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➢ Multi-User Multi-Armed Bandit Problem
➢ Solve optimization problems jointly

➢ Greedy Algorithm 
➢ LATTICE (Latent Bandits via Matrix Completion)

➢ Maternal Healthcare (ARMAAN)
➢ Great Empirical Promise



Bandit Optimization
Decision making under uncertainty

• YouTube/Netflix : which video or movie to recommend?
• AI for Social Good: Healthcare, wildlife poaching

/



Multi-armed Bandit Optimization

exploration 

to learn user preferences well

time (T)

Items (Arms in Bandit literature)
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Need for Collaboration in Multi-User MAB

Users

Arms/Items



Need for Collaboration in Multi-User MAB

exploration to learn users 
preferences well (separate 
optimization)

Infeasible with 
millions of 
items, users 
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Our Model (Cluster Structure) 

True Reward Matrix (Unknown)



Our Model (Cluster Structure) 

True Reward Matrix (Unknown)
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Collaborative Bandits with Latent Clusters 
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Movielens10M dataset: clusters among top users

Source: Bresler et al.



Our Model (Cluster Structure) 

Learnable Parameters: #Users+ #Items#clustersTrue Reward Matrix (Unknown)
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Prior Work on Collaborative Bandits with Cluster Structure

Setting Optimal Cost?

Maillard & Mannor [2014] Known cluster or known 
reward setting ✓

Gentile et al [2014, 2017] Unknown clusters, rewards ✗

This Work
(LATTICE)

Unknown clusters, rewards ✓



Enhancing popular Two-tower model 

● Missing User/Item Features (Healthcare)
● Features corrupted/misleading/non-informative
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Collaborative Bandits (M users, N items, T rounds)

time (T)

time (T)

time (T)

Reward 
at round t 
for user u

Corresponding entry of unknown 
true reward matrixRound 1 Round 2 Round 3



Collaborative Bandits (M users, N items, T rounds)

time (T)

time (T)

time (T)

Round 1 Round 2 Round 3

Reward accrued 
whenever user u  is 
recommended item j
Observed

Entry of True 
Reward Matrix 
(user u and item j)
Unknown

Sub-Gaussian 
Noise



Greedy Algorithm (Exploration) 

Exploration 
period

Exploitation 
period

Exploration period 
(Gather data randomly)

time (T)



Greedy Algorithm 

Low Rank Expected Reward Matrix

Can we estimate the entire matrix 
from a few observations? 



Greedy Algorithm (Exploration) 

Low Rank Expected Reward Matrix
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Greedy Algorithm (Exploitation) 
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estimated probability of being liked



Greedy Algorithm  

Exploration

Exploration 
period

Exploitation 
period

time (T)



Greedy Algorithm  

Exploration
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Low-rank Matrix Completion

• Task: Complete ratings matrix
• Applications: recommendation systems, PCA with missing entries



Low-rank

  

     

  



Low-rank Matrix Completion

•  



Existing method: Trace-norm minimization

•  

  



Alternating Minimization

• If X has rank-k: 
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Greedy Algorithm  

Exploration
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Greedy Algorithm (Regret Guarantees) 

Regret of our Greedy algorithm:

Exploration
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ExploitationMatrix Completion

Sub-optimal in rounds

How much exploration data 
should we use? Better 
exploration → better estimate 
but longer cold-start



Challenges in Analysis (Greedy Algorithm) 

Partial Noisy Observations
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Entire Estimated Matrix

Limitations of Offline Matrix Completion Challenge Solution

Square Matrices Incoherence, Condition number Random partition



Main Result for LATTICE
Netflix

Movielens

Regret of our collaborative algorithm (LATTICE):

Optimal in items, users, rounds!

(Ours)

(Ours)

Regret of non-collaborative algorithms (UCB): 



Remarks on Main Result

● Regret is minimax optimal in terms of

● Dependence of regret on number of clusters (   ) is

○ Lower bound has           dependence

● Our results extend to 
○ Relaxed definitions of cluster. For          in same cluster,

 



Review: Multi-Armed Bandits (MABs)

time (T)

“Distance” of our 
recommendations 
from the optimal item Exploration - Exploitation



Algorithmic Idea 1: Reduction to Offline Low-Rank Matrix 
Completion 
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User x Item reward matrix is low-rank 



Challenges

Offline matrix completion difficult to extend
● Entry-wise guarantees are necessary
● Existing results are with bernoulli sampling and for square matrices



Review: Phased Elimination for MABs
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Phase 1:
Estimate 
rewards of 
each item to 
precision ½ 
by repeated 
sampling

Eliminate items with rewards farther than 1 away from best estimated item

Auer, Peter, and Ronald Ortner. "UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem." Periodica Mathematica Hungarica 
61, no. 1-2 (2010): 55-65.



Review: Phased Elimination for MABs
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Phase 2:
Estimate 
rewards of 
each item to 
precision ¼
by repeated 
sampling

Eliminate items with rewards farther than 1/2 away from best estimated item

Auer, Peter, and Ronald Ortner. "UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem." Periodica Mathematica Hungarica 
61, no. 1-2 (2010): 55-65.



Review: Phased Elimination for MABs
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Phase 3:
Estimate 
rewards of 
each item to 
precision ⅛ 
by repeated 
sampling

Eliminate items with rewards farther than 1/4 away from best estimated item

Auer, Peter, and Ronald Ortner. "UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem." Periodica Mathematica Hungarica 
61, no. 1-2 (2010): 55-65.



Review: Phased Elimination for MABs

Phased elimination has worst case regret of

● Average of     independent Gaussian random variables is within                   of true mean    

● Suppose item 1 is optimal. Let                         . 
● WLOG assume                         . Then item    is pulled at most                         times

○ If                           , rewards of items 1,    are close. So we won’t incur much regret

● Regret of algorithm is 

These rates are 
optimal (modulo 
log factors) 



LATTICE: Phased Elimination + User Clustering 
Phase 1

● Place all users in a single group, and keep all items active

● Sample item randomly to 
get               accurate 
estimate of reward matrix

items

us
er

s



LATTICE: Phased Elimination + User Clustering 
Phase 1

● Place all users in a single group, and keep all items active

● Sample items randomly to 
get               accurate 
estimates of reward matrix

items

us
er

s

● Perform matrix completion 
with partial noisy 
observations

● Group/Cluster users with 
estimated embeddings 
(from Matrix Completion) 



LATTICE: Phased Elimination + User Clustering 
Phase 1

● Place all users in a single group, and keep all items active

items

us
er

s

● For each user, it’s good items 
are less than        away from 
empirical best item

● Joint good items - Union of 
good items for users in each 
group

● Discard all items not in joint 
good items for each 
group/cluster 



LATTICE: Phased Elimination + User Clustering 
Phase 1

● Place all users in a single group, and keep all items active

Active items 1

cl
us

te
r 1

cl
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r 2

Active items 2

● For each user, it’s good items 
are less than        away from 
empirical best item

● Joint good items - Union of 
good items for users in each 
group

● For each user, it’s good items 
are less than        away from 
empirical best item

● Joint good items - Union of 
good items for users in each 
group

● Discard all items not in joint 
good items for each 
group/cluster 



Key Intermediate Results

● For each user, their corresponding true best item always survives (Easy)
● Each constructed group is a union of true clusters (Hard)

● For each user, the joint active items are still good (Hard)

● Each sub-matrix satisfies incoherence, condition number conditions necessary 
for matrix completion oracle (Hard)



LATTICE: Phased Elimination + User Clustering 
Phases > 1

● Repeat the previous procedure on each submatrix 
● Improve the quality of reward estimates  exponentially  
● Why Phased Elimination? Uniformly sample in carefully constructed sub-matrices 

○ Difficult to generalize optimal algorithms in single user MAB 



Key Step in Proof

Sum of regret across phases

Phase    requires at most                                            samples

● relies on matrix-completion guarantees

● Without collaboration the sample complexity is  



Idea: Why Phased Elimination ?

● Confidence Bound based algorithm or Thomson Sampling will not work

● Our algorithm (LATTICE): Phased elimination framework 

○ Carefully constructed sub-matrices of reward matrix in each phase where we 

collect data randomly 

○ Run low-rank matrix completion algorithm on data collected in each phase to 

get a good estimate of the reward sub-matrices

○ Discard sub-optimal arms after each phase jointly for groups of users 



Idea: Why Phased User Clustering 

● Cluster First - Greedy algorithm

● Group (coarsely cluster) users in each phase based on the estimated rewards

○ Users with similar estimated rewards are placed in the same group

● Collaborate across users in the group to get better reward estimates in the next phase

○ Users in different clusters but in same group are also similar (to some extent)
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Greedy Algorithm (Regret Guarantees) 

Regret of our Greedy algorithm:

Exploration

0.3 0.8 0.6 0.2

0.1

0.6

0.90.40.4

0.9 0.3 0.1

Optimization Commit

ExploitationMatrix Completion

Sub-optimal in rounds



Fix - Soft Commit instead of Hard Commit 
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Gather new data via soft commit 

0.2 0.336 0.275 0.184

0.227 0.227 0.375 0.168

0.267 0.164 0.327 0.242

Gather Data

Intuitively, more likes !!



Iterative Algorithm 

Row-wise
SoftmaxMatrix 

Estimate
Optimization

Prob. vector

Prob. vector

Prob. vector

Sampling Probability (Gather Data)

● Iterative algorithm where we update sampling probabilities for each user based on estimate 
● Gather more data respecting constraints and current sampling probabilities  
● Update estimate of reward matrix 

△rounds



Application to Maternal Health Program - Kilikari

● Kilkari (AI4SG) – Collaboration with MASSI 
○ Improve the wellbeing of expecting mothers

○ 3 million mothers. Figure out optimal time-slot to call each 
individual

○ This is a mobile maternal health program run by ARMAAN in 
collaboration with Ministry of Health (GoI).



Offline Results on the Kilikari Dataset

Given same resources,
We can onboard 56% more users vs 
a policy that plays best bandit algorithm per 
user (when we don’t collaborate)

Across different engagement slices, we 
check how many call retries before 
engagement happens
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Extension to Reinforcement Learning 

● Each user now is an MDP with temporal dependence.
● Actions have long term consequences
● Assumption: low rank reward
● Challenge: some states might be unreachable with any policy
● Our contribution: Collaborative exploration for RL

Main Result: 
Number of sample trajectories to obtain optimal policy for each user:

O(users + states*actions)

Naive Algorithm:

O(users*states*actions)
[Agarwal, Jain, Kowshik, Nagaraj,Netrapalli, ICML 2023]



Takeaways 

● Modern recommender systems have millions of users, items
○ Non-collaborative algorithms suffer from a large cost

● Collaboration improves the regret of bandit algorithms
● Greedy algorithm - suboptimal in rounds
● LATTICE - Phased Elimination Algorithm for collaborative bandits with latent clusters

○ gets minimax optimal regret
○ relies on phased-elimination of arms and phased-clustering of users

● Greedy with Soft Commit - shows great empirical promise in healthcare data



Other Results 

● Optimal Regret for rank-1 setting (ICLR 23)
● Near-Optimal Regret for rank >1 setting with hott items assumption (In submission)
● Optima Regret with blocking constraint (NeurIPS 23) 



Model for Offline Personalization/Meta-Learning

Noise



Broad Future Work

Personalization
➢ Contextual models for multi-user setting (Observable context)
➢ Incorporate Side Information (Graphs, Offline data) - Truly Hybrid Models
➢ Incorporate Robustness, Privacy, Unlearning 
➢ Broadly, improve our understanding of scalable algorithms for non-convex optimization 
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Parameter Efficient Fine-Tuning/ Meta Learning
➢ Extend scalability of LoRA and QLoRA via incorporating constraints across tasks. 
➢ Sub-channel quantization/Sparse dictionary learning to improve memory footprint. 
➢ Even initializing slightly modified Transformer Blocks are a challenge. 
➢ Generalize within and outside task distributions



Broad Future Work

Personalization
➢ Contextual models for multi-user setting (Observable context)
➢ Incorporate Side Information (Graphs, Offline data) - Truly Hybrid Models
➢ Incorporate Robustness, Privacy, Unlearning 
➢ Broadly, improve our understanding of scalable algorithms for non-convex optimization 

Parameter Efficient Fine-Tuning/ Meta Learning
➢ Extend scalability of LoRA and QLoRA via incorporating constraints across tasks. 
➢ Sub-channel quantization/Sparse dictionary learning to improve memory footprint. 
➢ Even initializing slightly modified Transformer Blocks are a challenge.
➢ Generalize within and outside task distributions

Multi-task Learning
➢ Mixture Models when task labels are lost/expensive
➢ Non-convex constraints on components of mixture models 


