
Robust Training in High Dimensions via
Block Coordinate Geometric Median Descent

Anish Acharya Abolfazl Hashemi Prateek Jain
UT Austin Purdue University Google AI

Sujay Sanghavi Inderjit Dhillon Ufuk Topcu
UT Austin UT Austin UT Austin

Abstract

Geometric median (GM) is a classical method
in statistics for achieving robust estimation
of the uncorrupted data; under gross cor-
ruption, it achieves the optimal breakdown
point of 1/2. However, its computational
complexity makes it infeasible for robusti-
fying stochastic gradient descent (SGD) in
high-dimensional optimization problems. In
this paper, we show that by applying GM
to only a judiciously chosen block of coordi-
nates at a time and using a memory mech-
anism, one can retain the breakdown point
of 1/2 for smooth non-convex problems, with
non-asymptotic convergence rates compara-
ble to the SGD with GM while resulting
in significant speedup in training. We fur-
ther validate the run-time and robustness of
our approach empirically on several popu-
lar deep learning tasks. Code available at:
https://github.com/anishacharya/BGMD.

1 INTRODUCTION

Consider smooth non-convex optimization problems
with finite sum structure:

min
x∈Rd

[
f̄(x) :=

1

n

n∑
i=1

fi(x)

]
. (1)

Mini-batch SGD is the de-facto method for optimiz-
ing such functions (Robbins and Monro, 1951; Bot-
tou, 2010) which proceeds as follows: at each iteration

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

t, it selects a random batch Dt of b samples, obtains

stochastic gradients g
(i)
t = ∇fi(xt), ∀i ∈ Dt, and up-

dates the parameters using iterations of the form:

xt+1 := xt − γg̃(t), g̃(t) = 1/|Dt|
∑
i∈Dt

g
(t)
i . (2)

In spite of its strong convergence properties in the
standard settings (Moulines and Bach, 2011), it is well
known that even a small fraction of corrupt samples
can lead SGD to an arbitrarily poor solution (Bertsi-
mas et al., 2011; Ben-Tal and Nemirovski, 2000). This
has motivated a long line of work to study robust op-
timization in presence of corruption (Alistarh et al.,
2018a; Wu et al., 2020; Xie et al., 2019). While the
problem has been studied under a variety of contam-
ination models, in this paper, we study the robust-
ness properties of the first-order method (2) under the
strong and practical gross contamination model
(See Definition 1) (Li, 2018; Diakonikolas and Kane,
2019; Diakonikolas et al., 2019) which also general-
izes the popular Huber’s contamination model (Hu-
ber, 1992) and the byzantine contamination frame-
work (Lamport et al., 1982).

Definition 1 (Gross Corruption Model). Given
0 ≤ ψ < 1

2 and a batch Dt of b samples, the adversary
is allowed to inspect all the samples and replace up to
ψn samples with arbitrary points.

Intuitively, this implies that (1 − ψ) fraction of sam-
ples in a batch are generated from the true distribution
(inliers) and rest are allowed to be arbitrarily cor-
rupted (outliers) i.e. α := |B|/|G| < 1, where B and
G are the sets of corrupt and good samples. Through-
out, we will refer to a set of samples generated
through this process as α-corrupted.

In particular, the goal of this work is to design an ef-
ficient first-order optimization method to solve (1),
which remains robust even when 0 ≤ ψ < 1/2 frac-

https://github.com/anishacharya/BGMD

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

Algorithm Aggregation Operator∗ Iteration Complexity† Breakdown Point†‡

SGD Mean(·) O(bd)O(bd)O(bd) 0
(Yang et al., 2019; Yin et al., 2018) Cm(·) O(bd log b) 1/2

(Wu et al., 2020) Gm(·) O(dϵ−2 + bd) 1/2
BGmD (This work) BGm(·) O(kϵ−2 + bd) 1/2

(Data and Diggavi, 2020) (Steinhardt et al., 2017) O(db2 min(d, b) + bd) 1/4
(Blanchard et al., 2017) Krum(·) O(b2d) ⌊β⌋

(Yin et al., 2018) CTmβ(·) O(bd(1− 2β) + bd log b) ⌊β⌋
(Ghosh et al., 2019; Gupta et al., 2020) Ncβ(·) O(bd(2− β) + b log b) ⌊β⌋

Table 1: Comparison of time-complexity and robustness properties of robust optimization methods (also see Fig. 5)
without any distributional assumptions on the data. The bold quantities show a method achieves the theoretical limits.
The first four methods are related to robust aggregation based approaches while the last four are filtering based approaches.
∗ Gradient Estimators: Cm(·) co-ordinate wise median, Gm(·) Geometric (spatial) median, BGm(·) Block Geometric
Median, CTmβ(·) Co-ordinate wise Trimmed mean, Ncβ(·) Norm Clipping.
† In section B we discuss the breakdown points and iteration complexities of these methods in more details.
‡ denotes asymptotic breakdown point.

tion of the gradient estimates are arbitrarily corrupted
in each batch Dt, without any prior knowledge about
the malicious samples. Note that, by letting the cor-
rupt estimates to be arbitrarily skewed, this corruption
model is able to capture a number of important and
practical scenarios including corruption in feature
(e.g., existence of outliers), corrupt gradients (e.g.,
hardware failure, unreliable communication channels
during distributed training) and corruption in la-
bels (e.g. label flip (backdoor) attacks).

Robust Gradient Estimation. Under the gross
corruption model (Definition 1), the vulnerability of
mini-batch SGD can be attributed to the linear gradi-
ent aggregation step (2) (Blanchard et al., 2017; Yin
et al., 2018; Xie et al., 2019). One common approach
to measure the resilience of an estimator is through
breakdown point (Donoho and Huber, 1983) analysis.

Definition 2 (Breakdown Point). Breakdown point
of an estimator is the smallest fraction of contamina-
tion that must be introduced to cause an estimator to
break i.e. produce arbitrarily wrong estimates.

In the context of Definition 1 we say an estimator has
optimal breakdown point 1/2 if it is robust in pres-
ence of α-corruption ∀ α < 1. It can be shown that no
linear gradient aggregation strategy can tolerate even
a single grossly corrupted update 1 i.e. they have the
lowest possible asymptotic breakdown of 0.

Motivated by this, a natural approach for robust op-
timization is to find an estimate g̃(t) such that with

high probability ∥g̃(t)− 1
G
∑

g
(t)
i ∈G g

(t)
i ∥ is small even in

presence of gross-corruption. In the univariate setting,

1To see this, consider the single malicious gradient

g
(t)
j = −

∑
i∈Dt\j g

(t)
i which results in the average to be-

come 0 implying mini-batch SGD getting stuck at the ini-
tialization

several estimators including median, trimmed mean
(β = 0.5) are known to achieve the optimal break-
down point. A common approach to extend these in
multivariate setting is to employ the univariate esti-
mators along each dimension. However when d > 2
these estimates need not lie in the convex hull of the
samples, are not orthogonal equivariant and can be-
come degenerate (Lopuhaa et al., 1991; Rousseeuw and
Leroy, 2005). In this context, spatial estimators like
geometric median (Gm) (Definition 3) is a well stud-
ied rotation and translation invariant robust estimator
with optimal breakdown point of 1/2 under gross
corruption (Minsker et al., 2015; Kemperman, 1987).

Definition 3 (Geometric Median). Given a finite
collection of observations x1,x2, . . .xn defined over a
separable Hilbert space X with norm ∥ · ∥ the geometric
median(Weber et al., 1929) is defined as:

x∗ = Gm({xi}) = arg min
y∈X

[
g(x) :=

n∑
i=1

∥y−xi∥
]

(3)

We call a point x ∈ Rd an ϵ-accurate geometric
median if it holds that: g(x) ≤ (1 + ϵ)g(x∗)

Robust SGD via GM Descent (GmD). Due to
this strong robustness property, SGD with Gm-based
gradient aggregation (GmD) has been widely stud-
ied in robust optimization literature (Alistarh et al.,
2018a; Chen et al., 2017; Wu et al., 2020). Following
the notation of (2) the update step of GmD is:

xt+1 := xt − γg̃(t); g̃(t) = Gm({g(t)
i }

b
i=1) (4)

Despite the strong robustness guarantees of Gm, the
computational cost of calculating ϵ approximate Gm
prohibitively expensive and with limited applicability
especially in practical high dimensional deep learn-
ing settings (Vardi and Zhang, 2000; Weiszfeld, 1937;

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

Chandrasekaran and Tamir, 1989; Pillutla et al., 2019).
For example, the best known result (Cohen et al.,
2016) uses a subroutine that needs O(d/ϵ2) com-
pute to find an ϵ-approximate Gm.

Algorithm 1 Block Gm Descent (BGmD)

Initialize: estimate: x0 ∈ Rd, step-size: γ, memory:
m̂0 = 0, Block Coordinate Selection operator: Ck(·),
Geometric Median operator: Gm(·)
for epochs t = 0, . . . , until convergence do

select samples Dt = {i1, . . . , ib}
obtain: g

(i)
t := ∇fi(xt) ∈ R1×d, ∀i ∈ Dt (back-

prop)

Let Gt ∈ Rb×d s.t. each row Gt[i, :] = g
(i)
t

Gt[i, :]← γGt[i, :] + m̂t ∀i ∈ [b] (add memory)
∆t := Ck(Gt) ∈ Rb×k (subset k dim via Algo. 2)
Mt+1 = Gt −∆t (compute residuals)
m̂t+1 = 1

b

∑
0≤i≤b Mt+1[i, :] (update memory)

g̃t := Gm(∆t) (robust aggregation in Rk)
xt+1 := xt − g̃t (parameter update)

end

Algorithm 2 Block Coordinate Selection Strategy

Input: Gt ∈ Rn×d, k
for coordinates j = 0, . . . , d-1 do

sj ← ∥Gt[:, j]∥2 (norm along each dimension)
end
Choose set Ik of k dimensions with largest scores sj
Ck(Gt)[i, j ∈ Ik] = Gt[i, j], Ck(Gt)[i, j /∈ Ik] = 0
Return: Ck(Gt)

Overview of Our Algorithm (BGmD). In this
work, we leverage coordinate selection strategies to
significantly reduce the cost of GmD and establish
BGmD (Algorithm 1) resulting in nearly three orders
of magnitude speedup over GmD on most standard
deep learning training tasks, while maintaining the
same level of accuracy and optimal breakdown point
1/2 under gross corruption.

At a high level, at each iteration BGmD selects a block
of 0 < k ≤ d important coordinates of the stochastic
gradients. Importance of a coordinate is measured ac-
cording to the largest directional derivative measured
by the squared ℓ2 norm across all the samples (Algo-
rithm 2). The remaining (d − k) dimensions are dis-
carded and gradient aggregation happens only along
these selected k directions. This Implies the Gm sub-
routine is performed only over gradient vectors in Rk.
Thus, when k ≪ d, this approach provides a practi-
cal solution to deploy Gm-based aggregation in high
dimensional settings2. The intuition is that as a con-

2The notation k ≪ d implies that k is at least an order

sequence of over-parameterization, for deep learning
models most of the information in the gradients is cap-
tured by a small subset of the coordinates (Shi et al.,
2019). Hence, by the judicious block coordinate selec-
tion subroutine outlined in Algorithm 2 one can iden-
tify an informative low-dimensional representation of
the gradients and use highly robust estimators such as
Gm even in high dimensional setting which was previ-
ously intractable.

While Algorithm 2 identifies a representative block
of the coordinates, aggressively reducing the di-
mension (i.e., k ≪ d) might lead to a significant ap-
proximation error, which in turn might lead to slower
convergence (Nesterov, 2012; Nutini et al., 2015) rate,
dwarfing the benefit from reduction in per iteration
cost. To alleviate this issue, by leveraging the idea
of Error Compensation (Seide et al., 2014; Stich and
Karimireddy, 2019; Karimireddy et al., 2019b) we in-
troduce the following memory mechanism: at each it-
eration the residual error from dimensionality reduc-
tion is computed and accumulated in a memory vector
m̂t and is added back in the subsequent iteration.

Contributions

• We propose BGmD (Algorithm 1), a method for ro-
bust optimization in high dimensions. BGmD is
significantly more efficient than the standard Gm-
SGD method but is still able to maintain the optimal
breakdown point 1/2.

• We provide strong guarantees on the convergence
rate of BGmD in standard non-convex scenarios
including smooth non-convex functions and non-
convex functions satisfying the Polyak- Lojasiewicz
Condition. These rates are comparable to those for
Gm-SGD under more restricting conditions such as
strong convexity (Chen et al., 2017; Wu et al., 2020).

• Through computational complexity analysis and ex-
tensive experiments under several common corrup-
tion settings, we demonstrate that BGmD can be
up to 3x more efficient to train than Gm-SGD on
Fashion MNIST and CIFAR-10 benchmarks while
still ensuring similar test accuracy and maintain-
ing same level of robustness. Further, in clean set-
ting, we observe that BGmD reaches similar accu-
racy as SGD while constrained to compute budget
(see Fig. 2, 3, 4) indicating BGmD is a practical
robust optimization approch in large scale settings.

2 RELATED WORK

Robust optimization in the presence of gross corrup-
tion has received renewed impetus in the machine

of magnitude smaller than d.

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

learning community, following practical considerations
such as preserving the privacy of the user data and
coping with the existence of adversarial disturbances.
There are two main research directions in this area:
The first direction aims at designing robustness crite-
ria to identify and subsequently filter out corrupt
samples before employing the linear gradient aggre-
gation (2). For example, (Ghosh et al., 2019; Gupta
et al., 2020) remove the samples with gradient norms
exceeding a predetermined threshold; (Yin et al., 2018)
remove a fraction of samples from both tails of the gra-
dient norm distribution; (Chen et al., 2018; Yang and
Bajwa, 2019) use redundancy (Von Neumann, 1956)
and majority vote operations; (Diakonikolas et al.,
2019) rely on spectral filtering; (Steinhardt et al., 2017;
Blanchard et al., 2017; Data and Diggavi, 2020; Bu-
lusu et al., 2020) use (ϵ, σ)-resilience based iterative
filtering approach; Our approach falls under the sec-
ond research direction, where the aim is to replace
mini-batch averaging with a robust gradient ag-
gregation operator. In addition to Gm operator
(Feng et al., 2014; Alistarh et al., 2018a; Chen et al.,
2017) which was discussed earlier, other examples of
robust aggregation techniques including krum (Blan-
chard et al., 2017), coordinate wise median (Yin et al.,
2018) use some approximation of median in high di-
mensions by loosing some factor in resilience (break-
down point). We also compare a number of robust
optimization methods with BGmD in terms of compu-
tational complexity and breakdown in Table 1. Please
see Supplementary A for more discussion.

3 BGmD

As discussed earlier, BGmD (Algorithm 1) involves
two key steps: (i) Selecting a block of informative coor-
dinates and run computationally expensive Gm aggre-
gation over a low dimensional subspace and (ii) Com-
pensating for the residual error due to block coordinate
selection. In the rest of this section we discuss these
two ideas in more detail.

Block Selection Strategy. The key intuition to
why we might be able to select a small number of coor-
dinates k = βd, 0 < β ≤ 1 for robust gradient estima-
tion; is that in practical over-parameterized models,
most of the information of the gradient is likely con-
centrated along a few coordinates (Chaudhari et al.,
2019). So, what would be the best strategy to select
the most informative block of coordinates? Ideally,
one would like to select the best k dimensions that
would result in the largest decrease in training loss.
However, this task is NP-hard in general (Das and
Kempe, 2011; Nemhauser and Wolsey, 1981; Charikar
et al., 2000). Instead, we adopt a simple and fast
block coordinate selection rule: consider Gt ∈ Rb×d

where each row corresponds to the stochastic gradi-

ent estimate: Gt[i, :] = g
(t)
i ∈ R1×d, ∀i ∈ [b] where

b is the batch size (2). Then, selecting k dimensions
is equivalent to selecting k columns of Gt; which we
select according to the norm of the columns. That
is, we assign a score to each dimension proportional
to the ℓ2 norm (total mass along that coordinate)
i.e. sj = {∥Gt[:, j]∥2}dj=1,.We then sample only k co-
ordinates with with probabilities proportional to sj
and discard the rest to find a set Ik of size k (see
Algorithm 2). The resulting operator Ck(·) is then:
Ck(Gt)[i, j ∈ Ik] = Gt[i, j], Ck(Gt)[i, j /∈ Ik] = 0.

We show Ck(·) is a contractive mapping to Gt.

Lemma 1. Algorithm 2 yields a contraction mapping
E
[
∥Ck(Gt)−Gt∥2|Gt

]
≤ (1− ξ)∥Gt∥2, k

d ≤ ξ ≤ 1.

It is worth noting that without additional distribu-
tional assumption on Gt the lower bound on ξ cannot
be improved 3. However, in practice the gradient vec-
tors are very unlikely to be uniform (Alistarh et al.,
2018b) and thus BGmD is expected to satisfy Lemma
1 with ξ ≈ 1 for sufficiently large k. We provide em-
pirical support in Figure 1(a) where we plot relative
residual error rt = ∥Gt−Ck(Gt)∥2/∥Gt∥2 of our block
selection approach for different β.

The Memory Mechanism. While descending
along only a small subset of k coordinates at each iter-
ation significantly improves the per iteration compu-
tational cost (Lemma 2), a smaller value of k would
also imply larger gradient information loss i.e., a
smaller ξ (Lemma 1). Intuitively, a restriction to a k-
dimensional subspace results in a d/k factor increase in
the gradient variance (Stich et al., 2018). We mitigate
this by adopting the following memorisation mecha-
nism: Throughout training, we keep track of the resid-
ual error ∥Gt − Ck(Gt)∥ via m̂t ∈ Rd that we call
memory. At each iteration t, it simply accumulates
the residual error incurred due to ignoring (d− k) di-
mensions, averaged over all the samples participating
in that round. In the next iteration, m̂t is added back
to all the the new gradient estimates as feedback. Fol-
lowing our Jacobian notation:

Gt[i, :] = γGt[i, :] + m̂t ∀i ∈ [0, b] (5)

Mt = Gt − Ck(Gt) ; m̂t+1 =
1

b

∑
1≤i≤b

Mt[i, :] (6)

3To see this, consider the case where each g
(i)
t is uni-

formly distributed along each coordinates. Then, the algo-
rithm would satisfy Lemma 1 with ξ = k

d
. In this scenario,

the achievable bound is identical to the bound achieved via
choosing the k dimensions uniformly at random

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

(a) Residual Error (b) Importance of Memory (c) Computational Complexity

Figure 1: Training LeNet on fashion mnist with the proposed block descent approach (a) we see that the residual error
rt → 0 as training progresses for suitably chosen k. (b) we plot the generalization performance at different β. We see
that training with the memory mechanism (m) enjoys the same accuracy while using a much smaller β. (c) We plot the
theoretical asymptotic complexity per iteration (Lemma 2) at different dimensions to highlight the trade off and further
emphasize of the importance of the memory mechanism.

where (5) denotes the memory augmentation step
and (6) reflects the memory update step. Intuitively,
as the residual at each iteration is not discarded but
rather memorised and added back in a future itera-
tion, this error compensation mechanism ensures sim-
ilar convergence rates as training in Rd via decreasing
the variance by a constant factor.

3.1 Computational Complexity Analysis

To better understand the overall computational bene-
fit of our proposed scheme we analyze per iteration
computational complexity BGmD and other robust
aggregation methods as described in Table 1. Con-
sider solving problem (1) using SGD style iterations of
the form (2) with |Dt| = b and x ∈ Rd. Note that the
difference between the iterations of SGD, Gm-SGD,
and BGmD is primarily based on how they aggregate
the updates communicated by samples participating
in training during that iteration. Formally, at itera-
tion t, let τat denote the time to aggregate the gra-
dients. Also let, τ bt denote the time to perform back
propagation implying overall complexity of one train-
ing iteration is roughly O(τat + τ bt). Now, note that
τ bt is approximately the same for all the algorithms
in Table 1. Also note that for algorithms like GmD
τ bt ≪ τat . So we study τat for relative computational
cost of different robust gradient aggregation schemes
as summarized in Table 1. The complexity proofs are
provided in supplementary B and E .

In particular, we show that τat for BGmD is O(k/ϵ2 +
bd), where the first term is due to computation of
Gm of gradients in Rk and the second term is due to
the coordinate sampling and memory procedure. In
contrast, Gm-SGD and its variants (Alistarh et al.,
2018a; Chen et al., 2017; Byrd et al., 2012) require
computing ϵ-approximate Gm of b points in Rd incur-
ring per iteration cost of at leastO(d/ϵ2) (Cohen et al.,

2016; Pillutla et al., 2019; Alistarh et al., 2018a; Chen
et al., 2017) and can be significantly costlier than usual
SGD which needs only O(bd) computation per itera-
tion. Based on this observation, one can establish the
following result 4:

Lemma 2. Let β ≤ O(1/F − bϵ2). Then, given an ϵ-
approximate Gm oracle, Algorithm 1 achieves a factor
F speedup over Gm-SGD for aggregating b samples.

3.2 Discussion on choice of block size.

Based on the discussion above, note that the size of
the block k = βd, 0 < β ≤ 1 trades off between per-
iteration complexity and the final error of the estimate.
While a small β ensures faster iterations (Lemma 2),
it also implies that BGmD can converge to a larger
neighborhood of sub-optimality (Theorem 1, 2). It
is hard to establish a bound on β without additional
distributional assumption on the data or structural as-
sumption on the problem and thus treated as a hyper-
parameter. However, we empirically show that it is
possible to run BGmD with small β to significantly
speed up robust optimization while maintaining strong
generalization performance (Figure 2, 3 and 4).

3.3 Convergence Guarantees of BGmD.

We first briefly recall some related concepts and state
our main assumptions.

Assumption 1 (Stochastic Oracle). Each non-
corrupt sample i ∈ G is endowed with an unbiased
stochastic first-order oracle with bounded variance:

Ez∼Di
[gi(x, z)] = ∇fi(x) (7)

Ez∼Di
∥∇Fi(x, z)∥2 ≤ σ2 (8)

4Note that, in most practical settings, bϵ2 ≪ 1/F

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

Let f := 1/G
∑
i∈G fi(x) denote the average of non-

corrupt functions. Then, we also assume that the
unconstrained problem arg minx∈Rd f(x) has a non
empty solution set X ∗. We will denote the optimal
function value as f(x∗) where x∗ ∈ X ∗ and initial
parameters by x0. For notational convenience define
R0 = f(x0)− f(x∗).

Assumption 2 (Smoothness). Each non-corrupt
function fi is L-smooth i.e. ∀i ∈ G and ∀x,y ∈ Rd:

fi(x) ≤ fi(y) + ⟨x− y,∇fi(y)⟩+
L

2
∥x− y∥2 (9)

Note, if fi are twice differentiable then this implies that
the eigenvalues of ∇2fi(x) are bounded above by L.

Assumption 3 (Polyak- Lojasiewicz Condition).
f satisfies the Polyak- Lojasiewicz condition (PLC)
with parameter µ > 0 (Polyak, 1963):

∥∇f(x)∥2 ≥ 2µ(f(x)− f(x∗)), µ > 0 (10)

Note, PLC implies: every stationary point is a global
minima but doesn’t imply uniqueness and thus a milder
condition than strong convexity (Karimi et al., 2016).

We now analyze the convergence properties of BGmD
(Algorithm 1) and state the results in Theorem 1 and
Theorem 2 for general non-convex functions (Satisfy-
ing only Assumption 1 and 2) and functions satisfying
PLC (i.e. Satisfying Assumptions 1- 3) respectively.

Theorem 1 (Smooth Non-convex). Suppose As-
sumption 1-2 hold. Run Algorithm 1 with compres-
sion factor ξ (Lemma 1), learning rate γt = 1/2L and
ϵ−approximate Gm(·) in presence of α−corruption
(Definition 1) for T iterations, then for any τ ∈ [T]
sampled uniformly at random:

E∥∇f(xτ)∥2 = O

(
LR0

T
+

σ2ξ−2

(1− α)2
+

L2ϵ2

|G|2(1− α)2

)

Theorem 1 and Theorem 2 state that BGmD with
a constant step-size convergences to a neighborhood
of a first order stationary point. The radius of this
neighborhood depends on two terms. The first term
depends on the variance of the stochastic gradients
as well as the effectiveness of the coordinate selection
strategy through ξ. The second term depends on how
accurate the Gm computation is performed in each
iteration. We note that the convergence rates estab-
lished match the rate of Gm-SGD when the data is
non i.i.d. Further, compared to the existing analy-
sis that require strong convexity(see e.g. (Chen et al.,
2017; Alistarh et al., 2018a; Wu et al., 2020; Data and

Diggavi, 2020) and the references therein), Theorem 2
only assumes PLC which is a much milder condition.
Furthermore, both terms in the radius depend on α.
By noting that the result holds ∀α := |B|/|G| = ψ

1−ψ <

1 (see Definition 1) we can can establish the following
result:

Theorem 2 (Non-convex under PLC). Sup-
pose Assumption 1-3 hold. Then, after T iterations
BGmd with compression factor ξ, learning rate γt =
1/4L and ϵ−approximate Gm(·) oracle in presence of
α−corruption satisfies:

E∥x̂T − x∗∥2 = O

(
LR0

µ2

[
1− µ

8L

]T
+

σ2ξ−2

µ2(1− α)2

+
L2ϵ2

µ2|G|2(1− α)2

)

where, x̂T := 1
WT

∑T−1
t=0 wtxt, WT :=

∑T−1
t=0 wt with

weights wt := (1− µ
8L)−(t+1).

Remark 1 (BGmD Breakdown Point). BGmD
converges to the neighborhood of a first order sta-
tionary point ∀0 ≤ ψ < 1/2 i.e. has optimal
breakdown point of 1/2.

Remark 2 (Convergence under i.i.d setting.).
Additionally, if the samples are independent and iden-
tically distributed, it is easy to show that by setting
γ = O(1/

√
T) Algorithm 1 convergences at the rate

of O(1/
√
T) to the statistical accuracy and by set-

ting γ = O(1/T), BGmD convergences at the rate of
O(log T/T) under PLC. This last result can be estab-
lished by using the concentration of the median-of-the-
means estimator (Chen et al., 2017).

3.4 Proof Outline

Following Stich (2018); Karimireddy et al. (2019b), we
start by defining a sequences of averaged quantities.
Divergent from these works however, adopted to the
robustness setting: we define these quantities over only
the uncorrupted samples (11).

gt =
1

|G|
∑
i∈G

git, ḡt = Et[gt] =
1

|G|
∑
i∈G
∇fi(xt),

mt =
1

|G|
∑
i∈G

Mt[i, :], ∆t =
1

|G|
∑
i∈G

∆i
t, (11)

pt =
1

|G|
∑
i∈G

pit = γtgt + mt.

Note that BGmD cannot compute the above average
sequences over the uncorrupted samples, but it aims to
approximate the aggregated stochastic gradients of the

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

reliable clients, i.e. gt, via the Gm(·) oracle. Noting
the definition of ∆t in (11), the update can be thought
of as being a perturbed sequence with the perturba-
tion quantity zt := g̃t − Gm({∆i

t}i∈G). Next, using
the closeness of the Gm(·) oracle to the true average
we will establish the following lemmas to bound the
perturbation.

Lemma 3 (Bounding the Memory). Consider the
setting of Algorithm 1 in iteration t with compression
factor ξ (Lemma 1), learning rate γ and in presence
of α−corruption (Definition 1). If further fi have
bounded variance σ2 (Assumption 1) we have

E∥m̂t∥2 ≤ 4(1− ξ2)γ2σ2ξ−2, ∀i ∈ [n]. (12)

Lemma 4 (Bounding the Perturbation). Con-
sider the setting of Algorithm 1 in iteration t with
compression factor ξ (Lemma 1), learning rate γ
and ϵ−approximate Gm(·) oracle in presence of
α−corruption (Definition 1). Under the assumption
that function fi are smooth (Assumption 2),

E∥zt∥2 ≤
96γ2σ2

(1− α)2

[
1 +

4(1− ξ2)

ξ2

]
+

2ϵ2

|G|2(1− α)2

(13)

With the bound in Lemma 4, we define the following
perturbed virtual sequences for i ∈ G

x̃it+1 = x̃t − γgit − zt, x̃i0 = x0,

x̃t+1 =
1

|G|
∑
i∈G

x̃it+1 = x̃t − γgt − zt
(14)

Again, x̃t can be though of as a perturbed version of
the SGD iterates over only the good samples i ∈ G.
Notice that BGmD doesn’t compute the virtual se-
quence and this sequence is defined merely for the the-
oretical analysis. Therefore, it is essential to establish
its relation to xt, i.e. the iterates of BGmD. We do so
in Lemma 5.

Lemma 5 (Memory as a Delayed Sequence).
Consider Algorithm 1 in iteration t. It holds that
xt − x̃t = mt.

The main challenge in showing this result is the pres-
ence of perturbations zt in the resilient aggregation
that we adopt in Algorithm 1. Upon establishing this
lemma, using smoothness we establish a bound on sub-
optimality of the model at each iteration of BGmD as
a function of the perturbed virtual sequence x̃t.

Lemma 6 (Recursive Bounding of the Subopti-
mality). For any 0 < ρ < 0.5 it holds that

Et[f(x̃t+1)] ≤ f(x̃t)−
(

1

2
− ρ
)
γ

2
∥∇f(xt)∥2

+
3γL2

2
∥x̃t − xt∥2 + Lγ2Et∥gt∥2

+

(
L+

1

2ργ
+

1

2γ

)
Et∥zt∥2.

(15)

The proofs are furnished by noting that the amount
of perturbation can be bounded by using smoothness
and the PLC assumptions.

4 EMPIRICAL EVIDENCE

In this section, we describe our experimental setup,
present our empirical findings and establish strong in-
sights about the performance of BgmD. To ensure re-
producibility, all the exp. are run with deterministic
CuDNN back-end and repeated 5 times with different
random seeds and the confidence intervals are noted.
Also, in all the experiments BGmD was run using
β ≤ 0.15. Table 2 provides a summary of the results
on two vision datasets. Supplementary C provides ad-
ditional results, detailed hyper-parameter choices and
further discussion. We use the following two important
optimization setups:

Homogeneous Distributed Training. We trained
1.16M parameter CNN (LeNet (LeCun et al., 1998))
on Fashion-MNIST (Xiao et al., 2017) dataset with 32
parallel independent and identically distributed (i.i.d)
mini-batches each with batch size 64. Each experiment
under this setting was run for 50 full passes over train-
ing data (epochs).

Heterogeneous Distributed Training. Our theo-
retical results (Theorem 1, 2) are established without
any assumption on how the data is distributed across
batches. We verify this by training an 18-layer wide
ResNet (He et al., 2016) with 11.2M parameters on
CIFAR-10 (Krizhevsky et al., 2012) over 10 heteroge-
neous batches with batch size 128. Following the setup
in (Li et al., 2018, 2019b; Das et al., 2020; Karimireddy
et al., 2020) we distribute the data among clients in
a way such that each client has data from only a few
classes. The exact client sampling procedure is de-
scribed in C. Each experiment was run for 200 epochs.

4.1 Corruption Simulation.

We consider three possible sources of error: corruption
in features, labels and communicated gradients.
All the experiments are repeated for 0% (i.e. clean),
20% and 40% corruption levels.

Feature Corruption. We consider corruption in
the raw training data itself which can arise from dif-
ferent issues related to data collection. Particularly,
adopting the corruptions introduced in (Hendrycks
and Dietterich, 2018) we apply the following noise
models to the corrupt samples:
(Additive) zi ∼ N (0, 100) added to the image.
(Impulse) Salt and Pepper noise added by setting
90% of the pixels to 0 or 1.

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

Corruption (%) SGD CmD BGmD GmD

LeNet - Fashion MNIST (homogeneous)

Clean - 89.39±0.28 83.82±0.26 89.25±0.19 88.98±0.3
Gradient Corruption

Bit Flip
20 - 84.20±0.02 88.42±0.16 88.07±0.05
40 - 82.33±1.60 85.67±0.09 85.57±0.09

Additive
20 - 72.55±0.16 87.87±0.33 87.24±0.16
40 - 41.04±1.13 88.29±0.01 83.89±0.08

Feature Corruption

Additive
20 - 82.38±0.13 86.76±0.03 86.63±0.04
40 - 78.54±0.65 82.27±0.06 81.23±0.03

Impulse
20 79.18±6.47 82.59±0.60 86.91±0.36 86.23±0.03
40 - 78.03±0.73 82.11±0.73 81.41±0.12

Label Corruption

Backdoor
20 86.99±0.02 76.38±0.13 88.97±0.10 88.26±0.04
40 73.01±0.68 60.85±1.24 84.69±0.31 81.32±0.16

ResNet18 - CIFAR10 (heterogeneous)

Clean - 82.29±1.32 85.50±1.43 84.82±0.76 85.65±0.48
Gradient Corruption

Bit Flip
20 - 80.87±0.21 87.56±0.06 88.07±0.05
40 - 77.41±1.04 82.66±0.31 80.81±0.01

Additive
20 20.7±1.56 54.75±0.38 83.84±0.12 82.40±0.90
40 - 23.35±6.13 82.79±0.68 79.46±0.24

Table 2: Summary of generalization performance under variety of corruption settings. Missing values (-) denotes that
the training has diverged. It is clear, that in addition to being efficient BGmD also enjoys superior generalization
performance. While, this is an interesting future work, it is possible that the resulting jacobian compression operator
Ck(·) via Algorithm 2 results in implicit regularization benefits in high dimensional settings (Gower et al., 2020; Wu et al.,
2019) explaining the superior performance.

(a) No corruption (b) 10% Corruption (c) 20% Corruption (d) 40% Corruption

Figure 2: Robustness to Feature Corruption: Test accuracy of different schemes as a function of wall clock time
for training Fashion-MNIST using LeNet (i.i.d) in presence of impulse noise. Observe that BGmD is able to maintain
high accuracy even in presence of strong corruption while attaining at least 3x speedup over GmD whereas CMD performs
sub-optimally and SGD diverges at such levels of corruption. Further, note that in clean setting, BGmD can almost reach
the same accuracy of SGD while using the same compute budget. * Note that all the algorithms were run for same
number of epochs.

(a) No corruption (b) 10% Corruption (c) 20% Corruption (d) 40% Corruption

Figure 3: Robustness to Gradient Corruption: Training Fashion-MNIST using LeNet in i.i.d setting in presence
of scaled bit flip corruption to stochastic gradients. Similar to Figure 2, BGmD remains highly robust. Further, as
seen from the plots against wall clock time BGmD results in more than 2.5x speedup over all settings. Further in clean
setting, BGmD can almost reach the same accuracy of SGD while using the same compute budget.

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

(a) No corruption (b) 10% Corruption (c) 20% Corruption (d) 40% Corruption

Figure 4: Robustness to Label Corruption: Training Fashion-MNIST (iid) with LeNet in presence of backdoor
attack. We note similar superior performance of BGmD while resulting in more than 2.5x speedup over GmD.

Gradient Corruption. In distributed training over
multiple machines the communicated gradients can be
noisy, e.g., due to hardware issues or simply because
some nodes are adversarial and aim to maliciously dis-
rupt the training. Using standard noise models for
gradient corruption (Fu, 1998; Xie et al., 2019) we di-
rectly corrupt the gradients in the following manner:
(Additive) zi ∼ N (0, 100) added to true gradient
(Scaled Bit Flip) corrupt gradients gct are the scaled
bit flipped version of the true gradient (Bernstein
et al., 2018) estimates. In particular: gct = −100gt.

(a) True gradients (b) 45% corruption

Figure 5: Gradient Corruption: This Toy example in
2 dimensions demonstrates the superior robustness proper-
ties of Gm for estimating the aggregated gradient in pres-
ence of heavy corruption.

Label Corruption. We consider the important
backdoor attack (Shen and Sanghavi, 2019; Liao et al.,
2018; Biggio et al., 2012) where the goal of the adver-
sary is to bias the classifier towards some adversary
chosen class. To simulate this behavior: at each itera-
tion we flip the labels of randomly chosen ψ fraction of
the samples to a target label (e.g. in Fashion-MNIST
we use 8 : bag as the backdoor label).

4.2 Discussion

We observe that (Table 2) without corruption both
BgmD and GmD are able to achieve similar accuracy
as the baseline (i.e., SGD) while CmD has significant
sub-optimality gap (Chen et al., 2017). When corrup-
tion is high, SGD starts to diverge after a few iter-
ations. While CmD doesn’t diverge, at higher level

of corruptions its performance significantly degrades.
On the other hand, both GmD and BGmD remain
robust and maintain their test accuracy as expected
from their strong theoretical guarantees. Surprisingly,
BGmD not only maintains but often surpasses the gen-
eralization performance over GmD. To demonstrate
the computational benefit of BgmD we plot test accu-
racy as a function of the wall clock time. Figure 2, 3
and 4 suggest that under a variety of corruption set-
tings BgmD is able to achieve significant speedup over
GmD often by more than 3x while maintaining simi-
lar (sometime even better) test performance as GmD.
Under clean setting it can reach similar accuracy as
SGD while using the same compute budget.

Summary of Results.

A. For challenging corruption levels, Gm based meth-
ods are indeed superior while standard SGD or CmD
can be significantly inaccurate.

B. By judiciously choosing k, BGmD can often be 3x
more efficient than GmD.

C. memory augmentation is crucial for BGmD to at-
tain a high accuracy while using relatively small values
of k. Despite using small β ≤ 0.15 in all our experi-
ments, it retains high generalization performance.

5 CONCLUSION

We proposed BGmD, a method for robust, high di-
mensional optimization that achieves the optimal sta-
tistical breakdown point while delivering significant
savings in the computational costs per iteration com-
pared to existing Gm-based strategies. BGmD em-
ploys greedy coordinate selection and memory aug-
mentation which allows to aggressively select very few
coordinates while attaining strong convergence prop-
erties comparable to Gm-SGD under standard non-
convex settings. Extensive deep learning experiments
demonstrated the efficacy of BGmD.

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

ACKNOWLEDGEMENTS

This work is supported in part by AFOSR FA9550-19-
1-0005, ARL W911NF-17-2-0181, NSF CCF-1564000,
NSF IIS-1546452 and NSF HDR-1934932.

References

Alistarh, D., Allen-Zhu, Z., and Li, J. (2018a).
Byzantine stochastic gradient descent. In Advances
in Neural Information Processing Systems, pages
4613–4623.

Alistarh, D., Hoefler, T., Johansson, M., Konstanti-
nov, N., Khirirat, S., and Renggli, C. (2018b). The
convergence of sparsified gradient methods. In Ad-
vances in Neural Information Processing Systems,
pages 5973–5983.

Allen-Zhu, Z., Qu, Z., Richtárik, P., and Yuan, Y.
(2016). Even faster accelerated coordinate descent
using non-uniform sampling. In International Con-
ference on Machine Learning, pages 1110–1119.

Basu, D., Data, D., Karakus, C., and Diggavi, S.
(2019). Qsparse-local-SGD: Distributed SGD with
quantization, sparsification and local computations.
In Advances in Neural Information Processing Sys-
tems, pages 14668–14679.

Beck, A. and Tetruashvili, L. (2013). On the con-
vergence of block coordinate descent type methods.
SIAM journal on Optimization, 23(4):2037–2060.

Ben-Tal, A. and Nemirovski, A. (2000). Robust solu-
tions of linear programming problems contaminated
with uncertain data. Mathematical programming,
88(3):411–424.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A. (2018). SignSGD: Compressed op-
timisation for non-convex problems. In Interna-
tional Conference on Machine Learning, pages 560–
569.

Bertsekas, D. P. (1997). Nonlinear program-
ming. Journal of the Operational Research Society,
48(3):334–334.

Bertsimas, D., Brown, D. B., and Caramanis, C.
(2011). Theory and applications of robust optimiza-
tion. SIAM review, 53(3):464–501.

Biggio, B., Nelson, B., and Laskov, P. (2012). Poison-
ing attacks against support vector machines. arXiv
preprint arXiv:1206.6389.

Blanchard, P., Guerraoui, R., Stainer, J., et al. (2017).
Machine learning with adversaries: Byzantine toler-
ant gradient descent. In Advances in Neural Infor-
mation Processing Systems, pages 119–129.

Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L.,
and Tarjan, R. E. (1972). Linear time bounds for

median computations. In Proceedings of the fourth
annual ACM symposium on Theory of computing,
pages 119–124.

Bottou, L. (2010). Large-scale machine learning
with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer.

Bottou, L. (2012). Stochastic gradient descent tricks.
In Neural networks: Tricks of the trade, pages 421–
436. Springer.

Bruce, D. et al. (2011). A multivariate median
in banach spaces and applications to robust pca.
Kättesaadav: http://www-personal. umich. edu/˜
romanv/students/bruce-REU. pdf (26.04. 15).

Bulusu, S., Khanduri, P., Sharma, P., and Varshney,
P. K. (2020). On distributed stochastic gradient
descent for nonconvex functions in the presence of
byzantines. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3137–3141. IEEE.

Byrd, R. H., Chin, G. M., Nocedal, J., and Wu, Y.
(2012). Sample size selection in optimization meth-
ods for machine learning. Mathematical program-
ming, 134(1):127–155.

Chandrasekaran, R. and Tamir, A. (1989). Open
questions concerning weiszfeld’s algorithm for the
fermat-weber location problem. Mathematical Pro-
gramming, 44(1-3):293–295.

Charikar, M., Guruswami, V., Kumar, R., Ra-
jagopalan, S., and Sahai, A. (2000). Combinatorial
feature selection problems. In Proceedings 41st An-
nual Symposium on Foundations of Computer Sci-
ence, pages 631–640. IEEE.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun,
Y., Baldassi, C., Borgs, C., Chayes, J., Sagun,
L., and Zecchina, R. (2019). Entropy-sgd: Bi-
asing gradient descent into wide valleys. Journal
of Statistical Mechanics: Theory and Experiment,
2019(12):124018.

Chen, L., Wang, H., Charles, Z., and Papailiopoulos,
D. (2018). Draco: Byzantine-resilient distributed
training via redundant gradients. In International
Conference on Machine Learning, pages 903–912.
PMLR.

Chen, Y., Su, L., and Xu, J. (2017). Distributed
statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM
on Measurement and Analysis of Computing Sys-
tems, 1(2):1–25.

Cohen, M. B., Lee, Y. T., Miller, G., Pachocki, J.,
and Sidford, A. (2016). Geometric median in nearly
linear time. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 9–
21.

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

Das, A. and Kempe, D. (2011). Submodular
meets spectral: Greedy algorithms for subset selec-
tion, sparse approximation and dictionary selection.
arXiv preprint arXiv:1102.3975.

Das, R., Acharya, A., Hashemi, A., Sanghavi, S.,
Dhillon, I. S., and Topcu, U. (2020). Faster non-
convex federated learning via global and local mo-
mentum. arXiv preprint arXiv:2012.04061.

Data, D. and Diggavi, S. (2020). Byzantine-resilient
SGD in high dimensions on heterogeneous data.
arXiv preprint arXiv:2005.07866.

Dhillon, I. S., Ravikumar, P. K., and Tewari, A.
(2011). Nearest neighbor based greedy coordinate
descent. In Advances in Neural Information Pro-
cessing Systems, pages 2160–2168.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Stein-
hardt, J., and Stewart, A. (2019). Sever: A robust
meta-algorithm for stochastic optimization. In In-
ternational Conference on Machine Learning, pages
1596–1606. PMLR.

Diakonikolas, I. and Kane, D. M. (2019). Recent
advances in algorithmic high-dimensional robust
statistics. arXiv preprint arXiv:1911.05911.

Donoho, D. L. and Huber, P. J. (1983). The no-
tion of breakdown point. A festschrift for Erich L.
Lehmann, 157184.

Doyle, J. C., Francis, B. A., and Tannenbaum, A. R.
(2013). Feedback control theory. Courier Corpora-
tion.

Feng, J., Xu, H., and Mannor, S. (2014). Distributed
robust learning. arXiv preprint arXiv:1409.5937.

Fu, W. J. (1998). Penalized regressions: the bridge ver-
sus the lasso. Journal of computational and graphical
statistics, 7(3):397–416.

Ghosh, A., Maity, R. K., Kadhe, S., Mazumdar, A.,
and Ramchandran, K. (2019). Communication-
efficient and byzantine-robust distributed learning.
arXiv preprint arXiv:1911.09721.

Gower, R. M., Richtárik, P., and Bach, F. (2020).
Stochastic quasi-gradient methods: Variance reduc-
tion via jacobian sketching. Mathematical Program-
ming, pages 1–58.

Gupta, N., Liu, S., and Vaidya, N. H. (2020). Byzan-
tine fault-tolerant distributed machine learning us-
ing stochastic gradient descent (sgd) and norm-
based comparative gradient elimination (cge). arXiv
preprint arXiv:2008.04699.

Gurbuzbalaban, M., Ozdaglar, A., Parrilo, P. A., and
Vanli, N. (2017). When cyclic coordinate descent
outperforms randomized coordinate descent. Ad-
vances in Neural Information Processing Systems,
30.

Haddadpour, F., Kamani, M. M., Mokhtari, A., and
Mahdavi, M. (2020). Federated learning with com-
pression: Unified analysis and sharp guarantees.
arXiv preprint arXiv:2007.01154.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Hendrycks, D. and Dietterich, T. (2018). Benchmark-
ing neural network robustness to common corrup-
tions and perturbations. In International Confer-
ence on Learning Representations.

Hsieh, C.-J. and Dhillon, I. S. (2011). Fast coor-
dinate descent methods with variable selection for
non-negative matrix factorization. In Proceedings of
the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1064–
1072.

Huber, P. J. (1992). Robust estimation of a loca-
tion parameter. In Breakthroughs in statistics, pages
492–518. Springer.

Joachims, T. (1998). Making large-scale svm learning
practical. Technical report, Technical report.

Karimi, H., Nutini, J., and Schmidt, M. (2016). Lin-
ear convergence of gradient and proximal-gradient
methods under the Polyak- Lojasiewicz condition.
In European Conference on Machine Learning and
Knowledge Discovery in Databases-Volume 9851,
pages 795–811.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S.,
Stich, S., and Suresh, A. T. (2020). Scaffold:
Stochastic controlled averaging for federated learn-
ing. In International Conference on Machine Learn-
ing, pages 5132–5143. PMLR.

Karimireddy, S. P., Koloskova, A., Stich, S. U., and
Jaggi, M. (2019a). Efficient greedy coordinate de-
scent for composite problems. In The 22nd Inter-
national Conference on Artificial Intelligence and
Statistics, pages 2887–2896. PMLR.

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi,
M. (2019b). Error feedback fixes signsgd and other
gradient compression schemes. In International
Conference on Machine Learning, pages 3252–3261.
PMLR.

Kemperman, J. (1987). The median of a finite measure
on a banach space. Statistical data analysis based on
the L1-norm and related methods (Neuchâtel, 1987),
pages 217–230.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.
(2012). Imagenet classification with deep convolu-
tional neural networks. Advances in neural informa-
tion processing systems, 25:1097–1105.

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

Lamport, L., SHOSTAK, R., and PEASE, M. (1982).
The byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–
401.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner,
P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Li, J. Z. (2018). Principled approaches to robust
machine learning and beyond. PhD thesis, Mas-
sachusetts Institute of Technology.

Li, L., Xu, W., Chen, T., Giannakis, G. B., and Ling,
Q. (2019a). Rsa: Byzantine-robust stochastic aggre-
gation methods for distributed learning from hetero-
geneous datasets. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
1544–1551.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Tal-
walkar, A., and Smith, V. (2018). Federated opti-
mization in heterogeneous networks. arXiv preprint
arXiv:1812.06127.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z.
(2019b). On the convergence of fedavg on non-iid
data. arXiv preprint arXiv:1907.02189.

Liao, C., Zhong, H., Squicciarini, A., Zhu, S., and
Miller, D. (2018). Backdoor embedding in convo-
lutional neural network models via invisible pertur-
bation. arXiv preprint arXiv:1808.10307.

Lopuhaa, H. P., Rousseeuw, P. J., et al. (1991). Break-
down points of affine equivariant estimators of mul-
tivariate location and covariance matrices. The An-
nals of Statistics, 19(1):229–248.

Minsker, S. et al. (2015). Geometric median and robust
estimation in banach spaces. Bernoulli, 21(4):2308–
2335.

Moulines, E. and Bach, F. R. (2011). Non-asymptotic
analysis of stochastic approximation algorithms for
machine learning. In Advances in Neural Informa-
tion Processing Systems, pages 451–459.

Needell, D. and Tropp, J. A. (2014). Paved with good
intentions: analysis of a randomized block kacz-
marz method. Linear Algebra and its Applications,
441:199–221.

Nemhauser, G. L. and Wolsey, L. A. (1981). Maxi-
mizing submodular set functions: formulations and
analysis of algorithms. In North-Holland Mathemat-
ics Studies, volume 59, pages 279–301. Elsevier.

Nesterov, Y. (2012). Efficiency of coordinate de-
scent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362.

Nutini, J., Laradji, I., and Schmidt, M. (2017). Let’s
make block coordinate descent go fast: Faster

greedy rules, message-passing, active-set complex-
ity, and superlinear convergence. arXiv preprint
arXiv:1712.08859.

Nutini, J., Schmidt, M., Laradji, I., Friedlander, M.,
and Koepke, H. (2015). Coordinate descent con-
verges faster with the gauss-southwell rule than ran-
dom selection. In International Conference on Ma-
chine Learning, pages 1632–1641.

Olive, D. J. (2001). High breakdown analogs of
the trimmed mean. Statistics & probability letters,
51(1):87–92.

Optimization, S. M. (1998). A fast algorithm for
training support vector machines. CiteSeerX,
10(1.43):4376.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. (2019).
Robust aggregation for federated learning. arXiv
preprint arXiv:1912.13445.

Polyak, B. T. (1963). Gradient methods for minimiz-
ing functionals. Zhurnal Vychislitel’noi Matematiki
i Matematicheskoi Fiziki, 3(4):643–653.

Richtárik, P. and Takáč, M. (2014). Iteration complex-
ity of randomized block-coordinate descent methods
for minimizing a composite function. Mathematical
Programming, 144(1-2):1–38.

Robbins, H. and Monro, S. (1951). A stochastic ap-
proximation method. The annals of mathematical
statistics, pages 400–407.

Rousseeuw, P. J. (1985). Multivariate estimation with
high breakdown point. Mathematical statistics and
applications, 8(37):283–297.

Rousseeuw, P. J. and Leroy, A. M. (2005). Robust
regression and outlier detection, volume 589. John
wiley & sons.

Saha, A. and Tewari, A. (2013). On the nonasymptotic
convergence of cyclic coordinate descent methods.
SIAM Journal on Optimization, 23(1):576–601.

Sardy, S., Bruce, A. G., and Tseng, P. (2000). Block
coordinate relaxation methods for nonparametric
wavelet denoising. Journal of computational and
graphical statistics, 9(2):361–379.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D.
(2014). 1-bit stochastic gradient descent and its
application to data-parallel distributed training of
speech DNNs. In Fifteenth Annual Conference of the
International Speech Communication Association.

Shalev-Shwartz, S. and Zhang, T. (2013). Accelerated
mini-batch stochastic dual coordinate ascent. In Ad-
vances in Neural Information Processing Systems,
pages 378–385.

Shen, Y. and Sanghavi, S. (2019). Learning with
bad training data via iterative trimmed loss mini-

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

mization. In International Conference on Machine
Learning, pages 5739–5748. PMLR.

Shi, S., Chu, X., Cheung, K. C., and See, S. (2019).
Understanding top-k sparsification in distributed
deep learning. arXiv preprint arXiv:1911.08772.

Steinhardt, J., Charikar, M., and Valiant, G. (2017).
Resilience: A criterion for learning in the presence of
arbitrary outliers. arXiv preprint arXiv:1703.04940.

Stich, S. U. (2018). Local sgd converges fast and com-
municates little. arXiv preprint arXiv:1805.09767.

Stich, S. U. (2019). Unified optimal analysis of
the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. (2018).
Sparsified SGD with memory. In Advances in Neural
Information Processing Systems, pages 4447–4458.

Stich, S. U. and Karimireddy, S. P. (2019). The
error-feedback framework: Better rates for sgd with
delayed gradients and compressed communication.
arXiv preprint arXiv:1909.05350.

Stich, S. U., Raj, A., and Jaggi, M. (2017). Approx-
imate steepest coordinate descent. In International
Conference on Machine Learning, pages 3251–3259.
PMLR.

Strom, N. (2015). Scalable distributed dnn train-
ing using commodity gpu cloud computing. In
Sixteenth Annual Conference of the International
Speech Communication Association.

Tseng, P. and Yun, S. (2009a). Block-coordinate gra-
dient descent method for linearly constrained nons-
mooth separable optimization. Journal of optimiza-
tion theory and applications, 140(3):513.

Tseng, P. and Yun, S. (2009b). A coordinate gradient
descent method for nonsmooth separable minimiza-
tion. Mathematical Programming, 117(1):387–423.

Vardi, Y. and Zhang, C.-H. (2000). The multivariate
l1-median and associated data depth. Proceedings of
the National Academy of Sciences, 97(4):1423–1426.

Von Neumann, J. (1956). Probabilistic logics and the
synthesis of reliable organisms from unreliable com-
ponents. Automata studies, 34:43–98.

Wang, Y. and Singh, A. (2017). Provably correct al-
gorithms for matrix column subset selection with
selectively sampled data. The Journal of Machine
Learning Research, 18(1):5699–5740.

Weber, A., Friedrich, C. J., et al. (1929). Alfred We-
ber’s theory of the location of industries. The Uni-
versity of Chicago Press.

Weiszfeld, E. (1937). Sur le point pour lequel la somme
des distances de n points donnés est minimum. To-
hoku Mathematical Journal, First Series, 43:355–
386.

Wu, X., Dobriban, E., Ren, T., Wu, S., Li, Z., Gu-
nasekar, S., Ward, R., and Liu, Q. (2019). Implicit
regularization and convergence for weight normal-
ization. arXiv preprint arXiv:1911.07956.

Wu, Z., Ling, Q., Chen, T., and Giannakis, G. B.
(2020). Federated variance-reduced stochastic gra-
dient descent with robustness to byzantine attacks.
IEEE Transactions on Signal Processing, 68:4583–
4596.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747.

Xie, C., Koyejo, S., and Gupta, I. (2019). Zeno: Dis-
tributed stochastic gradient descent with suspicion-
based fault-tolerance. In International Conference
on Machine Learning, pages 6893–6901. PMLR.

Yang, H., Zhang, X., Fang, M., and Liu, J.
(2019). Byzantine-resilient stochastic gradient de-
scent for distributed learning: A lipschitz-inspired
coordinate-wise median approach. In 2019 IEEE
58th Conference on Decision and Control (CDC),
pages 5832–5837. IEEE.

Yang, Z. and Bajwa, W. U. (2019). Bridge: Byzantine-
resilient decentralized gradient descent. arXiv
preprint arXiv:1908.08098.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P.
(2018). Byzantine-robust distributed learning: To-
wards optimal statistical rates. In International
Conference on Machine Learning, pages 5650–5659.
PMLR.

You, Y., Lian, X., Liu, J., Yu, H.-F., Dhillon, I. S.,
Demmel, J., and Hsieh, C.-J. (2016). Asynchronous
parallel greedy coordinate descent. In NIPS, pages
4682–4690. Barcelona, Spain.

Zhang, H. (2020). New analysis of linear conver-
gence of gradient-type methods via unifying er-
ror bound conditions. Mathematical Programming,
180(1):371–416.

Zuo, Y. (2004). Projection-based affine equivariant
multivariate location estimators with the best possi-
ble finite sample breakdown point. Statistica Sinica,
pages 1199–1208.

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

Supplementary Material for BgmD

A Additional related work

Connection to Coordinate Descent Coordinate Descent (CD) refers to a class of methods wherein at
each iteration, a block of coordinates is chosen and subsequently updated using a descent step. While this
strategy has a long history (Sardy et al., 2000; Fu, 1998; Bertsekas, 1997; Joachims, 1998; Optimization, 1998), it
has received renewed interest in the context of modern large scale machine learning with very high dimensional
parameter space (Nesterov, 2012; Richtárik and Takáč, 2014; Tseng and Yun, 2009a,b; Stich et al., 2017; Beck and
Tetruashvili, 2013). There has been significant research efforts focusing on efficient coordinate selection strategy.
For instance, (Nesterov, 2012; Needell and Tropp, 2014; Shalev-Shwartz and Zhang, 2013; Richtárik and Takáč,
2014; Allen-Zhu et al., 2016) choose the coordinates randomly while (Saha and Tewari, 2013; Gurbuzbalaban
et al., 2017) do so cyclically in a fixed order, referred as the Gauss Seidel rule, and (Nutini et al., 2015, 2017;
Hsieh and Dhillon, 2011; Dhillon et al., 2011; You et al., 2016; Karimireddy et al., 2019a) propose choosing the
coordinates greedily according to norm-based selection criteria, a strategy known as the Gauss Southwell rule.

Remark 3. Note that, Algorithm 2 is closely related to the Greedy Gauss Southwell coordinate selection approach.
In fact, it is immediate that for batch size b = 1 Gauss Southwell Co-ordinate Descent becomes a special case of
BGmD.

Connection to Error Feedback. Compensating for the loss incurred due to approximation through a memory
mechanism is a common concept in the feedback control and signal processing literature (See (Doyle et al., 2013)
and references therein). Seide et al. (2014); Strom (2015) adapt this to gradient compression (1Bit-SGD) to
reduce the number of communicated bits in distributed optimization. Recently, (Stich et al., 2018; Stich and
Karimireddy, 2019; Karimireddy et al., 2019b) have analyzed this error feedback framework for a number of
gradient compressors in the context of communication-constrained distributed training.

Remark 4. Note that our memory mechanism is inspired by this error feedback mechanism. In fact, all the
works on error feedback to compensate for gradient compression (Stich et al., 2018; Stich and Karimireddy,
2019; Karimireddy et al., 2019b) are special case of our proposed memory mechanism when batch size b = 1 i.e.
Mt = m̂t.

B Robust Gradient Estimators

At the heart of BGmD is robust gradient estimation when 0 ≤ ψ < 1/2 fraction of samples are allowed to be
grossly corrupted (see Definition 1) i.e. given b gradient vectors Dt = {git ∈ Rd : ∀i ∈ [b]} , ψb of them are
allowed to be arbitrarily corrupted. As discussed in Section 2: one common approach in robust optimization is
to replace the mean aggregation by a robust estimator. In this section we elaborate more the robust estimators
used in related literature for robust optimization as mentioned earlier in Table 1.

B.1 Univariate Robust Gradient Estimation

Let us first consider the univariate setting (Bruce et al., 2011) i.e. we are given b gradient vectors Dt = {git ∈
R : ∀i ∈ [b]}. When ψ = 0 i.e. in the clean setting: it is very common to use the empirical mean µ ∈ R as the
measure of center.

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

Definition 4 (Mean). Given Dt = {git ∈ R : ∀i ∈ [b]} , the mean is defined as:

Mean({git ∈ Rd : ∀i ∈ [b]}) := µ =
1

b

∑
i∈[b]

git (16)

Another way to define Mean(·) estimator is via an optimization formulation ; specifically the mean can be
defined as the minimizer of the mean squared error as follows:

µ = arg min
y∈R

b∑
i=1

∥git − y∥2 (17)

However, as discussed earlier in Section 1, µ is not a robust estimator i.e. when ψ ̸= 0 the empirical mean µ can
be arbitrarily bad. In fact, it can be shown that no linear gradient aggregation strategy can tolerate even a single
grossly corrupted update. It is easy to observe that a single malicious gradient gjt = −

∑
i∈Dt\j g

i
t will result in

the estimate to become 0 implying mini-batch SGD getting stuck at the initialization i.e. they have the lowest
possible finite sample breakdown point of 1/b or asymptotic breakdown of limb→∞

1
b = 0.

In this context, median is a measure which is robust to outliers. In fact, median achieves the optimal breakdown
point5 of 1/2. The univariate median can be defined as follows:

Definition 5 (Median). Given Dt = {git ∈ R : ∀i ∈ [b]} , the median is defined as the ⌊ b+1
2 ⌋ th order statistic of

Dt is |Dt| is odd else it is defined as the mean of ⌊ b2⌋ th and ⌊ b+1
2 ⌋ th order statistics of Dt.

Another way to define the median estimator Med(·) is as the minimizer of the sum of absolute errors:

Med(git : ∀i ∈ [b]) := arg min
y∈R

b∑
i=1

|git − y| (18)

In addition to having high breakdown point it is often desirable that the robust estimator T (·) is translation

equivariant i.e. T (git + η : ∀i ∈ [b]) = T (git : ∀i ∈ [b]) + η and permutation equivariant i.e. T (g
π(i)
t) = T (git :

∀i ∈ [b]) for any permutation π (Zuo, 2004; Rousseeuw, 1985). In univariate case, Med(·) satisfies this property.

In the univariate setting, similar to median, another popular L estimator (i.e. relies on ordered statistics) is the
trimmed mean

Definition 6 (Trimmed Mean). Given Dt = {git ∈ R : ∀i ∈ [b]} , α, β ∈ [0, 1/2) the (α, β) trimmed mean
Tm(α,β)(·) is defined as the average of all the samples in Ut ⊆ Dt where Ut is obtained by removing the β largest
and α smallest fraction of samples from Dt. More formally, denoting {g(1), g(2), . . . , g(b)} to be the ordered
statistics from Dt i.e. g(1) ≤ g(2) ≤ · · · ≤ g(b):

Tm(α,β)(g
i
t : ∀i ∈ [b]) :=

1

(1− α− β)b

⌊b(1−β)⌋∑
j=⌊α⌋+1

g(j) (19)

When α = β (Yin et al., 2018) we simply refer to this as β trimmed mean Tmβ(·).

Note that, by setting β = b/2 we can recover the median. It is easy to see that the asymptotic breakdown point
of Tm(α,β)(·) is ⌊min(α, β)⌋ (Olive, 2001).

B.1.1 Multivariate Robust Gradient Estimation

Extending the univariate measures of centers to high dimensions has been a central theme of robust statistics. In
particular, it is desired to obtain affine equivariant multivariate estimators with optimal breakdown point 1/2.
One approach is to extend the univariate estimators in the multivariate setting by simply applying the univariate

5Note that the Breakdown point ϵ∗ of an estimator (see Definition 2) can only range between 1/b and 1/2 i.e. 1/b ≤
ϵ∗ < 1/2. The lower bound is immediate and the upper bound follows from the fact that the concept of outlier is only
applicable when a majority of the points are assumed to be inliers.

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

estimators co-ordinate wise.

Definition 7 (Co-ordinate wise Median). Given a set of vectors: Dt = {git ∈ Rd : ∀i ∈ [b]} the co-ordinate wise
median is defined as the vector g̃t := Cm(Dt) such that its k-th coordinate is g̃t[k] := Med(git[k] : ∀i ∈ [b]) for
each co-ordinate k ∈ [d] where Med(·) is the usual uni-variate median (Definition 5).

Cm({git ∈ Rd : ∀i ∈ [b]})[k] = Med(git[k] : ∀i ∈ [b]) ∀k ∈ [d] (20)

Since, median is an L estimator, it needs to compute the ordered statistics implying O(b log b) work per co-
ordinate to find the median in one dimension resulting in O(bd log b) time in Rd (Yin et al., 2018) which is quite
efficient. In fact, it is also possible to obtain median in linear time (Blum et al., 1972) implying Cm(·) attains the
lower bound O(bd) in Rd. Further, even in multivariate setting the asymptotic breakdown point is maintained
at 1/2.

However, in spite of these nice properties, for d > 2, Cm(·) does not need to lie in the convex hull of the samples
(see (Rousseeuw, 1985) for a great discussion). Empirically, Cm(·) often results in significant regression in
generalization performance as we also observed in the experiments, possibly due to the lack of centrality and
orthogonal equivariance.

Definition 8 (Co-ordinate wise Trimmed Mean). Given a set of vectors: Dt = {git ∈ Rd : ∀i ∈ [b]} and
β ∈ [0, 1/2) β coordinate wise trimmed mean Tmβ(·) is simply defined as the vector g̃t := CTmβ(Dt) such that
its k-th coordinate is g̃t[k] := Tmβ(git[k] : ∀i ∈ [b]) for each co-ordinate k ∈ [d] where Tmβ(·) is the usual
uni-variate trimmed mean (Definition 6).

CTmβ({git ∈ Rd : ∀i ∈ [b]})[k] = Tmβ(git[k] : ∀i ∈ [b]) ∀k ∈ [d] (21)

Trimmed mean also requires computing the ordered statistics and then averaging over (1−2β)b samples implying
computational complexity of O((1−2β)bd+bd log b). It also maintains asymptotic breakdown point ⌊β⌋. And
using the same trick as median (Blum et al., 1972) we can loose the log factor arising from sorting and achieve
a O(bd) algorithm. However, it suffers from the same issues as Cm(·) in terms of centrality and equivariance
properties.

Definition 9 (Norm Clipping). Given a set of vectors: Dt = {git ∈ Rd : ∀i ∈ [b]} and β ∈ [0, 1/2) (Ghosh et al.,
2019; Gupta et al., 2020) suggest using norm clipping operator Ncβ(·) defined as the average of all the samples in
Ut ⊆ Dt where Ut is obtained by removing the β fraction of samples with largest norm from Dt. More formally,
denoting {g(1), g(2), . . . , g(b)} to be the ordered statistics based on norm from Dt i.e. ∥g(1)∥ ≤ ∥g(2)∥ ≤ · · · ≤ ∥g(b)∥:

Ncβ({git ∈ Rd : ∀i ∈ [b]}) =
1

(1− β)b

⌊b(1−β)−1⌋∑
j=1

g(j) (22)

We will first note that, in univariate setting this is equivalent to one sided trimmed mean or more formally
(0, β) trimmed mean (Olive, 2001) and thus it has asymptotic breakdown point of ⌊β⌋. However, (Ghosh
et al., 2019) has shown that it is possible to achieve optimal breakdown point under a very restrictive
assumptions on the distribution of the samples - which are hard to be satisfied in real world
settings.

C Additional Experimental Details

In this section, we provide more details on our experimental setup and provide some additional result that we
didn’t include in the main paper due to space constraint.

C.1 Additional hyper-parameter details

Common to all the setting we used a cross-entropy loss with weight decay 1e-5. For both MNIST and Fashion-
MNIST experiments, we use the learning rate schedule suggested in Bottou (2012); Haddadpour et al. (2020)

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

Corruption (%) SGD CmD BGmD GmD

Clean - 99.27±0.01 98.83±0.02 99.09±0.05 99.24±0.02

Gradient Attack

Bit Flip
20 9.51±1.77 98.79±0.01 99.06±0.02 98.98±0.01
40 9.60±2.04 93.69±0.09 97.89±0.05 98.11±0.12

Additive
20 9.68±0.11 94.26±0.03 98.61±0.01 98.69±0.01
40 9.74±0.12 91.86±0.03 97.78±0.27 92.78±0.04

Table 3: Multi Layer Perceptron trained on MNIST in regular i.i.d. setting. For all corruption types, test
accuracy of BGmD is similar to that of GmD and surprisingly, in some cases even higher. As expected, SGD
fails to make progress under corruption . CmD performs sub-optimally as corruption is increased.

where we reduce the client learning rate by 1% after every round, i.e., ηk = (0.99)kη0, η0 being the initial learning
rate. We search the initial learning rates over {10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1}. For the Fashion MNIST
experiment we used initial learning rate of 0.01 and for the MNIST experiment we used an initial learning rate
of 0.1. For the heterogeneous CIFAR10 experiment we have used ResNet-18 architecture included in torchvision
models. We used an initial learning rate of 0.1 with cosine annealing learning rate schedule.

C.2 Heterogeneous Data Distribution Simulation

In order to simulate heterogeneous real world data distribution across nodes for our CIFAR10 experiment: first,
the training data was sorted using labels and divided into 40 consecutive equal data-shards. Note that, the
sharding procedure ensures each shard only containing data from a single class. Then since we used 10 clients
each client was assigned 4 shards sampled uniformly at random without replacement. This implies each client
i had access to ci classes where 1 ≤ ci ≤ 4. Note that in expectation each client should have data from only 4
classes.

Detailed Proofs of BgmD

D Proof of Lemma 1 (Sparse Approximation)

Lemma 1. Algorithm 2 yields a contraction approximation, i.e., ECk

[
∥Ck(G)−G∥2F |x

]
≤ (1 − ξ)∥G∥2F , k

d ≤
ξ ≤ 1, where Ck(G)i,j∈ωk

= Gi,j , and Ck(G)i,j /∈ωk
= 0.

Proof. Suppose, Ωk = {ω ⊆ {1, 2, ..., d} : |ω| = k} is the set of all possible subsets of cardinality k i.e. |Ωk| =
(
d
k

)
.

Also let the embeddings produced by random co-ordinate sampling and active norm sampling (Algorithm 2) are
denoted by Crk(·) and Cnk (·) respectively and let the i−th row Gt[i, :] = git. Then, we can bound the reconstruction

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

error in expectation ∀Gt ∈ Rb×d as:

ECn
k

[
∥Cnk (Gt)−Gt∥2F |G

]
≤ ECn

k

[
∥Crk(Gt)−Gt∥2|Gt

]
=

n∑
i=1

ECn
k

[
∥Crk(git)− git∥2|git

]
=

n∑
i=1

1

|Ωk|
∑
ω∈Ωk

d∑
i=1

x2
i I{i /∈ ω}

=

n∑
i=1

(1− k

d
)∥git∥2

= (1− k

d
)∥Gt∥2F

■

E Computational Complexity of BGmD iterates

Proposition 1. (Computational Complexity). Given an ϵ- approximate Gm oracle , each gradient aggre-
gation of BGmD with block size k incurs a computational cost of: O(kϵ2 + bd).

Proof. Let us first recall, one gradient aggregation operation: given b stochastic gradients gi ∀i ∈ [b], the goal of
the aggregation step is to compute g̃ for subsequent iterations of the form xt+1 = xt − ηg̃. Further, Gt ∈ Rb×d
denote the gradient jacobian where i th row Gt[i, :] corresponds to gi. Also assume that we have at our disposal
an oracle Gm(·) that can compute an ϵ-approximate Gm gi ∈ Rd ∀i ∈ [b] using O(dϵ2) compute Cohen et al.
(2016). Recall that BGmD (Algorithm 1) is composed of the following main steps:

• Memory Augmentation: At each gradient aggregation step, BgmD needs to add back the stored memory
m̂t compensating for accumulated residual error incurred in previous iterations to Gt such that Gt[i, :] = γGt[i, :
] + m̂t. Note that, this is a row wise linear (addition) operation implying O(bd) associated cost.

• Active Norm Sampling: At each gradient aggregation step: BgmD selects k of the d coordinates i.e. k
columns of Gt using Algorithm 2. This requires computing the ℓ2 norm distribution along the d columns, followed
by sampling k of them proportional to the norm distribution. The computational complexity of computing Active
Norm Sampling is O(bd) Wang and Singh (2017).

• Compute Mt+1: Further, memory needs to be updated to Mt+1 for future iterates implying another row
wise linear operation incurring O(bd) compute.

• Low Rank Gm: Note that BGmD needs to run Gm(·) over Rk implying a cost of O(kϵ2).

Putting it together, the total cost of computing gradient aggregation per iteration using Algorithm 1 is then
O(kϵ2 + bd). ■

E.1 Proof of Lemma 2 (Choice of k)

Lemma 2. Let k ≤ O(1
F − bϵ

2) · d. Then, given an ϵ- approximate Gm oracle, Algorithm 1 achieves a factor F
speedup over Gm-SGD for aggregating b samples.

Proof. First, note that: for one step of gradient aggregation Gm-SGD makes one call to Gm(·) oracle implying
a O(dϵ2) computational cost per gradient aggregation.

Now, let us assume, k = βd where 0 < β ≤ 1 denotes the fraction of total gradient dimensions retained by
BGmD. Then using Proposition 1 we can find a bound on β such that gradient aggregation step of BGmD has

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

a linear speedup over that of Gm-SGD by a linear factor F .

O(
d

ϵ2
) ≥ F · O(

k

ϵ2
+ bd)

⇒O(
1

ϵ2
) ≥ O(

Fβ

ϵ2
) +O(Fb)

⇒O(Fβ) ≤ O(1)−O(Fbϵ2)

⇒O(β) ≤ O(
1

F
)−O(bϵ2)

(23)

This concludes the proof. ■

F Detailed Statements of the convergence Theorems

We here state the full version of the main convergence theorems

Theorem 1 (Smooth Non-convex). Consider the general case where the functions fi correspond to non-
corrupt samples i ∈ G i.e. f = 1

G
∑
i∈G fi(x) are non-convex and smooth (Assumption 2). Define, R0 :=

f(x0)− f(x∗) where x∗ is the true optima and x0 is the initial parameters. Run Algorithm 1 with compression
factor ξ (Lemma 1), learning rate γ = 1/2L and ϵ−approximate Gm(·) oracle in presence of α−corruption
(Definition 1) for T iterations. Then it holds that:

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤
8R0

γT
+ 8Lγσ2 +

48L2γ2σ2(1− ξ2)

ξ2

+
2304σ2

(1− α)2

[
1 +

4(1− ξ2)

ξ2

]
+

48ϵ2

γ2|G|2(1− α)2

= O

(
LR0

T
+

σ2ξ−2

(1− α)2
+

L2ϵ2

|G|2(1− α)2

) (24)

Theorem 2 (Non-convex under PLC). Assume in addition to non-convex and smooth (Assumption 2) the
functions fi correspond to non-corrupt samples also satisfy the Polyak- Lojasiewicz Condition (Assumption 3)
with parameter µ. After T iterations Algorithm 1 with compression factor ξ (Lemma 1), learning rate γ = 1/4L
and ϵ−approximate Gm(·) oracle in presence of α−corruption (Definition 1) satisfies:

E∥x̂T − x∗∥2 ≤ 16(f(x0)− f∗)

µ2γ

[
1− µγ

2

]T
+

16Lγσ2

µ2
+

[
80γ2σ2L2(1− ξ2)

µ2ξ2

]
+

3072σ2

µ2(1− α)2

[
1 +

4(1− ξ2)

ξ2

]
+

64ϵ2

µ2γ2|G|2(1− α)2

= O

(
LR0

µ2

[
1− µ

8L

]T
+

σ2ξ−2

µ2(1− α)2
+

L2ϵ2

µ2|G|2(1− α)2

) (25)

for a global optimal solution x∗ ∈ X ∗.
Here, x̂T := 1

WT

∑T−1
t=0 wtxt with weights wt := (1− µ

8L)−(t+1), WT :=
∑T−1
t=0 wt.

G Intermediate Facts and Lemmas

Fact 1. E∥
∑
i∈A ai∥2 ≤ |A|

∑
i∈A E∥ai∥2

This can be seen as a consequence of the Jensen’s inequality.

Fact 2 (Young’s Inequality). For any β > 0,

E[⟨a,b⟩] ≤ β

2
E∥a∥2 +

1

2β
E∥b∥2 (26)

This can be seen as a special case of the weighted AM-GM inequality.

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

Fact 3 (Lemma 2 in Stich (2019)). Let {at} and {bt} be to non-negative sequences such that

at+1 ≤ (1− rγ)at − sγbt + c, (27)

where r, γ, s, c > 0 and rγ < 1. Let wt = (1− rγ)−(t+1) and WT =
∑T−1
t=0 wt. Then the following holds:

s

WT

T−1∑
t=0

btwt + raT ≤
a0
γ

(1− rγ)T +
c

γ
. (28)

Fact 4. Let f be a function that satisfies PLC (Assumption 3) with parameter µ. Then, f satisfies the quadratic
growth condition Karimi et al. (2016); Zhang (2020):

f(x)− f∗ ≥ µ

2
∥x− xp∥2 (29)

where xp is the projection of x onto the solution set X ∗ .

G.1 Proof of Lemma 3

Proof. The result is due to Lemma 5 in Basu et al. (2019) which is inspired by Lemma 3 in Karimireddy et al.
(2019b). The proof relies on using the fact that the proposed norm sampling operator Ck, as shown in Lemma 1
is contractive. Hence, we can use this property to derive a recursive bound on the norm of the memory. Using
this result as well as the bounded stochastic gradient assumption results in a geometric sum that can be bounded
by the RHS of (12). ■

G.2 Proof of Lemma 4

Proof. Since g̃t is the ϵ-accurate Gm of {∆i
t}i, zt can be thought of as the ϵ-accurate Gm of {∆i

t−∆t}i. Thus, by
the classical robustness property of Gm (Theorem. 2.2 in Lopuhaa et al. (1991); see also Minsker et al. (2015);
Cohen et al. (2016); Chen et al. (2017); Li et al. (2019a); Wu et al. (2020) for similar adaptations) we have

E∥zt∥2 ≤
8|G|

(|G| − |B|)2
∑
i∈G

E∥∆i
t −∆t∥2 +

2ϵ2

(|G| − |B|)2
. (30)

Next, we bound E∥∆i
t −∆t∥2 using the properties of memory mechanism stated in Lemma 3

E∥∆i
t −∆t∥2 = 2E∥∆i

t∥2 + 2E∥∆t∥2

≤ 2E∥∆i
t∥2 +

2

|G|
∑
i∈G

E∥∆i
t∥2

≤ 4 max
i∈G

E∥∆i
t∥2,

(31)

where we used Fact 1 twice. Next, we establish a bound on the norm of the communicated messages as follows.
Add and subtract pit and use the update rule of the memory to obtain

E∥∆i
t∥2 = E∥∆i

t + pit − pit∥2

= E∥pit − m̂t+1∥2

= E∥γgit + m̂t − m̂t+1∥2

≤ 3E∥γgit∥2 + 3E∥m̂t∥2 + 3E∥m̂t+1∥2,
≤ 3γ2σ2 + 3E∥m̂t∥2 + 3E∥m̂t+1∥2,

(32)

by definition of pit and Fact 1. Notice that using Lemma 3 we can uniformly bound the last two terms on the
RHS of (32):

3E∥m̂t∥2 + 3E∥m̂t+1∥2 ≤
24(1− ξ2)γ2σ2

ξ2
. (33)

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

Therefore, we conclude

E∥∆i
t∥2 ≤ 3γ2σ2 +

24(1− ξ2)γ2σ2

ξ2
. (34)

Therefore, by (31) and (34)

E∥∆i
t −∆t∥2 ≤ 12γ2σ2

[
1 +

4(1− ξ2)

ξ2

]
, (35)

and the proof is complete by combining this last result with (30). ■

G.3 Proof of Lemma 5

Proof. We derive a recursive relation for the difference xt+1 − x̃t+1. It follows that

xt+1 = xt − g̃t

= xt −∆t − zt.
(36)

On the other hand,

x̃t+1 = x̃t − γgt − γzt

= x̃t − γgt − zt

= x̃t − γgt − zt,

(37)

Collectively, (36) and (37) imply

xt+1 − x̃t+1 = (xt − x̃t) + (γgt −∆t). (38)

Since y0 = ỹ0 using induction yields

xt+1 − x̃t+1 =

t∑
j=0

(γgt −∆j)

=

t∑
j=0

(mj+1 −mj)

= mt+1 −m0 = mt+1,

(39)

where we used the fact that m0 = 0. ■

G.4 Proof of Lemma 6

Proof. Recall that gt = 1
|G|
∑
i∈G∇fi(xt, zit), i.e., the average of stochastic gradients ove uncorrupted samples

at time t, and E[gt] = ḡt. By the definition of L-smoothness (see Assumption 2), we have

f(x̃t+1) ≤ f(x̃t) + ⟨∇f(x̃t), x̃t+1 − x̃t⟩+
L

2
∥x̃t+1 − x̃t∥2

= f(x̃t) + ⟨∇f(x̃t),−γgt − zt⟩+
L

2
∥γgt + zt∥2

≤ f(x̃t)− γ⟨∇f(x̃t),gt⟩ − ⟨∇f(x̃t), zt⟩+ Lγ2∥gt∥2 + L∥zt∥2.

(40)

Let Et denote expectation with respect to sources of randomness in computation of stochastic gradients at time
t. Then,

Et[f(x̃t+1)] ≤ f(x̃t)− γ⟨∇f(x̃t), ḡt⟩ − Et[⟨∇f(x̃t), zt⟩] + Lγ2Et∥gt∥2 + LEt∥zt∥2. (41)

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

The first inner-product in (41) can be bounded according to

2⟨∇f(x̃t), ḡt⟩ = ∥∇f(x̃t)∥2 + ∥ḡt∥2 − ∥∇f(x̃t)− ḡt∥2

≥ ∥∇f(x̃t)∥2 − ∥∇f(x̃t)− ḡt∥2

= ∥∇f(x̃t)∥2 − ∥
1

|G|
∑
i∈G
∇fi(x̃t)−

1

|G|
∑
i∈G
∇fi(xt)∥2

≥ ∥∇f(x̃t)∥2 −
1

|G|
∑
i∈G
∥∇fi(x̃t)−∇fi(xt)∥2

≥ ∥∇f(x̃t)∥2 − L2∥x̃t − xt∥2

= ∥∇f(x̃t)∥2 + L2∥x̃t − xt∥2 − 2L2∥x̃t − xt∥2

≥ ∥∇f(x̃t)∥2 + ∥∇f(x̃t)−∇f(xt)∥2 − 2L2∥x̃t − xt∥2

= ∥∇f(x̃t)∥2 + ∥∇f(x̃t)−∇f(xt)∥2 − 2L2∥x̃t − xt∥2

≥ 1

2
∥∇f(xt)∥2 − 2L2∥x̃t − xt∥2,

(42)

where we employed Fact 1 and L-smoothness of each function several times. Therefore,

−γ⟨∇f(x̃t), ḡt⟩ ≤ −
γ

4
∥∇f(xt)∥2 + γL2∥x̃t − xt∥2. (43)

We now bound the second inner-product. To this end,

−Et[⟨∇f(x̃t), zt⟩] = −Et[⟨∇f(xt), zt⟩] + Et[⟨∇f(xt)−∇f(x̃t), zt⟩]

≤ ργ∥∇f(xt)∥2 +
1

2ργ
Et∥zt∥2 + Et[⟨∇f(xt)−∇f(x̃t), zt⟩]

≤ ργ

2
∥∇f(xt)∥2 +

1

2ργ
Et∥zt∥2 +

1

2γ
Et∥zt∥2 +

γ

2
∥∇f(xt)−∇f(x̃t)∥2

≤ ργ

2
∥∇f(xt)∥2 +

(
1

2ργ
+

1

2γ

)
Et∥zt∥2 +

γL2

2
∥xt − x̃t∥2,

(44)

where we used Fact 2 twice and to obtain the last inequality we employed the smoothness assumption. Here,
0 < ρ < 0.5 is a parameter whose value will be determined later.

Application of (43) and (44) in (41) yields

Et[f(x̃t+1)] ≤ f(x̃t)−
(

1

2
− ρ
)
γ

2
∥∇f(xt)∥2 +

3γL2

2
∥x̃t − xt∥2

+ Lγ2Et∥gt∥2 +

(
L+

1

2ργ
+

1

2γ

)
Et∥zt∥2.

(45)

■

H Proof of Theorem 1

Proof. Rearranging (45) and taking expectation with respect to the entire sources of randomness, i.e. the pro-
posed coordinated sparse approximation and the randomness in computation of stochastic gradient in iterations
0, . . . , t− 1, using the bounded SFO assumption yields(

1

2
− ρ
)
γ

2
E∥∇f(xt)∥2 ≤E[f(x̃t)]− E[f(x̃t+1)] +

3γL2

2
E∥x̃t − xt∥2

+ Lγ2σ2 +

(
L+

1

2ργ
+

1

2γ

)
E∥zt∥2.

(46)

Evidently, we need to bound two quantities in (46). Lemma 4 establishes a bound on E∥zt∥2 while by Lemma 5

E∥x̃t − xt∥2 = E∥mt∥2 ≤
1

|G|
∑
i∈G

E∥m̂t∥2 ≤
4(1− ξ2)γ2σ2

ξ2
(47)

Acharya, Hashemi, Jain, Sanghavi, Dhillon, Topcu

using Lemma 3 we get :(
1

2
− ρ
)
γ

2
E∥∇f(xt)∥2 ≤E[f(x̃t)]− E[f(x̃t+1)] + Lγ2σ2

+
6γL2(1− ξ2)γ2σ2

ξ2

+

(
L+

1

2ργ
+

1

2γ

)
96γ2σ2

(1− α)2

[
1 +

4(1− ξ2)

ξ2

]
+

(
L+

1

2ργ
+

1

2γ

)
2ϵ2

|G|2(1− α)2
.

(48)

Finally, letting ρ = 1/4 and γ = 1
2L we obtain the stated result by averaging (48) over time and noting

f∗ ≤ E[f(x̃T)] and f(x̃0) = f(x0). ■

I Proof of Theorem 2

Recall (46) in the proof of Theorem 1. Let at := E[f(x̃t)]− f∗ ≥ 0. Using Assumption 3 to bound the gradient
terms in (46) yields

at+1 ≤at −
(

1

2
− ρ
)
γµE[f(xt)− f∗] +

3γL2

2
E∥x̃t − xt∥2

+ Lγ2σ2 +

(
L+

1

2ργ
+

1

2γ

)
E∥zt∥2.

(49)

The above result is not sufficient to complete the proof since at is with respect to the virtual sequence. This
difficulty, which is addressed for the first time in this paper, has been the main challenge in the proof of
convergence of error compensated schemes with biased gradient compression under PLC. To deal with this
burden, we revisit (41) to establish an alternative bound. Specifically, we to bound the first inner-product in
(41) we instead establish

−γ⟨∇f(x̃t), ḡt⟩ = −γ⟨∇f(x̃t),∇f(x̃t)⟩+ γ⟨∇f(x̃t),∇f(x̃t)− ḡt⟩

≤ −γ∥∇f(x̃t)∥2 +
γρ1
2
∥∇f(x̃t)∥2 +

γ

2ρ
∥∇f(x̃t)− ḡt∥2

= −γ(1− ρ1
2

)∥∇f(x̃t)∥2 +
γ

2ρ1
∥∇f(x̃t)− ḡt∥2

(50)

where we used Fact 2 with parameter ρ1 > 0 which will be determined later. Recall that by smoothness

∥∇f(x̃t)− ḡt∥2 ≤ L2∥x̃t − xt∥2. (51)

We now derive a bound for the second inner-product in (41). To do so, an application of Fact 2 yields

−Et[⟨∇f(x̃t), zt⟩] ≤
ρ2γ

2
∥∇f(x̃t)∥2 +

1

2γρ2
Et∥zt∥2. (52)

Therefore, in light of these new bounds we obtain

Et[f(x̃t+1)] ≤ f(x̃t)− γ
(

1− ρ1 + ρ2
2

)
∥∇f(x̃t)∥2 + Lγ2Et∥gt∥2

+

(
L+

1

2γρ2

)
Et∥zt∥2 +

γL2

2ρ1
∥x̃t − xt∥2.

(53)

Subtracting f∗ and taking expectation with respect to the entire sources of randomness yields

E[f(x̃t+1)]− f∗ ≤ E[f(x̃t)]− f∗ − γ
(

1− ρ1 + ρ2
2

)
E∥∇f(x̃t)∥2 + Lγ2σ2

+

(
L+

1

2γρ2

)
E∥zt∥2 +

γL2

2ρ1
E∥x̃t − xt∥2.

(54)

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

The gradient term E∥∇f(x̃t)∥2 in (54) can be related to at using the PL condition. Therefore

at+1 ≤
[
1− 2µγ

(
1− ρ1 + ρ2

2

)]
at + Lγ2σ2

+

(
L+

1

2γρ2

)
E∥zt∥2 +

γL2

2ρ1
E∥x̃t − xt∥2.

(55)

Multiply (49) and (55) by 1/2 and add the two to obtain

at+1 ≤
[
1− µγ

(
1− ρ1 + ρ2

2

)]
at + Lγ2σ2 −

(
1

2
− ρ
)
γµ

2
E[f(xt)− f∗]

+

(
L+

1

4γρ
+

1

4γρ2
+

1

4γ

)
E∥zt∥2

+

(
3 +

1

ρ1

)
γL2

4
E∥x̃t − xt∥2.

(56)

Define
bt := E[f(xt)− f∗]. (57)

Let ρ = 1/4, ρ1 = 1/2, ρ2 = 1/2, and γ = 1/4L. Using Lemma 4 and (47), (56) simplifies to

at+1 ≤
[
1− µγ

2

]
at −

γµ

8
bt + Lγ2σ2 +

5L2

4
γ3σ2

[
4(1− ξ2)

ξ2

]
+

192γσ2

(1− α)2

[
1 +

4(1− ξ2)

ξ2

]
+

4ϵ2

γ|G|2(1− α)2
.

(58)

Thus we can apply Fact 3 to obtain

1

WT

T−1∑
t=0

btwt ≤
8(f(x0)− f∗)

µγ

[
1− µγ

2

]T
+

8Lγσ2

µ
+

10L2

µ
γ2σ2

[
4(1− ξ2)

ξ2

]
+

1536σ2

µ(1− α)2

[
1 +

4(1− ξ2)

ξ2

]
+

32ϵ2

µγ2|G|2(1− α)2
,

(59)

where we used E[f(x̃i0)] = f(x0). Finally, to obtain the stated result we invoke Fact 4 and the assumption that
the solution set (i.e., the set of all stationary points) is convex. Specifically, by the quadratic growth condition
and convexity of the Euclidean norm

T−1∑
t=0

wt
WT

E[f(xt)− f∗] ≥
T−1∑
t=0

wt
WT

E∥xt − PX∗(xt)∥2

≥ µ

2

T−1∑
t=0

wt
WT

E∥xt − PX∗(xt)∥2

≥ µ

2
E∥

T−1∑
t=0

wt
WT

xt −
T−1∑
t=0

wt
WT
PX∗(xt)∥2

:=
µ

2
E∥x̂T − x∗∥2,

(60)

where PX∗(xt) is the projection of xt onto the solution set X ∗ and x∗ :=
∑T−1
t=0

wt

WT
PX∗(xt) ∈ X ∗ by the

assumption that the solution set is convex.

	INTRODUCTION
	RELATED WORK
	BGmD
	Computational Complexity Analysis
	Discussion on choice of block size.
	Convergence Guarantees of BGmD.
	Proof Outline

	EMPIRICAL EVIDENCE
	Corruption Simulation.
	Discussion

	CONCLUSION
	Additional related work
	Robust Gradient Estimators
	Univariate Robust Gradient Estimation
	Multivariate Robust Gradient Estimation

	Additional Experimental Details
	Additional hyper-parameter details
	Heterogeneous Data Distribution Simulation

	Proof of Lemma 1 (Sparse Approximation)
	Computational Complexity of BGmD iterates
	Proof of Lemma 2 (Choice of k)

	Detailed Statements of the convergence Theorems
	Intermediate Facts and Lemmas
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Proof of Theorem 1
	Proof of Theorem 2

