Statistical Methods for Large-Scale Personalization

Design algorithms that effectively make use of collaborative effects across users to jointly learn optimal recommendation policies

Soumyabrata Pal

Arun Suggala Karthikeyan Shanmugam

Prateek Jain

AISTATS' 23, ICLR' 23, NeurIPS' 23

Google

Outline

Need for collaboration in Bandits

- Multi-User Multi-Armed Bandit Problem
- Solve optimization problems jointly

Collaborative Multi-Armed Bandits

- > Greedy Algorithm
- LATTICE (Latent Bandits via Matrix Completion)

Simplified Practical Algorithm

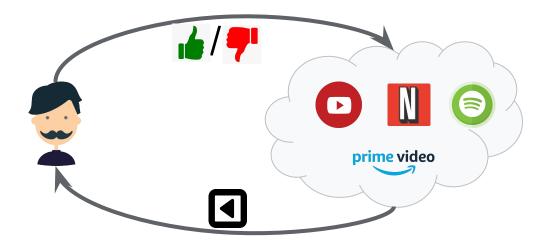
- Maternal Healthcare (ARMAAN)
- Great Empirical Promise

Conclusion

Bandit Optimization

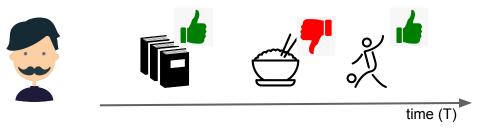
Decision making under uncertainty

- YouTube/Netflix : which video or movie to recommend?
- Al for Social Good: Healthcare, wildlife poaching



Multi-armed Bandit Optimization

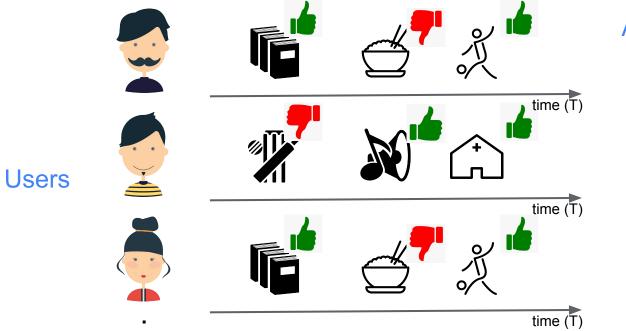
Items (Arms in Bandit literature)



 $f(\mathrm{items})$ exploration to learn user preferences well

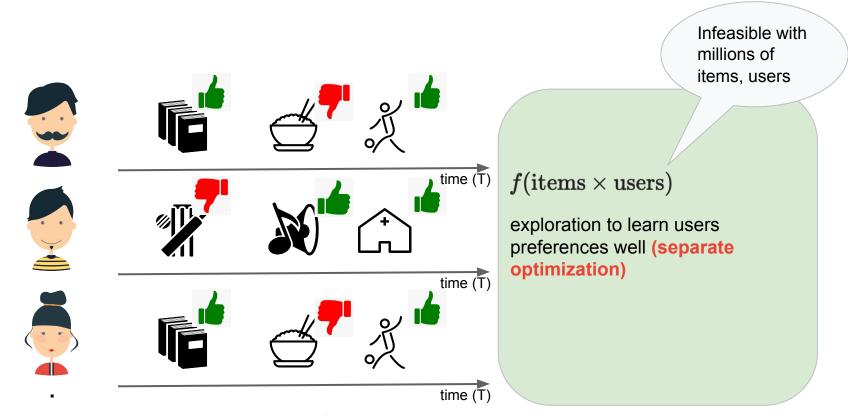
Need for Collaboration in Multi-User MAB

•

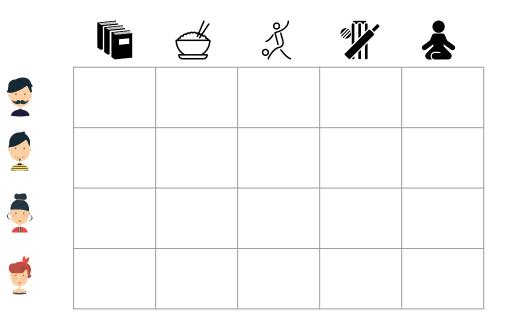


Arms/Items

Need for Collaboration in Multi-User MAB

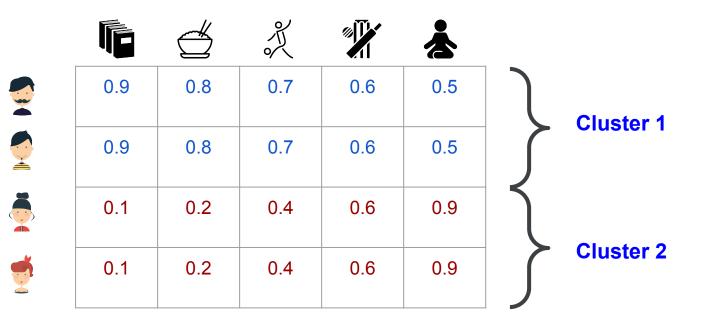


Our Model (Cluster Structure)



True Reward Matrix (Unknown)

Our Model (Cluster Structure)

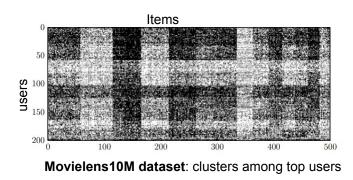


True Reward Matrix (Unknown)

Collaborative Bandits with Latent Clusters

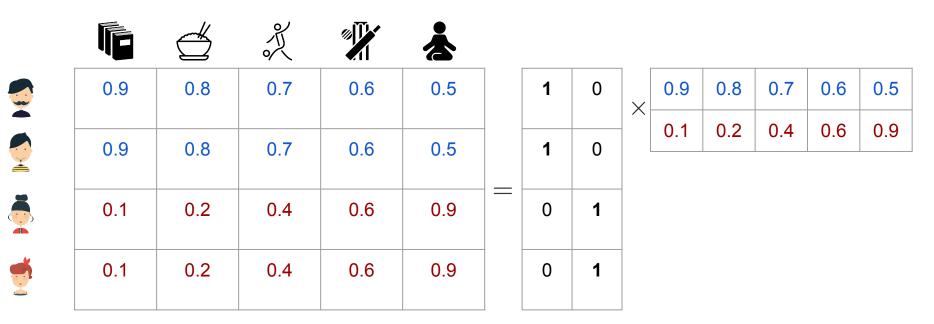
		\square	R		*
	0.9	0.8	0.7	0.6	0.5
	0.9	0.8	0.7	0.6	0.5
	0.1	0.2	0.4	0.6	0.9
Ś	0.1	0.4	0.8	0.4	0.1

Assumption: Users can be grouped into **small number** of latent clusters



Source: Bresler et al.

Our Model (Cluster Structure)



True Reward Matrix (Unknown)

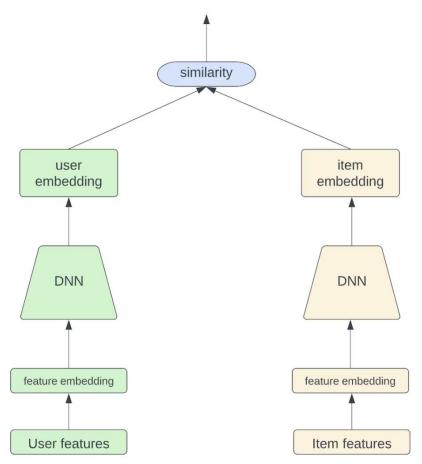
Learnable Parameters: #Users+ #Items#clusters

Rank < Clusters

Prior Work on Collaborative Bandits with Cluster Structure

	Setting	Optimal Cost?
Maillard & Mannor [2014]	Known cluster or known reward setting	\checkmark
Gentile et al [2014, 2017]	Unknown clusters, rewards	×
This Work (LATTICE)	Unknown clusters, rewards	

Enhancing popular Two-tower model



- Missing User/Item Features (Healthcare)
- Features corrupted/misleading/non-informative

01

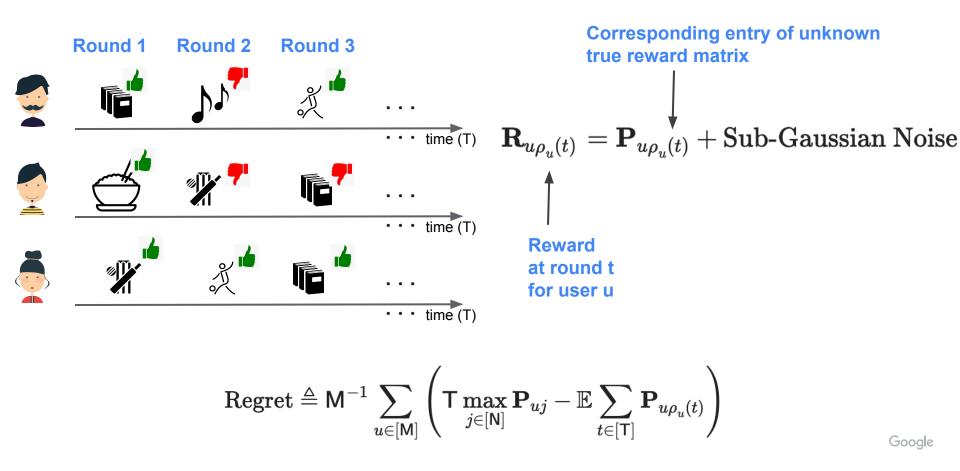
Need for collaboration in Bandits

Outline

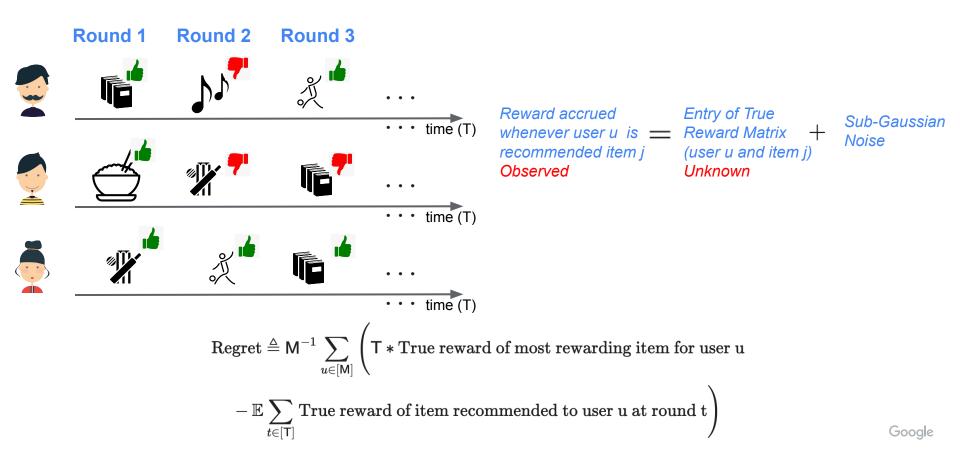
Collaborative Multi-Armed Bandits

Parameter-free Practical Algorithm

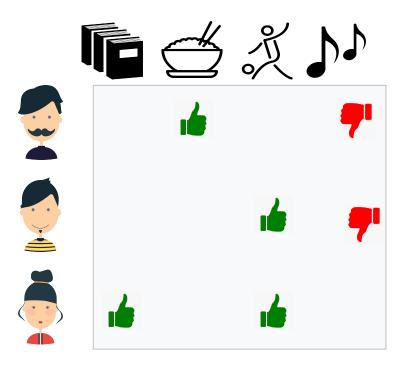
Collaborative Bandits (M users, N items, T rounds)



Collaborative Bandits (M users, N items, T rounds)



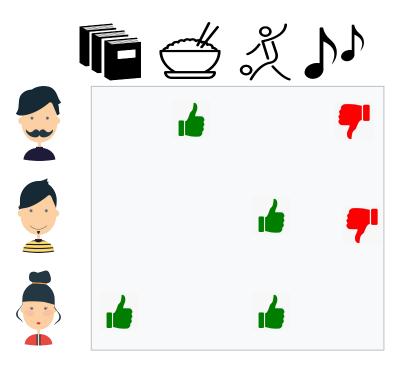
Greedy Algorithm (Exploration)



Exploration period		
	Exploitation	time (T)
	period	

Exploration period (Gather data randomly)

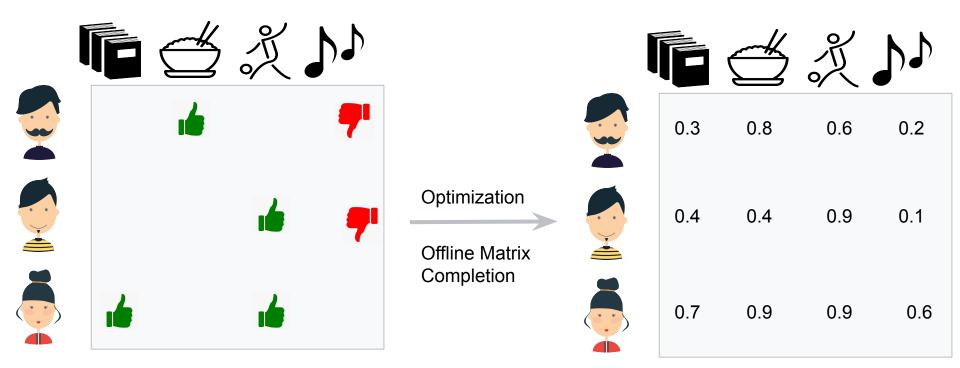
Greedy Algorithm



Can we estimate the entire matrix from a few observations?

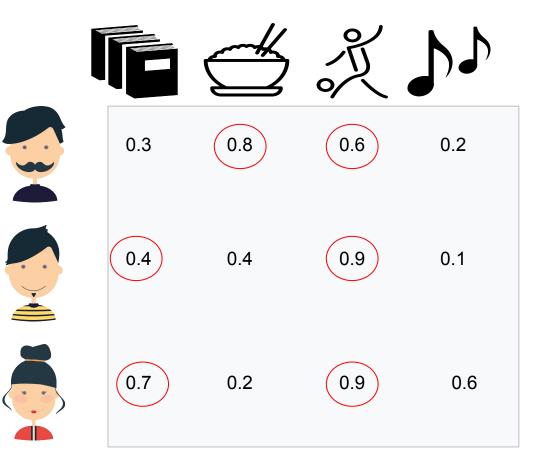
Low Rank Expected Reward Matrix

Greedy Algorithm (Exploration)



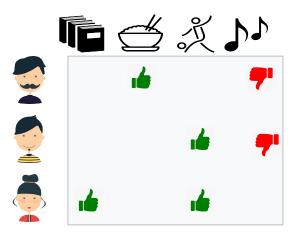
Low Rank Expected Reward Matrix

Greedy Algorithm (Exploitation)



Recommend items with highest estimated probability of being liked

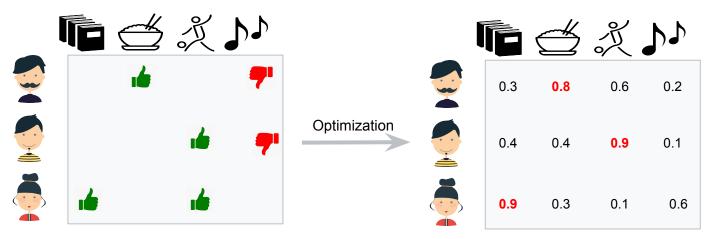
Greedy Algorithm



Exploration

Exploration	۰.		
period			
		Exploitation	time (T)
	•	period	

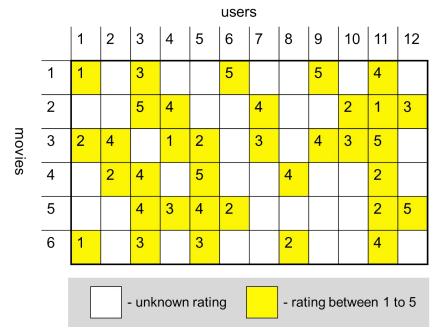
Greedy Algorithm



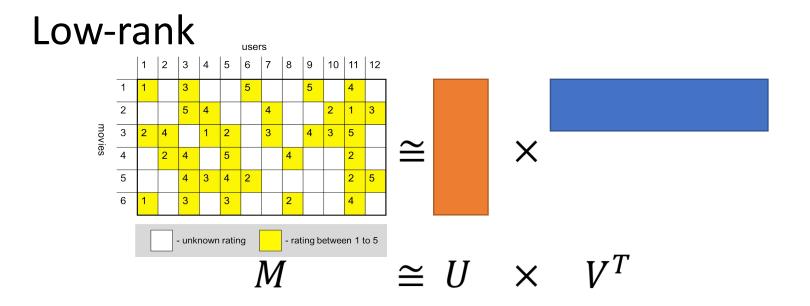
Exploration

Matrix Completion

Low-rank Matrix Completion



- Task: Complete ratings matrix
- Applications: recommendation systems, PCA with missing entries



- M: characterized by U, V DoF: mk + nk
- No. of variables:
 - U: $m \times k = mk$
 - V: $n \times k = nk$

Low-rank Matrix Completion

•

$$\min_{X} Error_{\Omega}(X) = \sum_{\substack{(i,j) \in \Omega \\ k}} (X_{ij} - M_{ij})^{2}$$
s.t rank $(X) \le k$

- Ω : set of known entries
- Problem is NP-hard in general
 - Two approaches:
 - Relax rank function to its convex surrogate (Trace-norm based method)
 - Use alternating minimization

Existing method: Trace-norm minimization

$$\min_{X} \sum_{(i,j)\in\Omega} (X_{ij} - M_{ij})^2$$

s.t.
$$\max_{X \in \mathcal{M}} (X \in \mathcal{M})$$

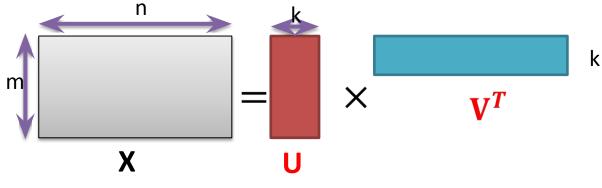
- • ||X||_{*}: sum of singular values
 - Candes and Recht prove that above problem solves matrix completion (under assumptions on Ω and M)
 - However, convex optimization methods for this problem don't scale well

Alternating Minimization

$$\min_{X} Error_{\Omega}(X) = \sum_{(i,j)\in\Omega} \left(X_{ij} - M_{ij} \right)^{2}$$

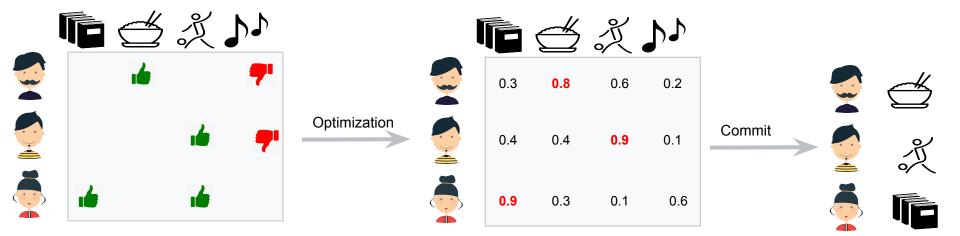
s.t rank(X) $\leq k$

• If X has rank-k:



$$V^{t+1} = \min_{V} Error_{\Omega}(U^{t}, V)$$
$$U^{t+1} = \min_{U} Error_{\Omega}(U, V^{t+1})$$

Greedy Algorithm

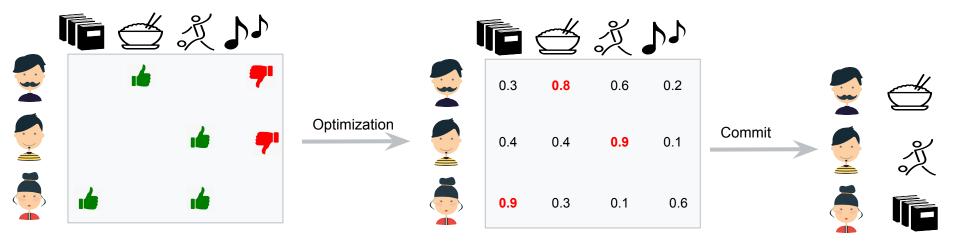


Exploration

Matrix Completion

Exploitation

Greedy Algorithm (Regret Guarantees)



Exploration

Matrix Completion

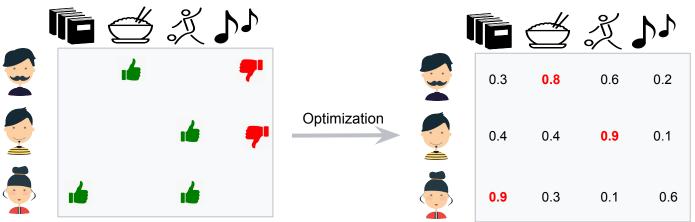
Exploitation

How much exploration data should we use? Better exploration \rightarrow better estimate but longer cold-start

$$\left(1+rac{ ext{items}}{ ext{users}}
ight)^{1/3} imes ext{rounds}^{2/3}$$

Sub-optimal in rounds

Challenges in Analysis (Greedy Algorithm)

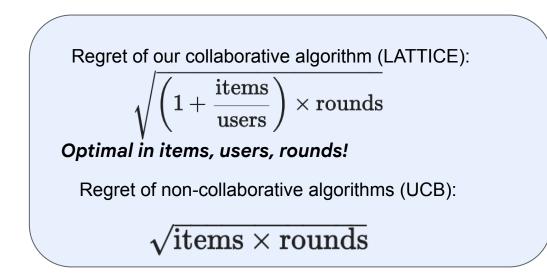


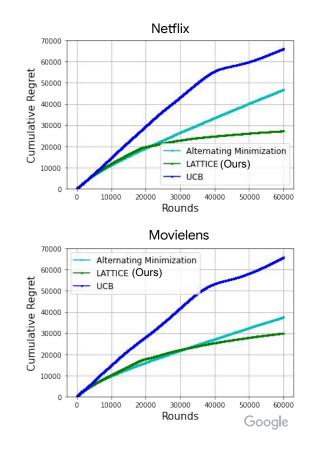
Partial Noisy Observations

Entire Estimated Matrix

Limitations of Offline Matrix Completion	Challenge	Solution
Square Matrices	Incoherence, Condition number	Random partition

Main Result for LATTICE



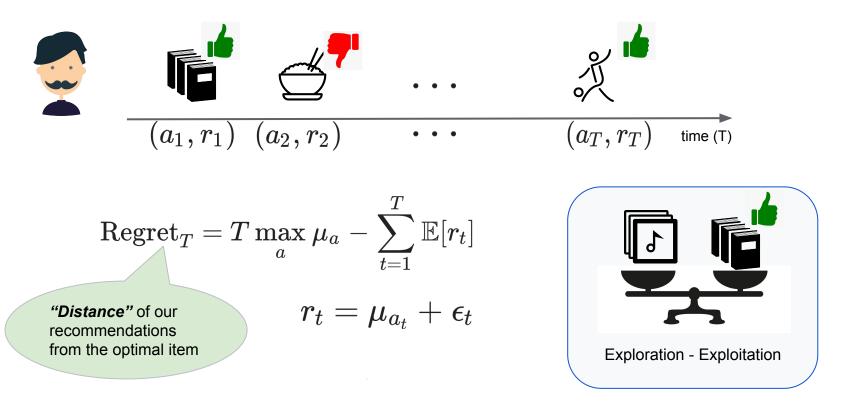


Remarks on Main Result

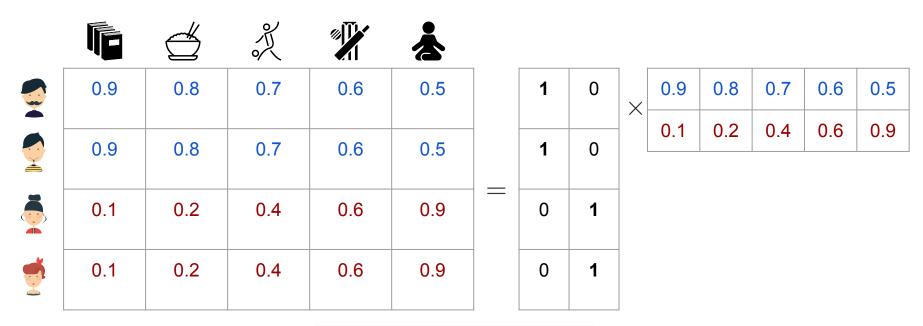
- Regret is minimax optimal in terms of items, users, T
- Dependence of regret on number of clusters (C) is C^3
 - \circ Lower bound has $C^{1/2}$ dependence
- Our results extend to
 - Relaxed definitions of cluster. For u_1, u_2 in same cluster,

 $|\mu_{u_1,a}-\mu_{u_2,a}|\leq\epsilon, ext{ for all }a$

Review: Multi-Armed Bandits (MABs)



Algorithmic Idea 1: Reduction to Offline Low-Rank Matrix Completion



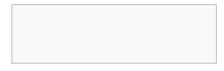
User x Item reward matrix is low-rank

Challenges

Offline matrix completion difficult to extend

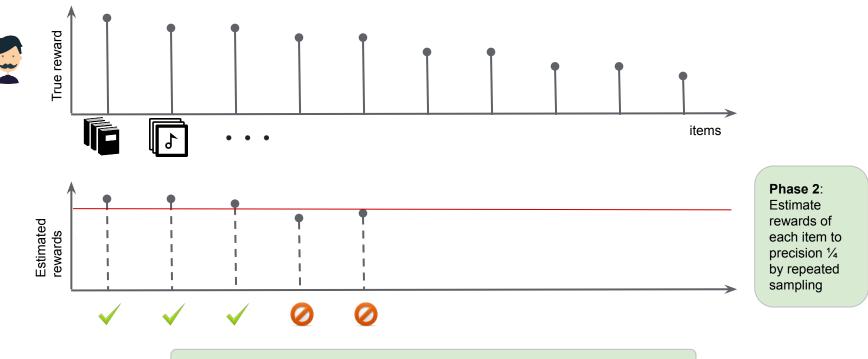
- Entry-wise guarantees are necessary
- Existing results are with **bernoulli sampling** and for **square matrices**

Knight Rises

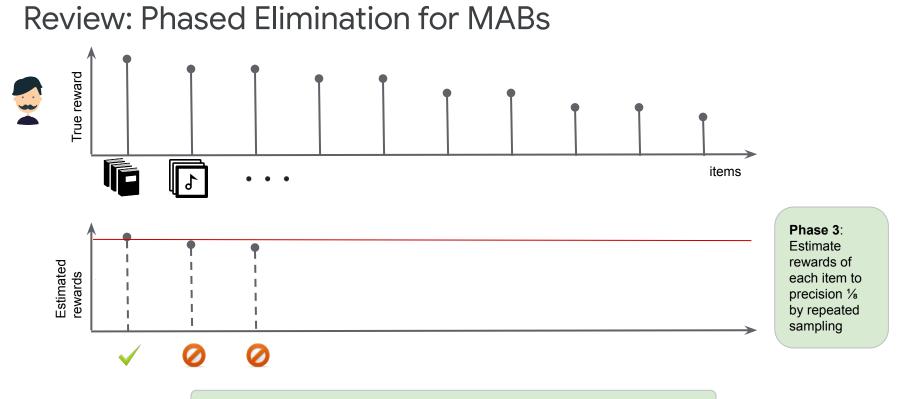


Review: Phased Elimination for MABs

Review: Phased Elimination for MABs



Eliminate items with rewards farther than 1/2 away from best estimated item



Eliminate items with rewards farther than 1/4 away from best estimated item

Review: Phased Elimination for MABs

These rates are optimal (modulo log factors)

Phased elimination has worst case regret of $\tilde{O}(\sqrt{\mathrm{items} imes T})$

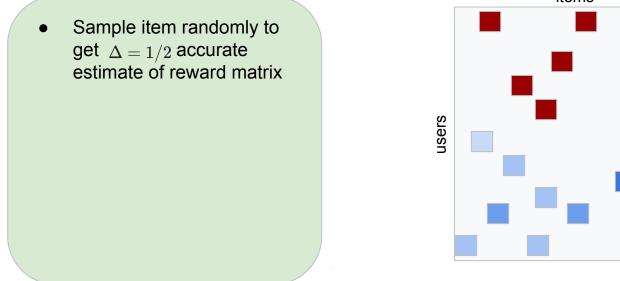
- Average of *n* independent Gaussian random variables is within $\tilde{O}(1/\sqrt{n})$ of true mean
- Suppose item 1 is optimal. Let $\Delta_i = \mu_1 \mu_i$.
- WLOG assume $\Delta_i > \sqrt{\mathrm{items}/T}$. Then item i is pulled at most $1 + ilde{O}(1/\Delta_i^2)$ times

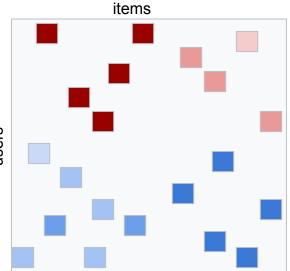
• If $\Delta_i < \sqrt{\mathrm{items}/T}$, rewards of items 1, i are close. So we won't incur much regret

• Regret of algorithm is
$$\sum_{i>2} \Delta_i + ilde{O}(1/\Delta_i) = ilde{O}(\sqrt{ ext{items} imes T})$$

Phase 1

Place all users in a single group, and keep all items active ullet

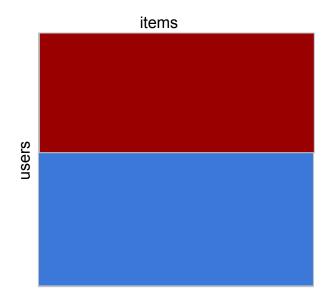




Phase 1

• Place all users in a single group, and keep all items active

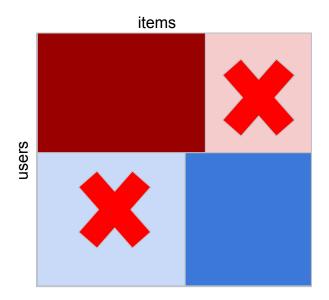
- Sample items randomly to get $\Delta = 1/2$ accurate estimates of reward matrix
- Perform matrix completion with partial noisy observations
- Group/Cluster users with estimated embeddings (from Matrix Completion)



Phase 1

• Place all users in a single group, and keep all items active

- For each user, it's good items are less than 2∆ away from empirical best item
- Joint good items Union of good items for users in each group
- Discard all items not in joint good items for each group/cluster



Phase 1

• Place all users in a single group, and keep all items active

- For each user, it's good items are less than 2∆ away from empirical best item
- Joint good items Union of good items for users in each group
- Discard all items not in joint good items for each group/cluster

Key Intermediate Results

- For each user, their corresponding true best item always survives (Easy)
- Each constructed group is a union of true clusters (Hard)
- For each user, the joint active items are still good (Hard)
- Each sub-matrix satisfies incoherence, condition number conditions necessary for matrix completion oracle (Hard)

Phases > 1

- Repeat the previous procedure on each submatrix
- Improve the quality of reward estimates exponentially
- Why Phased Elimination? **Uniformly sample** in carefully constructed sub-matrices
 - Difficult to generalize optimal algorithms in single user MAB



Key Step in Proof

Phase i requires at most $ilde{O}((ext{items}+ ext{users})/\Delta_i^2)$ samples

- relies on matrix-completion guarantees
- Without collaboration the sample complexity is $ilde{O}(ext{items} imes ext{users}/\Delta_i^2)$

Sum of regret across phases

$$\sum_{i>2} \Delta_i + ilde{O}((ext{items} + ext{users})/\Delta_i) = ilde{O}(\sqrt{(ext{items} + ext{users}) imes T})$$

Idea: Why Phased Elimination?

- Confidence Bound based algorithm or Thomson Sampling will not work
- Our algorithm (LATTICE): Phased elimination framework
 - Carefully constructed sub-matrices of reward matrix in each phase where we collect data randomly
 - Run low-rank matrix completion algorithm on data collected in each phase to get a good estimate of the reward sub-matrices
 - Discard sub-optimal arms after each phase jointly for groups of users

Idea: Why Phased User Clustering

- Cluster First Greedy algorithm
- Group (coarsely cluster) users in each phase based on the estimated rewards
 - Users with similar estimated rewards are placed in the same group
- Collaborate across users in the group to get better reward estimates in the next phase
 - Users in different clusters but in same group are also similar (to some extent)

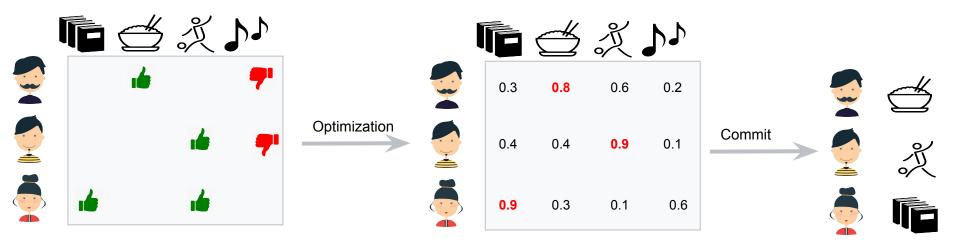
Outline

Need for collaboration in Bandits

Collaborative Multi-Armed Bandits

Simplified Practical Algorithm

Greedy Algorithm (Regret Guarantees)



Exploration

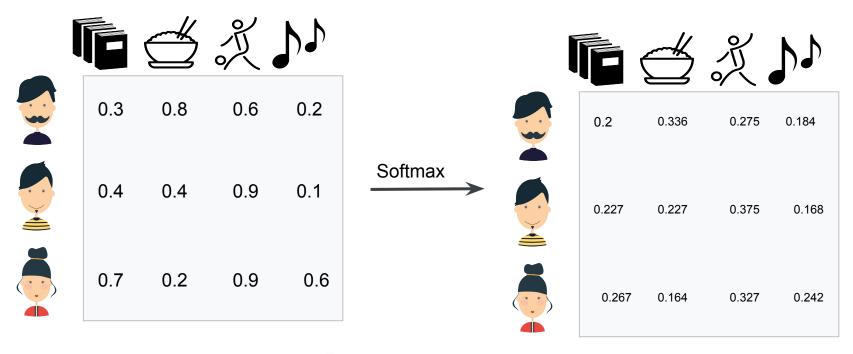
Matrix Completion

Exploitation

Regret of our Greedy algorithm:

$$\left(1+rac{ ext{items}}{ ext{users}}
ight)^{1/3} imes ext{rounds}^{2/3}$$
 Sub-optimal in rounds

Fix - Soft Commit instead of Hard Commit



Softmax
$$\sigma(\mathbf{z})_i = rac{e^{eta z_i}}{\sum_{j=1}^K e^{eta z_j}}$$

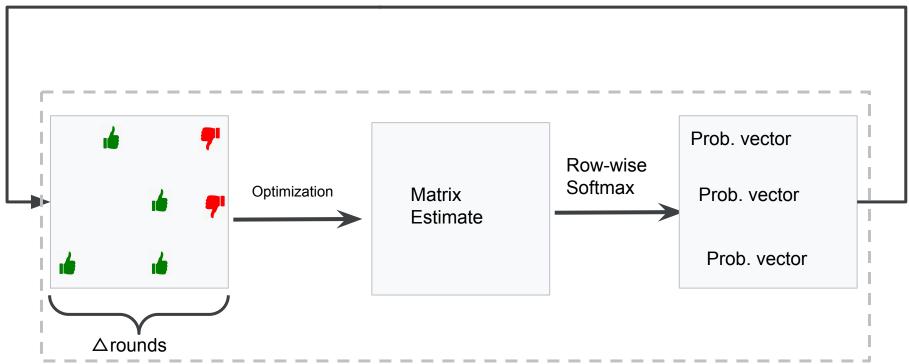
Gather new data via soft commit

0.2 0.336 0.275 0.184 Gather Data 0.227 0.227 0.375 0.168 ••• 6 0.267 0.164 0.327 0.242

Intuitively, more likes !!

Iterative Algorithm

Sampling Probability (Gather Data)

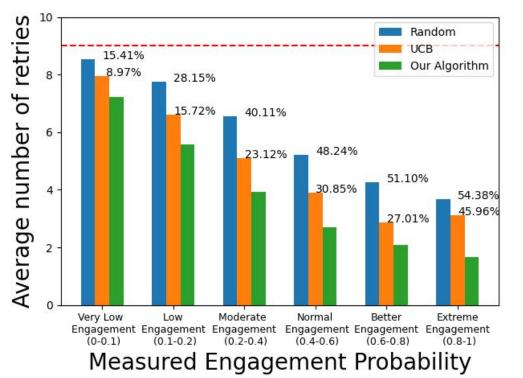


- Iterative algorithm where we update sampling probabilities for each user based on estimate
- Gather more data respecting constraints and current sampling probabilities
- Update estimate of reward matrix

Application to Maternal Health Program - Kilikari

- Kilkari (AI4SG) Collaboration with MASSI
 - Improve the wellbeing of expecting mothers
 - 3 million mothers. Figure out optimal time-slot to call each individual
 - This is a mobile maternal health program run by ARMAAN in collaboration with Ministry of Health (Gol).

Offline Results on the Kilikari Dataset



Across different engagement slices, we check how many call retries before engagement happens

Given same resources, We can onboard **56%** more users vs a policy that plays best bandit algorithm per user (when we don't collaborate)

Outline

Need for collaboration in Bandits

Collaborative Multi-Armed Bandits

Simplified Practical Algorithm

Conclusion

Extension to Reinforcement Learning

- Each user now is an MDP with temporal dependence.
- Actions have long term consequences
- Assumption: low rank reward
- Challenge: some states might be unreachable with any policy
- Our contribution: Collaborative exploration for RL

Main Result:

Number of sample trajectories to obtain optimal policy for each user:

O(users + states*actions)

Naive Algorithm:

O(users*states*actions)

[Agarwal, Jain, Kowshik, Nagaraj, Netrapalli, ICML 2023]

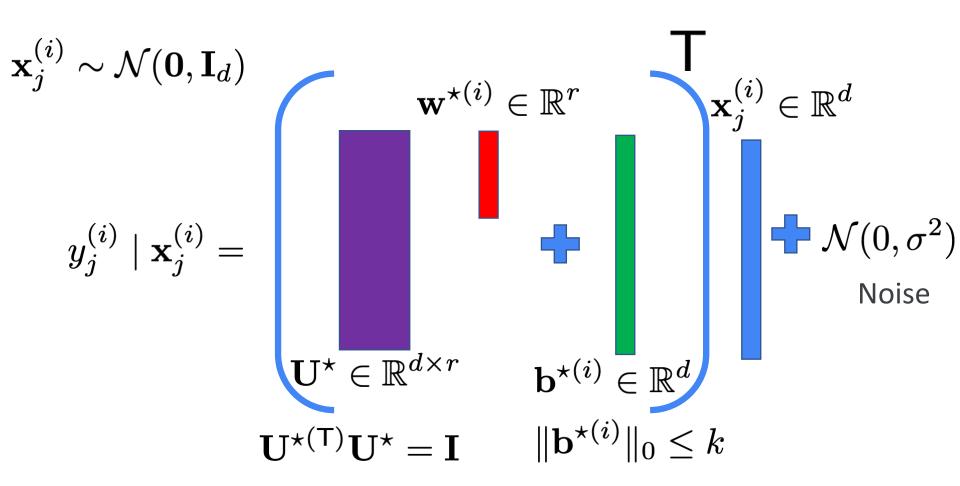
Takeaways

- Modern recommender systems have millions of users, items
 - Non-collaborative algorithms suffer from a large cost
- Collaboration improves the regret of bandit algorithms
- Greedy algorithm suboptimal in rounds
- LATTICE Phased Elimination Algorithm for collaborative bandits with latent clusters
 - gets minimax optimal regret
 - relies on phased-elimination of arms and phased-clustering of users
- Greedy with Soft Commit shows great empirical promise in healthcare data

Other Results

- Optimal Regret for rank-1 setting (ICLR 23)
- Near-Optimal Regret for rank >1 setting with hott items assumption (In submission)
- Optima Regret with blocking constraint (NeurIPS 23)

Model for Offline Personalization/Meta-Learning



Broad Future Work

Personalization

- Contextual models for multi-user setting (Observable context)
- Incorporate Side Information (Graphs, Offline data) Truly Hybrid Models
- Incorporate Robustness, Privacy, Unlearning
- > Broadly, improve our understanding of scalable algorithms for non-convex optimization

Broad Future Work

Personalization

- Contextual models for multi-user setting (Observable context)
- Incorporate Side Information (Graphs, Offline data) Truly Hybrid Models
- Incorporate Robustness, Privacy, Unlearning
- Broadly, improve our understanding of scalable algorithms for non-convex optimization

Parameter Efficient Fine-Tuning/ Meta Learning

- > Extend scalability of LoRA and QLoRA via incorporating constraints across tasks.
- Sub-channel quantization/Sparse dictionary learning to improve memory footprint.
- > Even initializing slightly modified Transformer Blocks are a challenge.
- Generalize within and outside task distributions

Broad Future Work

Personalization

- Contextual models for multi-user setting (Observable context)
- Incorporate Side Information (Graphs, Offline data) Truly Hybrid Models
- Incorporate Robustness, Privacy, Unlearning
- > Broadly, improve our understanding of scalable algorithms for non-convex optimization

Parameter Efficient Fine-Tuning/ Meta Learning

- > Extend scalability of LoRA and QLoRA via incorporating constraints across tasks.
- Sub-channel quantization/Sparse dictionary learning to improve memory footprint.
- > Even initializing slightly modified Transformer Blocks are a challenge.
- Generalize within and outside task distributions

Multi-task Learning

- Mixture Models when task labels are lost/expensive
- Non-convex constraints on components of mixture models