slab features are
special cases of linear periodic functions on which gradient-based methods have been shown to fail
for large k [64], we note that we use small values of k ∈ {5, 7} which are quickly learned by SGD
in practice. Note that we (a) apply a random rotation matrix to the data and (b) use 50-dimensional
synthetic data (i.e., d = 50) by default. Note that all code and datasets are available at the following
repository: https://github.com/harshays/simplicitybiaspitfalls.

MNIST-CIFAR Data: The MNIST-CIFAR dataset consists of two classes: images in class −1 and
class 1 are vertical concatenations of MNIST digit zero & CIFAR-10 automobile and MNIST digit one
& CIFAR-10 truck images respectively, as shown in Figure 2. The training and test datasets comprise
50,000 and 10,000 images of size 3× 64× 32. The MNIST-CIFAR dataset mirrors the structure in
the synthetic LMS-k dataset—both incorporate simple and complex features. The MNIST and CIFAR
blocks correspond to the linear and k-slab blocks in LMS-k respectively. Also note that MNIST images
are zero-padded & replicated across three channels to match CIFAR dimensions before concatenation.

Appendix B provides details about the datasets, models, and optimizers used in our experiments.
In Appendix C, we show that our results are robust to the exact choice of MNIST-CIFAR class pairs.

4 Simplicity Bias (SB) is Extreme and Leads to Non-Robustness
We first establish the extreme nature of SB in neural networks (NNs) on the proposed synthetic
datasets using SGD and variants. In particular, we show that for the datasets considered, if all features
have full predictive power, NNs rely exclusively on the simplest feature S and remain invariant to all
complex features Sc. Then, we explain why extreme SB on these datasets results in neural networks
that are vulnerable to distribution shifts and data-agnostic & transferable adversarial perturbations.
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4.1 Neural networks provably exhibit Simplicity Bias (SB)

We consider the LSN dataset (described in Section 3.1) that has one linear coordinate and one 3-slab
coordinate, both fully predictive of the label on their own; the remaining d−2 noise coordinatesI do
not have any predictive power. Now, a "large-margin" one-hidden-layer NN with ReLU activation
should give equal weight to the linear and 3-slab coordinates. However, we prove that NNs trained
with standard mini-batch gradient descent (GD) on the LSN dataset (described in Section 3.1) provably
learns a classifier that exclusively relies on the “simple" linear coordinate, thus exhibiting simplicity
bias at the cost of margin. Further, our claim holds even when the margin in the linear coordinate
(minimum distance between linear coordinate of positives and negatives) is significantly smaller than
the margin in the slab coordinate. The proof of the following theorem is presented in Appendix F.

Theorem 1. Let f(x) =
∑k
j=1 vj · ReLU(

∑d
i=1 wi,jxi) denote a one-hidden-layer neural network

with k hidden units and ReLU activations. Set vj = ±1/
√
k w.p. 1/2 ∀j ∈ [k]. Let {(xi, yi)}mi=1

denote i.i.d. samples from LSN where m ∈ [cd2, dα/c] for some α > 2. Then, given d > Ω(
√
k log k)

and initial wij ∼ N (0, 1
dk log4 d

), after O(1) iterations, mini-batch gradient descent (over w) with

hinge loss, step size η = Ω(log d)
−1/2, mini-batch size Θ(m), satisfies:

• Test error is at most 1/poly(d)

• The learned weights of hidden units wij satisfy:

|w1j | =
2√
k

(
1− c√

log d

)
+O

(
1√

dk log d

)
︸ ︷︷ ︸

Linear Coordinate

, |w2,j | = O

(
1√

dk log d

)
︸ ︷︷ ︸

3-Slab Coordinate

, ‖w3:d,j‖ = O

(
1√

k log d

)
︸ ︷︷ ︸
d−2 Noise Coordinates

with probability greater than 1− 1
poly(d) . Note that c is a universal constant.

Remarks: First, we see that the trained model essentially relies only on the linear coordinate w1j—
SGD sets the value of w1j roughly Ω̃(

√
d) larger than the slab coordinates w2j that do not change

much from their initial value. Second, the initialization we use is widely studied in the deep learning
theory [46, 79] as it better reflects the practical performance of neural networks [14]. Third, given
that LSN is linearly separable, Brutzkus et al. [8] also guarantee convergence of test error. However,
our result additionally gives a precise description of the final classifier. Finally, we note that our result
shows that extreme SB bias holds even for overparameterized networks (k = O(d2/ log d)).

4.2 Simplicity Bias (SB) is Extreme in Practice

We now establish the extreme nature of SB on datasets with features of varying simplicity—LMS-5,
MS-(5,7), MNIST-CIFAR (described in Section 3)—across multiple model architectures and opti-
mizers. Recall that (a) the simplicity of one-dimensional building blocks is defined as the number of
pieces required by a piecewise linear classifier acting only on that block to get optimal accuracy and
(b) LMS-5 has one linear block & multiple 5-slabs, MS-(5,7) has one 5-slab and multiple 7-slabs
and MNIST-CIFAR concatenates MNIST and CIFAR10 images. We now use S to denote the simplest
feature in each dataset: linear in LMS-5, 5-slab in MS-(5,7), and MNIST in MNIST-CIFAR.

We first consistently observe that SGD-trained models trained on LMS-5 and MS-(5,7) datasets
exhibit extreme SB: they exclusively rely on the simplest feature S and remain invariant to all complex
features Sc. Using S-randomized & Sc-randomized metrics summarized in Table 1, we first establish
extreme SB on fully-connected (FCN), convolutional (CNN) & sequential (GRU [15]) models. We
observe that the S-randomized AUC is 0.5 across models. That is, unsurprisingly, all models are
critically dependent on S. Surprisingly, however, Sc-randomized AUC of all models on both datasets
equals 1.0. That is, arbitrarily perturbing Sc coordinates has no impact on the class predictions or the
ranking of true positives’ logits against true negatives’ logits. One might expect that perturbing Sc

would at least bring the logits of positives and negatives closer to each other. Figure 3(a) answers this
in negative—the logit distributions over true positives of (100,1)-FCNs (i.e., with width 100 & depth
1) remain unchanged even after randomizing all complex features Sc. Conversely, randomizing the
simplest feature S randomly shuffles the original logits across true positives as well as true negatives.
The two-dimensional projections of FCN decision boundaries in Figure 3(c) visually confirm that
FCNs exclusively depend on the simpler coordinate S and are invariant to all complex features Sc.

Note that sample size and model architecture do not present any obstacles in learning complex
features Sc to achieve 100% accuracy. In fact, if S is removed from the dataset, SGD-trained models
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(a) original, Sc-randomized and S-randomized logit distribution for true positives

Dataset Set Sc Size |Sc| Randomized AUC

Set S Set Sc

LMS-5 all
5-Slabs

49 0.50± 0.01 1.00± 0.00

249 0.50± 0.01 1.00± 0.00

MS-(5,7) all
7-Slabs

49 0.49± 0.01 1.00± 0.00

249 0.50± 0.01 1.00± 0.00

(b) {S, Sc}-Randomized AUCs of (2000,1)-FCNs (c) Decision boundaries of trained (100,1)-FCNs

Figure 3: Extreme SB on LMS-5, MS-(5,7) and MNIST-CIFAR datasets (a) S-randomized logit
distribution of true positives is essentially identical to the original logit distribution of true positives
(before randomization). However, Sc-randomized logit distribution of true positives is a randomly
shuffled version of original logit distribution; Sc-randomized logits are shuffled across true positives
and negatives. (b) {S, Sc }-randomized AUCs (summarized in Table 1) are 0.5 and 1.0 respectively
for varying number of complex features |Sc|. (c) FCN decision boundaries projected onto S & the
most influential coordinate in Sc shows that the boundary depends only on S and is invariant to Sc.

with the same sample size indeed rely on Sc to attain 100% accuracy. Increasing the number of
complex features does not mitigate extreme SB either. Figure 3(b) shows that even when there
are 249 complex features and only one simple feature, (2000,1)-FCNs exclusively rely on the
simplest feature S; randomizing Sc keeps AUC score of 1.0 intact but simply randomizing S drops
the AUC score to 0.5. (2000,1)-FCNs exhibit extreme SB despite their expressive power to learn
large-margin classifiers that rely on all simple and complex features.

Similarly, on the MNIST-CIFAR dataset, MobileNetV2 [60], GoogLeNet [70], ResNet50 [27] and
DenseNet121 [32] exhibit extreme SB. All models exclusively latch on to the simpler MNIST block
to acheive 100% accuracy and remain invariant to the CIFAR block, even though the CIFAR block
alone is almost fully predictive of its label—GoogLeNet attains 95.4% accuracy on the corresponding
CIFAR binary classification task. Figure 3(a) shows that randomizing the simpler MNIST block
randomly shuffles the logit distribution of true positives whereas randomizing the CIFAR block has no
effect—the CIFAR-randomized and original logit distribution over true positives essentially overlap.

To summarize, we use S-randomized and Sc-randomized metrics to establish that models trained on
synthetic and image-based datasets exhibit extreme SB: If all features have full predictive power, NNs
rely exclusively on the simplest feature S and remain invariant to all complex features Sc. We further
validate our results on extreme SB across model architectures, activation functions, optimizers and
regularization methods such as `2 regularization and dropout in Appendix C.

4.3 Extreme Simplicity Bias (SB) leads to Non-Robustness

Now, we discuss how our findings about extreme SB in Section 4.2 can help reconcile poor OOD
performance and adversarial vulnerability with superior generalization on the same data distribution.

Poor OOD performance: Given that neural networks tend to heavily rely on spurious features [45,
52], state-of-the-art accuracies on large and diverse validation sets provide a false sense of security;
even benign distributional changes to the data (e.g., domain shifts) during prediction time can
drastically degrade or even nullify model performance. This phenomenon, though counter-intuitive,
can be easily explained through the lens of extreme SB. Specifically, we hypothesize that spurious
features are simple. This hypothesis, when combined with extreme SB, explains the outsized impact
of spurious features. For example, Figure 3(b) shows that simply perturbing the simplest (and
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Figure 4: Extreme SB results in vulnerability to small-magnitude model-agnostic and data-agnostic
Universal Adversarial Perturbations (UAPs) that nullify model performance by only perturbing the
simplest feature S. `2 UAPs utilize most of the perturbation budget to attack S alone: 99.6% for
linear in LMS-5, 99.9% for 5-slab in MS-(5,7) and 99.3% for MNIST pixels in MNIST-CIFAR. The
UAPs in this figure are rescaled for visualization purposes.

potentially spurious in practice) feature S drops the AUC of trained neural networks to 0.5, thereby
nullifying model performance. Randomizing all complex features Sc—5-slabs in LMS-5, 7-slabs in
MS-(5,7), CIFAR block in MNIST-CIFAR—has negligible effect on the trained neural networks—
Sc-randomized and original logits essentially overlap—even though Sc and S have equal predictive
power This further implies that approaches [29, 40] that aim to detect distribution shifts based on
model outputs such as logits or softmax probabilities may themselves fail due to extreme SB.

Adversarial Vulnerability: Consider a classifier f∗ that attains 100% accuracy on the LMS-5 dataset
by taking an average of the linear classifier on the linear coordinate and d−1 piecewise linear
classifiers, one for every 5-slab coordinate. By relying on all d features, f∗ has O(

√
d) margin.

Now, given the large margin, f∗ also attains high robust accuracy to `2 adversarial perturbations
that have norm O(

√
d)—the perturbations need to attack at least Ω(d) coordinates to flip model

predictions. However, despite high model capacity, SGD-trained NNs do not learn robust and large-
margin classifiers such as f∗. Instead, due to extreme SB, SGD-trained NNs exclusively rely on the
simplest feature S. Consequently, `2 perturbations with norm O(1) are enough to flip predictions and
degrade model performance. We validate this hypothesis in Figure 4, where FCNs, CNNs and GRUs
trained on LMS-5 and MS-(5,7) as well as DenseNet121 trained on MNIST-CIFAR are vulnerable to
small universal (i.e., data-agnostic) adversarial perturbations (UAPs) of the simplest feature S. For
example, Figure 4 shows that the `2 UAP of DenseNet121 on MNIST-CIFAR only attacks a few pixels
in the simpler MNIST block and does not perturb the CIFAR block. Extreme SB also explains why
data-agnostic UAPs of one model transfer well to another: the notion of simplicity is consistent across
models; Figure 4 shows that FCNs, CNNs and GRUs trained on LMS-5 and MS-(5,7) essentially learn
the same UAP. Furthermore, invariance to complex features Sc (e.g., CIFAR block in MNIST-CIFAR)
due to extreme SB explains why “natural" [30] and semantic label-relevant perturbations [5] that
modify the true image class do not alter model predictions.

To summarize, through theoretical analysis and extensive experiments on synthetic and image-based
datasets, we (a) establish that SB is extreme in nature across model architectures and datasets and (b)
show that extreme SB can result in poor OOD performance and adversarial vulnerability, even when
all simple and complex features have equal predictive power.

5 Extreme Simplicity Bias (SB) can hurt Generalization
In this section, we show that, contrary to conventional wisdom, extreme SB can potentially result
in suboptimal generalization of SGD-trained models on the same data distribution as well. This is

Accuracy (100,1)-FCN (200,1)-FCN (300,1)-FCN (100,2)-FCN (200,2)-FCN (300,2)-FCN

Training Data 0.984± 0.003 0.998± 0.000 0.995± 0.000 0.999± 0.000 0.997± 0.002 0.998± 0.002
Test Data 0.940± 0.002 0.949± 0.003 0.948± 0.002 0.945± 0.003 0.946± 0.003 0.947± 0.002

Sc-Randomized 0.941± 0.001 0.946± 0.001 0.946± 0.001 0.944± 0.001 0.945± 0.001 0.946± 0.001
S-Randomized 0.498± 0.001 0.498± 0.000 0.497± 0.001 0.498± 0.001 0.497± 0.000 0.498± 0.001

Table 2: Extreme SB can hurt generalization: FCNs of depth {1, 2} and width {100, 200, 300} trained
on L̂MS-7 data with SGD attain 95% test accuracy. The randomized accuracies show that FCNs
exclusively rely on the simpler noisy linear feature S and remain invariant to all 7-slab features that
have 100% predictive power.
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because exclusive reliance on the simplest feature S can persist even when every complex feature in
Sc has significantly greater predictive power than S.

We verify this phenomenon on L̂MS-7 data defined in Section 3. Recall that L̂MS-7 has one noisy
linear coordinate S with 95% predictive power (i.e., 10% noise in linear coordinate) and multiple
7-slab coordinates Sc, each with 100% predictive power. Note that our training sample size is large
enough for FCNs of depth {1, 2} and width {100, 200, 300} trained on Sc only (i.e., after removing
S from data) to attain 100% test accuracy. However, when trained on L̂MS-7 (i.e., including S),
SGD-trained FCNs exhibit extreme SB and only rely on S, the noisy linear coordinate. In Table 2, we
report accuracies of SGD-trained FCNs that are selected based on validation accuracy after performing
a grid search over four SGD hyperparameters: learning rate, batch size, momentum, and weight
decay. The train, test and randomized accuracies in Table 2 collectively show that FCNs exclusively
rely on the noisy linear feature and consequently attain 5% generalization error.

To summarize, the mere presence of a simple-but-noisy feature in L̂MS-7 data can significantly
degrade the performance of SGD-trained FCNs due to extreme SB. Note that our results show that
even an extensive grid search over SGD hyperparameters does not improve the performance of
SGD-trained FCNs on L̂MS-7 data but does not necessarily imply that mitigating SB via SGD and its
variants is impossible. We provide additional information about the experiment setup in Appendix D.

6 Conclusion and Discussion

We investigated Simplicity Bias (SB) in SGD-trained neural networks (NNs) using synthetic and
image-based datasets that (a) incorporate a precise notion of feature simplicity, (b) are amenable to
theoretical analysis and (c) capture the non-robustness of NNs observed in practice. We first showed
that one-hidden-layer ReLU NNs provably exhibit SB on the LSN dataset. Then, we analyzed the
proposed datasets to empirically demonstrate that SB can be extreme, and can help explain poor OOD
performance and adversarial vulnerability of NNs. We also showed that, contrary to conventional
wisdom, extreme SB can potentially hurt generalization.

Can we mitigate SB? It is natural to wonder if any modifications to the standard training procedure
can help in mitigating extreme SB and its adverse consequences. In Appendix E, we show that
well-studied approaches for improving generalization and adversarial robustness—ensemble methods
and adversarial training—do not mitigate SB, at least on the proposed datasets. Specifically, “vanilla"
ensembles of independent models trained on the proposed datasets mitigate SB to some extent by
aggregating predictions, but continue to exclusively rely on the simplest feature. That is, the resulting
ensemble remains invariant to all complex features (e.g., 5-Slabs in LMS-5). Our results suggest
that in practice, the improvement in generalization due to vanilla ensembles stem from combining
multiple simple-but-noisy features (such as color, texture) and not by learning diverse and complex
features (such as shape). Similarly, adversarially training FCNs on the proposed datasets increases
margin (and hence adversarial robustness) to some extent by combining multiple simple features but
does not achieve the maximum possible adversarial robustness; the resulting adversarially trained
models remain invariant to all complex features.

Our results collectively motivate the need for novel algorithmic approaches that avoid the pitfalls of
extreme SB. Furthermore, the proposed datasets capture the key aspects of training neural networks
on real world data, while being amenable to theoretical analysis and controlled experiments, and can
serve as an effective testbed to understand deep learning phenomena. evaluating new algorithmic
approaches aimed at avoiding the pitfalls of SB.

Broader Impact

Our work is foundational in nature and seeks to improve our understanding of neural networks. We
do not foresee any significant societal consequences in the short term. However, in the long term, we
believe that a concrete understanding of deep learning phenomena is essential to develop reliable
deep learning systems for practical applications that have societal impact.

9



References
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