
Efficient and Elastic LLMs
Prateek Jain

Google Research India

Based on joint works with:
Aishwarya PS, Yashas Samaga, Varun Yerram, Pranav Nair,

Chong You, Srinadh Bhojanapalli, Toby Boyd,
Devvrit Khatri, Sneha Kudugunta, Aditya Kusupati,

Tim Dettmers, Hannaneh Hajishirzi, Yulia Tsvetkov, Kaifeng Chen,
Inderjit Dhillon, Sham Kakade, Ali Farhadi, Sanjiv Kumar, and Praneeth Netrapalli

Why care about inference latency?

● Training is a one time cost. Inference is a continuous cost.

● [1] estimates the carbon emissions (and consequently, cost) of inference to
be about 80% over the lifetime of a model.

● High inference cost is the biggest hurdle to deployment of most capable
models today.

● Very active area of research with several new ideas across algorithms,
architectures, systems, hardware etc.

[1] Carbon emissions and large neural network training by Patterson et al. 2021

Inference latency of Generative LLMs

● Autoregressive response generation is the key bottleneck.
● Within the model, there are different components: Attention, FeedForward and Softmax layers.

What are Himalayas?
(Prefix)

Himalayas

Softmax

FeedForward

Attention
10x

are a mountain

Himalayas are a mountain range

Inference latency of Generative LLMs

Inference latency of Generative LLMs

What are Himalayas?
(Prefix)

Himalayas

Softmax

FeedForward

Attention

are a mountain

Himalayas are a mountain range

Inference latency of Generative LLMs

Tandem (2.4x)

Treeformer (2x)

HIRE (1.5x)

HIRE (1.1x)

Matrix-matrix vs matrix-vector multiplications

A B AB

A B AB

Takes the same amount of time as

Part I: Tandem Transformers

P 6

Background: Autoregressive LLM inference

LLM

“Describe the Himalayas”

Query Representations

LLM

Himalayas

The

Feed forward + Attention

Attention only

Background: Autoregressive LLM inference

LLM

“Describe the Himalayas”

Query Representations

LLM

Himalayas

The

Feed forward + Attention

Attention only

The

Himalayas

LLM

Background: Autoregressive LLM inference

LLM

“Describe the Himalayas”

Query Representations

LLM

Himalayas

The

Feed forward + Attention

Attention only

The

Himalayas

Himalayas

is

LLMLLM

Background: Autoregressive LLM inference

LLM

“Describe the Himalayas”

Query Representations

LLM

Himalayas

The

Feed forward + Attention

Attention only

The

Himalayas

Himalayas

is

LLM

is

a

a

mountain

LLMLLMLLM

Research questions

● Autoregressive generation leads to poor utilization of GPUs/TPUs since
we perform matrix-vector multiplications instead of matrix-matrix
multiplications.

○ Can we mitigate the autoregressive component?

● Two key conceptual tasks of an LLM: understanding and generation.

○ Classically, encoder-decoder models decouple these and often use
larger encoder models (for understanding) with smaller decoder
models (for generation).

○ Decoder-only architecture couples understanding and generation.

○ Can we decouple capacity required for these?

 Tandem Transformers (Block length: 2)

LLM

“Describe the Himalayas?”

Query Representations

Himalayas

The

The

Himalayas

Feed forward + Attention

Attention only

Projection Layer SLM SLM

 Tandem Transformers (Block length: 2)

LLM

? The Himalayas

is

is

a

a

mountain

Feed forward + Attention

Attention only

Projection Layer

Questions:
1. Can SLM adapt to LLM’s representations?
2. Can LLM’s representations help SLM become more powerful?

SLM SLM

Tandem model training

● We train a tandem model with LLM = PaLM2-Bison and SLM =
PaLM2-Gecko

● In terms of size, PaLM2-Gecko < PaLM2-Otter < PaLM2-Bison

● After initializing with pretrained models, freeze LLM and train only the
projection layers and SLM.

● Tandem-CE: trained with CE loss wrt ground truth labels

● Tandem-Distill: continue training Tandem-CE also with CE wrt
PaLM2-Bison output logits.

● PaLM2-Gecko-Distill: continue training PaLM2-Gecko with distillation loss
as above.

Tandem Transformers: Evaluation

Benchmark/Method Primary (P) Secondary (S) Tandem (P+S)

GPT3-Gen 57.5 28.8 44.0

GPT3-Rank 73.6 57.1 70.2

TydiQA-GoldP 73.4 55.0 69

Super-GLUE 81.4 62.8 78.8

Speed-up over Primary: 2.74x

Pretraining evaluation

Downstream evaluations

Can we use tandem without worrying about accuracy?

SPEED - Speculative Decoding [1]

The

Himalayas

Himalayas

are

S S

are

located

located

in

S S

“Describe the Himalayas”

Query Reps + “The”

S

[1] Fast inference from transformers via speculative decoding by Leviathan et al. ICML 2023

SPEED

are is

“Describe the Himalayas” + “The Himalayas are located in”

Query Reps + “The Himalayas is a mountain range”

P

SPEED

Less backtracking More speedup.

a

mountain

mountain

range

S S

range

in

in

Asia

S S

is

a

S

SPEED+Tandem

P

“Describe the Himalayas”

Query Reps + “The”

The

Himalayas

Himalayas

is

Projection Layer S S

is

a

a

range

S S

SPEED+Tandem

range mountain

“The Himalayas is a range”

Query Reps + “The Himalayas is a mountain range”

P

SPEED+Tandem

P

Query Reps + “The
Himalayas is a mountain”

mountain

range

range

in

Projection Layer S S

in

Asia

Asia

.

S S

P = PaLM2-Bison
S = PaLM2-Gecko

Related works for better secondary models in SPEED

● [1] Parallel decoding – attaching more heads to the primary model to predict
several tokens ahead.

● [2] Drafting based on retrieval rather than through a SLM.
● The drafters in both above setups are not powerful enough for difficult

generation tasks.
● [3] Distilling the drafter model with primary model’s logits is more effective.

○ We use this for comparison.

[1] Blockwise parallel decoding for deep autoregressive models by Stern et al. NIPS 2018
[2] Rest: Retrieval-based speculative decoding by He et al. 2023
[3] Distillspec: Improving speculative decoding via knowledge distillation by Zhou et al. ICLR
2024

Latency improvements within SPEED

● Speedup wrt stand alone PaLM2-Bison.
● Num-samples refers to number of generated samples per query.
● optimized for each setting – Tandem can use larger more effectively.

Part II: High Recall Top-K Estimation (HiRE)

P 27

Matrix-matrix vs matrix-vector multiplications

A B AB

A B AB

Takes the same amount of time as

Sparsity and Top-k to the rescue

● The response is sampled from top-k (out of a very large vocab) outputs of Softmax layer.
○ Can we approximately compute the top-k quickly?
○ Transfer only those embeddings to VMEM.

● Hidden activations of Feedforward layers have been shown to be sparse. Top-k further amplifies
sparsity [1].

○ Can we approximately estimate the top-k efficiently?
○ Transfer only the corresponding model parameters to VMEM.

● Each token in attention layer attends to only a few other tokens. [2]
○ Can we predict which tokens are relevant? Will top-k help here as well?
○ Transfer only the corresponding keys and values to VMEM.

https://openreview.net/forum?id=TJ2nxciYCk-
https://arxiv.org/pdf/2001.04451.pdf

Key challenges

● Efficient prediction of top-k without doing full computation.

● Efficient gather operation.

○ Multi device sorting and gather

○ Efficiency of gather operations

Related work and key insights

● [1,2,3] train a small network to predict non-zero activations, but suffer
accuracy loss due to inexact predictions.

● Key insights:
○ Work with top-k trained models instead of relying on natural sparsity.

■ Group top-k to increase memory bandwidth efficiency.
○ High recall estimation by using a larger k’ > k.
○ Distributed sorting and gathering of weights.

[1] Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time by Liu et al. ICML 2023
[2] LLM in a flash: Efficient Large Language Model Inference with Limited Memory by Alizadeh et al. 2023
[3] Approximating two-layer feedforward networks for efficient transformers by Csordas et al. 2023

Idea I: High Recall Estimation with Approximate Computation

Top-

Top-

Can also use an aggressively quantized version of Z

Idea II: Distributed Approximate Top-k

● When data/parameters are
distributed across multiple
machines, perform approximate
top-k in a distributed manner.

● Drastically reduces gather and
sorting costs, while not losing much
recall.

Idea III: Group Top-k

● Efficiency of gather operation improves drastically with group top-k instead of unstructured
top-k.

● Unstructured top-k: Gather k columns of a d X m matrix.

● Group top-k: Gather k/g slices of a d X g X (m/g) tensor, where g is the group size.

Highlights

P 35

A general idea to exploit sparsity. Two variants

● HiRE-LR: Uses low rank approximation. Requires some training.
● HiRE-Q: Uses aggressive quantization. Requires no training.

On 1B parameter LLM, HiRE obtains speedups compared to dense model (without top-k)
with minimal loss in pre-training and downstream accuracy.

● HiRE-Softmax: 1.22x
● HiRE-FFN + Softmax: 1.47x

On larger models, much higher scope for latency improvement, but need to train with top-k.

x

W x

W

Top-k logits out
of large

vocabulary

Softmax layer

Top-k

x

HiRE for Softmax

Wapprox

WapproxV
Tx

Top-k’
VT

x

W
Top-k

Phase I: Compute approximate
logits using low rank
approximation of weight matrix.

Phase II: Compute the exact
logits only for the top-k’ approx
logits
Requires: gathering only these
k’ rows of the matrix

x

σ(W1 x)

z=σ(W2 y)

W1 W2

Trained with top-k

FFN Layer

HiRE – FFN Layer

x

W1 W2

x

Wappro

x

σ(Wapprox V
Tx)

Non-zeros
VT

Phase II: Gather only columns
of FFN2 from top approx
activations and perform exact
FFN2 computation on those

Phase I: Compute the
approximate top activations of
ffn1 using low-rank approx.

Attention Layer

P 40

Attention
(dim: d)

xi

x0 x1 xi-1xs

Query

Keys
Values

xi,out

Attention Layer

P 41

● Each token effectively attends to only a few other tokens [1].
● Earlier works directly use approximate Query Key multiplication, or use a

pre-specified sparse token selection model, which usually leads to drop in accuracy.
● In contrast, we would like to use the dense model but identify the relevant tokens.

Attention
(dim: d)

xi

x0 x1 xi-1xs

Query

Keys
Values

xi,out

https://arxiv.org/pdf/2001.04451.pdf

HiRE – Attention

P 42

Attention
(dim: r << d)

xi

x0 x1 xi-1xs

Query

Keys

Attention
(dim: d)

xi

x1 xs

Query

Keys
Values

xi,out

Phase II: Compute the exact
attention probabilities only for
the top few approximate
probabilities, by gathering keys
and values only for those
tokens.

Phase I: Compute the
approximate attention
probabilities using lower
dimensions.

Results I

P 43

● HiRE-Softmax for 1B parameter top-k model

Results II

P 44

● HiRE FFN + Softmax for 1B parameter top-k model

Future work: HiRE for attention layer, dynamic sparsity levels for larger batch sizes.

Part III: Matformers for Elastic Inference

P 45

Large Models: Deployment Story

Deployment Constraints
(RAM, Latency, QPS…)

PALM 2

● Typically only a few models to choose from

○ Might have to select say Llama 13B even
if capacity for Llama 40B

● Distillation/pruning requires additional training

Goal: design a “universal” model from which
hundreds of accurate models can be extracted

Existing Solutions towards MatFormer

(Universal) Slimmable Networks (Yu & Huang ICLR 2019; ICCV 2019)

Once-for-All (Cai et al., ICLR 2020)

● Primarily focused on CNNs
● Training routines w/

○ Modifications to batchnorm
○ Sampled submodels
○ Distillation from largest model

● Longer/costlier training routines

Existing Solutions towards MatFormer

Matryoshka Representation Learning (Kusupati et al., NeurIPS 2022)

FlexiViT (Beyer et al., CVPR 2023)

Flexibility in output and input space respectively

MatFormer: Nested Substructure

● Works for Transformers – without modifications to fundamental blocks
● Joint training: No subsampling or distillation
● Significantly cheaper training cost that equivalent methods while being

more accurate
● 4 granularities sufficient to span a wide range of constraints.

Transformer

MLP: ~80% of the cost

Attention: ~20% of the cost

MLP

𝞼 ()

W1∈ℝ
d✕h

W2∈ℝ
h✕d

ℝd

ℝd

ℝh

h = 4*d to 12*d typically

MatFormer: Matryoshka Transformer
● MatFormer builds upon MRL
● Apply MRL to MLP layer in each transformer block

 L-th layer token x

W1

W2

 L+1-th layer token x

That is, neurons are nested in each other.

Model-S
Model-XL

Model-M
Model-L

http://go/mrl-paper

MatFormer: Generality & Training

MLP hidden
representation

Model input
representation

Attention

Applicable to all
Transformers components

Recipe:
● Pick XL model architecture

● Pick G granularities for nesting eg., G = 4

● Jointly optimize G shared models akin to MRL

● Matformer train cost < total cost of training
each granularity from scratch

● MatFormer can also be induced w/ Fine-tuning

Can generate 1000s of models not just 4

Mix'n'Match & Routing on MatFormer

Transformer
Block 1

Transformer
Block 2

Transformer
Block 3

Transformer
Block 4

Transformer
Block 5

Transformer
Block 6

MatFormers

Transformer
Block 1

Transformer
Block 2

Transformer
Block 3

Transformer
Block 4

Transformer
Block 5

Transformer
Block 6

This gives only say 4 models.

So where do we get 1000s of models???

MatFormers

Mix'n'Match & Routing on MatFormer

Transformer
Block 1

Transformer
Block 2

Transformer
Block 3

Transformer
Block 4

Transformer
Block 5

Transformer
Block 6

Model-M

Model-S

Mix'n'Match & Routing on MatFormer

● Mix’n’Match: 100s (combinatorial) of static (on-demand) models for all accuracy-compute

● Routing: Token based routing akin to MoE to realize dynamic computation

● Standard setting from Lamda (Thoppilan et al.)

● G = 4 granularities – change the MLP hidden dims!
○ XL – hidden_dim (hd), L – hd/2, M – hd/4, S – hd/8.

● Nomenclature: MatFormer-XL, MatFormer-L, MatFormer-M, MatFormer-S

○ Independently Trained Models: Baseline-XL, Baseline-L, Baseline-M, Baseline-S

● 7 different “XL” model scales: from 78M up to 2.6B parameters.
○ 78M, 180M, 310M, 463M, 850M, 1.3B, 2.6B

MatLM: MatFormers for Language Modeling

MatLM: Key Findings

● Little to no loss in test pplx and GPT3 1-shot downstream evals.
○ For each granularity, i.e., accuracy(MatFormer-Z) ~ accuracy(Baseline-Z)
○ Z ∊ [XL, L, M, S]

● Able to read models for free using Mix’n’Match
○ Mix’n’Match interpolates well between the 4 granularities

● Side effects: consistency with large model, gains over Speculative Decoding

Language Modeling with 2.6B model: Mix’n’Match
1-shot GPT-evals

● Almost matching accuracy for MatFormer–[XL, L, M, S] models against Baselines
● We get all the intermediate models denotes by ★ for “free”

○ No extra training!
○ For GPT-3 Rank: ★ models almost lie on a line interpolating trained MatFormer models (XL, L, M, S)

Language Modeling: Consistency for 2.6B XL model

Consistency: accuracy of smaller models (S, M, L)
when output of XL model is the ground truth

Why care about consistency?
Techniques like Speculative Decoding becomes more

efficient with more consistent models

MatFormer subnetworks are significantly more consistent with the full model
compared to vanilla baselines.

MatViT: MatFormer + ViT

● Generalized formulation translating to ViT

● Works for across model sizes for both pre-training and fine-tuning

● Enables accurate adaptive encoders for classification
○ Spans all of the space with Mix’n’Match (and potentially routing)

● Enables accurate adaptive query encoders for retrieval
○ Use the largest model for Index building
○ Leverage smaller query encoders during inference based on the constraints
○ This requires aligned training/distillation for baseline models to work

MatViT: Classification

All the ★ are for “free” during inference – they were never optimized for.

Conclusions and Future Directions

● Inference latency is a big bottleneck with very large room for improvement.
● Two approaches:

○ HiRE for efficient top-k
■ 1.47x speedup over dense 1B model with minimal loss in accuracy.
■ Current work for softmax and FFN → Extend to attention.
■ Exploiting top-k overlap across tokens in a batch

○ Tandem transformers to mitigate autoregressive component
■ 1.11-1.17x speedup over distilled models in SPEED
■ Other variants of tandem e.g., using LLM for plan generation and

SLM for autoregressive token generation using plan.
■ Tandem as an alternative to LoRA for finetuning.

