Statistical Methods ] o '
for Large-Scale | s
Personalization

.
L\ \,!, a
Soumyabrata Arun Suggala Karthikeyan Prateek Jain

Pal Shanmugam

AISTATS’ 23, ICLR’ 23, NeurlPS’ 23


http://go/who/soumyabrata
http://go/who/arunss
http://go/who/karthikeyanvs
http://go/who/prajain

Qutline

@ Need for collaboration in Bandits

> Multi-User Multi-Armed Bandit Problem
> Solve optimization problems jointly

@ Collaborative Multi-Armed Bandits

> Greedy Algorithm
>  LATTICE (Latent Bandits via Matrix Completion)

@ Simplified Practical Algorithm

> Maternal Healthcare (ARMAAN)
> Great Empirical Promise

@ Conclusion



Bandit Optimization

Decision making under uncertainty
+ YouTube/Netflix : which video or movie to recommend?
« Al for Social Good: Healthcare, wildlife poaching
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Multi-armed Bandit Optimization

ltems (Arms in Bandit literature)
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Need for Collaboration in Multi-User MAB
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Need for Collaboration in Multi-User MAB

time (T)

>
time (T)

Infeasible with
millions of
items, users

t'me M f(items X users)

exploration to learn users
preferences well (separate
optimization)



Our Model (Cluster Structure)
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Our Model (Cluster Structure)
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Collaborative Bandits with Latent Clusters
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Assumption: Users can be grouped into small number
of latent clusters



Our Model (Cluster Structure)
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Prior Work on Collaborative Bandits with Cluster Structure

Setting Optimal Cost?
Maillard & Mannor [2014] Known cluster or known /
reward setting
Gentile et al [2014, 2017] | Unknown clusters, rewards X
This Work Unknown clusters, rewards /

(LATTICE)



Enhancing popular Two-tower model

A

similarity

user item
embedding embedding

e Missing User/ltem Features (Healthcare)
e Features corrupted/misleading/non-informative

[ feature embedding ] [ feature embedding J
A A

[ User features ] [ Item features ]




@ Need for collaboration in Bandits

O U t I i ne ‘ @ Collaborative Multi-Armed Bandits

@ Parameter-free Practical Algorithm

@ Conclusion

Google



Collaborative Bandits (M users, N items, T rounds)

Round1 Round?2 Round 3 Corresponding e_ntry of unknown
true reward matrix
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Collaborative Bandits (M users, N items, T rounds)

Round 1 Round 2 Round 3
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Greedy Algorithm (Exploration)
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Greedy Algorithm
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Low Rank Expected Reward Matrix

Can we estimate the entire matrix
from a few observations?



Greedy Algorithm (Exploration)
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Greedy Algorithm (Exploitation)
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Greedy Algorithm
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Greedy Algorithm
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Low-rank Matrix Completion

users
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- unknown rating - rating between 1 to 5

* Task: Complete ratings matrix
* Applications: recommendation systems, PCA with missing entries



Low-rank
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Low-rank Matrix Completion

_ 2
min Errorg(X) = Z (Xl-j —Ml-j)
(i,j)eq
s.t rankX) <k
* (): set of known entries

* Problem is NP-hard in general
* Two approaches:
* Relax rank function to its convex surrogate (Trace-norm based method)
* Use alternating minimization



Existing method: Trace-norm minimization

mjn Z (%) = My)°
(i,/))EQ
St 1ank(2)AEh

e * ||X]|«: sum of singular values

* Candes and Recht prove that above problem solves matrix
completion (under assumptions on () and M)

* However, convex optimization methods for this problem
don’t scale well



Alternating Minimization
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Greedy Algorithm
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Greedy Algorithm (Regret Guarantees)
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Exploration

How much exploration data
should we use? Better
exploration — better estimate
but longer cold-start
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Matrix Completion

Regret of our Greedy algorithm:
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Sub-optimal in rounds



Challenges in Analysis (Greedy Algorithm)
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Partial Noisy Observations Entire Estimated Matrix
Limitations of Offline Matrix Completion Challenge Solution

Square Matrices Incoherence, Condition number Random partition



Main Result for LATTICE

/

items
1+ — ) Xrounds
users

Optimal in items, users, rounds!

Regret of non-collaborative algorithms (UCB):

\\ Vitems X rounds

Regret of our collaborative algorithm (LATTICE):

Cumulative Regret

Cumulative Regret

70000

60000

50000

40000

30000

20000

10000

70000

60000

50000

40000

30000

20000

10000

Netflix

- Alternating Minimization
—— LATTICE (Ours)
—— UCB

10000 20000 30000 40000 50000 60000
Rounds

© -4

Movielens

—— Alternating Minimization
—— LATTICE (Ours)
= UCB

0 10000 20000 30000 40000 50000 60000
Rounds



Remarks on Main Result

/ e Regret is minimax optimal in terms of items, users, 1T’
e Dependence of regret on number of clusters (¢) is (3

o Lower bound has 01/2 dependence

e Our results extend to
o Relaxed definitions of cluster. For, , u,in same cluster,

w0 — Puya| < € foralla




Review: Multi-Armed Bandits (MABSs)
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Algorithmic Idea 1: Reduction to Offline Low-Rank Matrix
Completion
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User x ltem reward matrix is low-rank



Challenges

Offline matrix completion difficult to extend
e Entry-wise guarantees are necessary
e Existing results are with bernoulli sampling and for square matrices
o,
-
[ 4 -
‘-l



Review: Phased Elimination for MABs
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Eliminate items with rewards farther than 1 away from best estimated item

Auer, Peter, and Ronald Ortner. "UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem." Periodica Mathematica Hungarica
61, no. 1-2 (2010): 55-65.



Review: Phased Elimination for MABs
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Eliminate items with rewards farther than 1/2 away from best estimated item

Auer, Peter, and Ronald Ortner. "UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem." Periodica Mathematica Hungarica
61, no. 1-2 (2010): 55-65.



Review: Phased Elimination for MABs
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Auer, Peter, and Ronald Ortner. "UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem." Periodica Mathematica Hungarica
61, no. 1-2 (2010): 55-65.



Review: Phased Elimination for MABs o A

optimal (modulo
log factors)

Phased elimination has worst case regret of é(«/items x T)

e Average of n independent Gaussian random variables is within O(l/\/ﬁ) of true mean

e Suppose item 1 is optimal. Let A; = p1 — w;. 3
WLOG assume A; > \/items/T. Then item ¢ is pulled at most 1 4+ O(1/A?) times

o If A< \/items/T, rewards of items 1, 7 are close. So we won't incur much regret

e Regret of algorithm is Z Ai + O(1/A;) = O(+/items x T)

1>2



LATTICE: Phased Elimination + User Clustering

Phase 1
e Place all users in a single group, and keep all items active

items
e Sample item randomly to [] []
get A = 1/2 accurate O
estimate of reward matrix
]
]

users



LATTICE: Phased Elimination + User Clustering

Phase 1
e Place all users in a single group, and keep all items active

items

e Sample items randomly to
get A = 1/2 accurate
estimates of reward matrix

e Perform matrix completion
with partial noisy
observations

users

e Group/Cluster users with
estimated embeddings
(from Matrix Completion)




LATTICE: Phased Elimination + User Clustering

Phase 1
e Place all users in a single group, and keep all items active

items
e For each user, it's good items
are less than 2A away from x

empirical best item

e Joint good items - Union of
good items for users in each

group

users

e Discard all items not in joint
good items for each
group/cluster

x 8



LATTICE: Phased Elimination + User Clustering

Phase 1

e Place all users in a single group, and keep all items active

Active items 1
e For each user, it's good items

are less than 2A away from
empirical best item

cluster 1

e Joint good items - Union of
good items for users in each
group

e Discard all items not in joint
good items for each
group/cluster

Active items 2

cluster 2



Key Intermediate Results

e For each user, their corresponding true best item always survives (Easy)
Each constructed group is a union of true clusters (Hard)

e For each user, the joint active items are still good (Hard)

e Each sub-matrix satisfies incoherence, condition number conditions necessary
for matrix completion oracle (Hard)



LATTICE: Phased Elimination + User Clustering

Phases > 1
e Repeat the previous procedure on each submatrix
e Improve the quality of reward estimates exponentially
e Why Phased Elimination? Uniformly sample in carefully constructed sub-matrices
o Difficult to generalize optimal algorithms in single user MAB




Key Step in Proof

Phase i requires at most O((items + users)/A?) samples
e relies on matrix-completion guarantees

e Without collaboration the sample complexity is O(items X userS/A?)

Sum of regret across phases

Z A; + O((items + users)/A;) = O(\/(items + users) x T))

1>2




|dea: Why Phased Elimination ?

A

Our algorithm (LATTICE): Phased elimination framework

(@)

/o Confidence Bound based algorithm or Thomson Sampling will not work \

Carefully constructed sub-matrices of reward matrix in each phase where we
collect data randomly

Run low-rank matrix completion algorithm on data collected in each phase to
get a good estimate of the reward sub-matrices

Discard sub-optimal arms after each phase jointly for groups of users

)




ldea: Why Phased User Clustering

/

(&

~

Cluster First - Greedy algorithm
Group (coarsely cluster) users in each phase based on the estimated rewards

o Users with similar estimated rewards are placed in the same group
Collaborate across users in the group to get better reward estimates in the next phase

o Users in different clusters but in same group are also similar (to some extent)/
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Greedy Algorithm (Regret Guarantees)
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Regret of our Greedy algorithm:

items \ /3 2/3
14 X rounds Sub-optimal in rounds
users




Fix - Soft Commit instead of Hard Commit
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Gather new data via soft commit

g = XM

* o 0.2 0.336 0.275 0.184
A 4
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o
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Intuitively, more likes !!

Gather Data
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lterative Algorithm
Sampling Probability (Gather Data)

15 A Prob. vector
Row-wise
Y y o Optimization Matrix Softmax Prob. vector
> Estimate
l‘ |‘ Prob. vector
N\ J
Y
Arounds

e lterative algorithm where we update sampling probabilities for each user based on estimate
e Gather more data respecting constraints and current sampling probabilities
e Update estimate of reward matrix




Application to Maternal Health Program - Kilikari

e Kilkari (Al4SG) - Collaboration with MASSI
o Improve the wellbeing of expecting mothers

o 3 million mothers. Figure out optimal time-slot to call each
individual

o This is a mobile maternal health program run by ARMAAN in
collaboration with Ministry of Health (Gol).



Offline Results on the Kilikari Dataset

Average number of retries

[
o

EE Random

15.41%
97%

I Our Algorithm
28.15%

5.72% 40.11%

3.12% 48.24%

51.10%

0.85%

Very Low Low Moderate Normal Better Extreme
Engagement Engagement Engagement Engagement Engagement Engagement
(0-0.1) (0.1-0.2) (0.2-0.4) (0.4-0.6) (0.6-0.8) (0.8-1)

Measured Engagement Probability

Across different engagement slices, we
check how many call retries before
engagement happens

Given same resources,

We can onboard 56% more users vs

a policy that plays best bandit algorithm per
user (when we don’t collaborate)
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Extension to Reinforcement Learning

Each user now is an MDP with temporal dependence.
Actions have long term consequences

Assumption: low rank reward

Challenge: some states might be unreachable with any policy
Our contribution: Collaborative exploration for RL

Main Result:
Number of sample trajectories to obtain optimal policy for each user:

O(users + states*actions)

Naive Algorithm:

O(users*states*actions)
[Agarwal, Jain, Kowshik, Nagaraj,Netrapalli, ICML 2023]



Takeaways

e Modern recommender systems have millions of users, items
o Non-collaborative algorithms suffer from a large cost

e Collaboration improves the regret of bandit algorithms

e Greedy algorithm - suboptimal in rounds

TAKE
AWAY

e LATTICE - Phased Elimination Algorithm for collaborative bandits with latent clusters

o gets minimax optimal regret
o relies on phased-elimination of arms and phased-clustering of users
e Greedy with Soft Commit - shows great empirical promise in healthcare data
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Other Results M

e Optimal Regret for rank-1 setting (ICLR 23)
e Near-Optimal Regret for rank >1 setting with hott items assumption (In submission)
e Optima Regret with blocking constraint (NeurlPS 23)



Model for Offline Personalization/Meta-Learning

x\? ~ N(0,1,)




Broad Future Work

Personalization
> Contextual models for multi-user setting (Observable context)
> Incorporate Side Information (Graphs, Offline data) - Truly Hybrid Models
> |Incorporate Robustness, Privacy, Unlearning
> Broadly, improve our understanding of scalable algorithms for non-convex optimization
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> Incorporate Side Information (Graphs, Offline data) - Truly Hybrid Models
> |Incorporate Robustness, Privacy, Unlearning
> Broadly, improve our understanding of scalable algorithms for non-convex optimization

Parameter Efficient Fine-Tuning/ Meta Learning
> Extend scalability of LORA and QLoRA via incorporating constraints across tasks.
> Sub-channel quantization/Sparse dictionary learning to improve memory footprint.
> Even initializing slightly modified Transformer Blocks are a challenge.
> Generalize within and outside task distributions



Broad Future Work

Personalization
> Contextual models for multi-user setting (Observable context)
> Incorporate Side Information (Graphs, Offline data) - Truly Hybrid Models
> |Incorporate Robustness, Privacy, Unlearning
> Broadly, improve our understanding of scalable algorithms for non-convex optimization

Parameter Efficient Fine-Tuning/ Meta Learning
> Extend scalability of LORA and QLoRA via incorporating constraints across tasks.
> Sub-channel quantization/Sparse dictionary learning to improve memory footprint.
> Even initializing slightly modified Transformer Blocks are a challenge.
> Generalize within and outside task distributions

Multi-task Learning
> Mixture Models when task labels are lost/expensive
> Non-convex constraints on components of mixture models



