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Abstract

We present the first efficient and provably consistent estimator for the robust
regression problem. The area of robust learning and optimization has generated a
significant amount of interest in the learning and statistics communities in recent
years owing to its applicability in scenarios with corrupted data, as well as in
handling model mis-specifications. In particular, special interest has been devoted
to the fundamental problem of robust linear regression where estimators that can
tolerate corruption in up to a constant fraction of the response variables are widely
studied. Surprisingly however, to this date, we are not aware of a polynomial time
estimator that offers a consistent estimate in the presence of dense, unbounded
corruptions. In this work we present such an estimator, called CRR. This solves an
open problem put forward in the work of [3]. Our consistency analysis requires
a novel two-stage proof technique involving a careful analysis of the stability of
ordered lists which may be of independent interest. We show that CRR not only
offers consistent estimates, but is empirically far superior to several other recently
proposed algorithms for the robust regression problem, including extended Lasso
and the TORRENT algorithm. In comparison, CRR offers comparable or better
model recovery but with runtimes that are faster by an order of magnitude.

1 Introduction

The problem of robust learning involves designing and analyzing learning algorithms that can extract
the underlying model despite dense, possibly malicious, corruptions in the training data provided to
the algorithm. The problem has been studied in a dizzying variety of models and settings ranging
from regression [19], classification [11], dimensionality reduction [4] and matrix completion [8].

In this paper we are interested in the Robust Least Squares Regression (RLSR) problem that finds
several applications to robust methods in face recognition and vision [22, 21], and economics [19].
In this problem, we are given a set of n covariates in d dimensions, arranged as a data matrix
X = [x1, . . . ,xn], and a response vector y ∈ Rn. However, it is known apriori that a certain number
k of these responses cannot be trusted since they are corrupted. These may correspond to corrupted
pixels in visual recognition tasks or untrustworthy measurements in general sensing tasks.

Using these corrupted data points in any standard least-squares solver, especially when k = O (n), is
likely to yield a poor model with little predictive power. A solution to this is to exclude corrupted
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Table 1: A comparison of different RLSR algorithms and their properties. CRR is the first efficient
RLSR algorithm to guarantee consistency in the presence of a constant fraction of corruptions.

Paper Breakdown Point Adversary Consistent Technique
Wright & Ma, 2010 [21] α→ 1 Oblivious No L1 regularization

Chen & Dalalyan, 2010 [7] α ≥ Ω (1) Adaptive No SOCP

Chen et al., 2013 [6] α ≥ Ω
(

1√
d

)
Adaptive No Robust thresholding

Nguyen & Tran, 2013 [16] α→ 1 Oblivious No L1 regularization
Nguyen & Tran, 2013b [17] α→ 1 Oblivious No L1 regularization

McWilliams et al., 2014 [14] α ≥ Ω
(

1√
d

)
Oblivious No Weighted subsampling

Bhatia et al., 2015 [3] α ≥ Ω (1) Adaptive No Hard thresholding
This paper α ≥ Ω (1) Oblivious Yes Hard thresholding

points from consideration. The RLSR problem formalizes this requirement as follows:

(ŵ, Ŝ) = arg min
w∈Rp,S⊂[n]
|S|=n−k

∑
i∈S

(yi − xTi w)2, (1)

This formulation seeks to simultaneously extract the set of uncorrupted points and estimate the
least-squares solutions over those uncorrupted points. Due to the combinatorial nature of the RLSR
formulation (1), solving it directly is challenging and in fact, NP-hard in general [3, 20].

Literature in robust statistics suggests several techniques to solve (1). The most common model
assumes a realizable setting wherein there exists a gold model w∗ that generates the non-corrupted
responses. A vector of corruptions is then introduced to model the corrupted responses i.e.

y = XTw∗ + b∗. (2)

The goal of RLSR is to recover w∗ ∈ Rd, the true model. The vector b∗ ∈ Rn is a k-sparse vector
which takes non-zero values on at most k corrupted samples out of the n total samples, and a zero
value elsewhere. A more useful, but challenging model is one in which (mostly heteroscedastic and
i.i.d.) Gaussian noise is injected into the responses in addition to the corruptions.

y = XTw∗ + b∗ + ε. (3)

Note that the Gaussian noise vector ε is not sparse. In fact, we have ‖ε‖0 = n almost surely.

2 Related Works

A string of recent works have looked at the RLSR problem in various settings. To facilitate a
comparison among these, we set the following benchmarks for RLSR algorithms

1. (Breakdown Point) This is the number of corruptions k that an RLSR algorithm can tolerate
is a direct measure of its robustness. This limit is formalized as the breakdown point of
the algorithm in statistics literature. The breakdown point k is frequently represented as a
fraction α of the total number of data points i.e. k = α · n.

2. (Adversary Model) RLSR algorithms frequently resort to an adversary model to specify
how are the corruptions introduced into the regression problem. The strictest is the adaptive
adversarial model wherein the adversary is able to view X and w∗ (as well as ε if Gaussian
noise is present) before deciding upon b∗. A weaker model is the oblivious adversarial
model wherein the adversary generates a k-sparse vector in complete ignorance of X and
w∗ (and ε). However, the adversary is still free to make arbitrary choices for the location
and values of corruptions.

3. (Consistency) RLSR algorithms that are able to operate in the hybrid noise model with
sparse adversarial corruptions as well as dense Gaussian noise are more valuable. An RLSR
algorithms is said to be consistent if, when invoked in the hybrid noise model on n data
points sampled from a distribution with appropriate characteristics, the RLSR algorithm
returns an estimate ŵn such that limn→∞ E [ŵn −w∗]2 = 0 (for simplicity, assume a fixed
covariate design with the expectation being over random Gaussian noise in the responses).
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In Table 1, we present a summarized view of existing RLSR techniques and their performance
vis-a-vis the benchmarks discussed above. Past work has seen the application of a wide variety
of algorithmic techniques to solve this problem, including more expensive methods involving L1

regularization (for example minw,b λw ‖w‖1 +λb ‖b‖1 +‖X>w+b−y‖22) and second-order cone
programs such as [21, 7, 16, 17], as well as more scalable methods such as the robust thresholding
and iterative hard thresholding [6, 3]. As the work of [3] shows, L1 regularization and other expensive
methods struggle to scale to even moderately sized problems.

The adversary models considered by these works is also quite diverse. Half of the works consider an
oblivious adversary and the other half brace themselves against an adaptive adversary. The oblivious
adversary model, although weaker, can model some important practical situations where there is
systematic error in the sensing equipment being used, such as a few pixels in a camera becoming
unresponsive. Such errors are surely not random, and hence cannot be modeled as Gaussian noise,
but introduce corruptions the final measurement in a manner that is oblivious of the signal actually
being sensed, in this case the image being photographed.

An important point of consideration is the breakdown point of these methods. Among those cited
in Table 1, the works of [21] and [16] obtain the best breakdown points that allow a fraction of
points to be corrupted that is arbitrarily close to 1. They require the data to be generated from either
an isotropic Gaussian ensemble or be row-sampled from an incoherent orthogonal matrix. Most
results mentioned in the table allow a constant fraction of points to be corrupted i.e. allow k = α · n
corruptions for some fixed constant α > 0. This is still impressive since it allows a dense subset of
data points to be corrupted and yet guarantees recovery. However, as we shall see below, these results
cannot guarantee consistency while allowing k = α · n corruptions.

We note that we use the term dense to refer to the corruptions in our model since they are a constant
fraction of the total available data. Moreover, as we shall see, this constant shall be universal and
independent of the ambient dimensionality d. This terminology is used to contrast against some other
works which can tolerate only o(n) corruptions which is arguably much sparser. For instance, as we
shall see below, the work of [17] can tolerate only o(n/ log n) corruptions if a consistent estimate is
expected. The work of [6] also offers a weak guarantee wherein they are only able to tolerate a 1/

√
d

fraction of corruptions. However, [6] allow corruptions in covariates as well.

However, we note that none of the algorithms listed here, and to the best of our knowledge elsewhere
as well, are able to guarantee a consistent solution, irrespective of assumptions on the adversary
model. More specifically, none of these methods are able to guarantee exact recovery of w∗, even
with n → ∞ and constant fraction of corruptions α = Ω (1) (i.e. k = Ω (n)) . At best, they
guarantee ‖w −w∗‖2 ≤ O (σ) when k = Ω (n) where σ is the standard deviation of the white noise
(see Equation 3). Thus, their estimation error is of the order of the white noise in the system, even if
the algorithm is supplied with an infinite amount of data. This is quite unsatisfactory, given our deep
understanding of the consistency guarantees for least squares models.

For example, consider the work of [17] which considers a corruption model similar to (3). The work
makes deterministic assumptions on the data matrix and proposes the following convex program.

min
w,b

λw ‖w‖1 + λb ‖b‖1 + ‖X>w + b− y‖22. (4)

For Gaussian designs, which we also consider, their results guarantee that for n = O (s log d),

‖ŵ −w∗‖2 + ‖b̂− b∗‖2 ≤ O

(√
σ2s log d log n

n
+

√
σ2k log n

n

)
where s is the sparsity index of the regressor w∗. Note that for k = Θ(n), the right hand side behaves
as Ω

(
σ
√

log n
)
. Thus, the result is unable to ensure limn→∞ E [ŵn −w∗]2 = 0.

We have excluded some classical approaches to the RLSR problem from the table such as [18, 1, 2]
which use the Least Median of Squares (LMS) and Least Trimmed Squares (LTS) methods that
guaranteed consistency but may require an exponential running time. Our focus is on polynomial
time algorithms, more specifically those that are efficient and scalable. We note a recent work [5]
in robust stochastic optimization which is able to tolerate a constant fraction of corruptions α→ 1.
However, their algorithms operate in the list-decoding model wherein they output not one, but as
many as O

(
1

1−α

)
models, of which one (unknown) model is guaranteed to be correct.
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Recovering Sparse High-dimensional Models: We note that several previous works extend their
methods and analyses to handle the case of sparse robust recovery in high-dimensional settings as
well, including [3, 7, 17]. A benefit of such extensions is the ability to work even in data starved
settings n � d if the true model w∗ is s-sparse with s � d. However, previous works continue
to require the number of corruptions to be of the order of k = o(n) or else k = O (n/s) in order
to ensure that limn→∞ E [ŵn −w∗]2 = 0 and cannot ensure consistency if k = O (n). This is
evident, for example from the recovery guarantee offered by [17] discussed above, which requires
k = o(n/ log n). We do believe our CRR estimator can be adapted to high dimensional settings as
well. However, the details are tedious and we reserve them for an expanded version of the paper.

3 Our Contributions

In this paper, we remedy the above problem by using a simple and scalable iterative hard-thresholding
algorithm called CRR along with a novel two-stage proof technique. Given n covariates that form a
Gaussian ensemble, our method in time poly(n, d), outputs an estimate ŵn s.t. ‖ŵn −w∗‖2 → 0 as
n → ∞ (see Theorem 4 for a precise statement). In fact, our method guarantees a nearly optimal

error rate of ‖ŵn −w∗‖2 ≤ σ
√

d
n . It is noteworthy that CRR can tolerate a constant fraction of

corruptions i.e. tolerate k = α · n corruptions for some fixed α > 0.

We note that although hard thresholding techniques have been applied to the RLSR problem earlier
[3, 6], none of those methods are able to guarantee a consistent solution to the problem. Our results
hold in the setting where a constant fraction of the responses are corrupted by an oblivious adversary
(i.e. the one which corrupts observations without information of the data points themselves). Our
algorithm runs in time Õ

(
d3 + nd

)
, where d is the dimensionality of the data. Moreover, as we shall

see, our technique makes more efficient use of data than previous hard thresholding methods such as
TORRENT [3].

To the best of our knowledge, this is the first efficient and consistent estimator for the RLSR problem
in the challenging setting where a constant fraction of the responses may be corrupted in the presence
of dense noise. We would like to note that the problem of consistent robust regression is especially
challenging because without the assumption of an oblivious adversary, consistent estimation with a
constant fraction of corruptions (even for an arbitrarily small constant) may be impossible even when
supplied with infinitely many data points.

However, by crucially using the restriction of obliviousness on the adversary along with a novel proof
technique, we are able to provide a consistent estimator for RLSR with optimal (up to constants)
statistical and computational complexity.

Discussion on Problem Setting: We clarify that our improvements come at a cost. Our results
assume an oblivious adversary whereas several previous works allowed a fully adaptive adversary.
Indeed there is no free-lunch: it seems unlikely that consistent estimators are even possible in the
face of a fully adaptive adversary who can corrupt a constant fraction of responses since such an
adversary can use his power to introduce biased noise into the model in order to defeat any estimator.
An oblivious adversary is prohibited from looking at the responses before deciding the corruptions
and is thus unable to do the above.

Paper Organization: We will begin our discussion by introducing the problem formulation, relevant
notation, and tools in Section 4. This is followed by Section 5 where we develop CRR, a near-linear
time algorithm that gives consistent estimates for the RLSR problem, which we analyze in Section 6.
Finally in Section 7, we present rigorous experimental benchmarking of this algorithm. In Section 8
we offer some clarifications on how the manuscript was modified in response to reviewer comments.

4 Problem Formulation

We are given n data points X = [x1, . . . ,xn] ∈ Rd×n, where xi ∈ Rd are the covariates and, for
some true model w∗ ∈ Rd, the vector of responses y ∈ Rn is generated

y = X>w∗ + b∗ + ε. (5)
The responses suffer two kinds of perturbations – dense white noise εi ∼ N (0, σ2) that is chosen
in an i.i.d. fashion independently of the data X and the model w∗, and adversarial corruptions
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Algorithm 1 CRR: Consistent Robust Regression

Input: Covariates X = [x1, . . . ,xn], responses y = [y1, . . . , yn]>, corruption index k, tolerance ε
1: b0 ← 0, t← 0,
PX ← X>(XX>)−1X

2: while
∥∥bt − bt−1

∥∥
2
> ε do

3: bt+1 ← HTk(PXbt + (I − PX)y)
4: t← t+ 1
5: end while
6: return wt ← (XX>)−1X(y − bt)

in the form of b∗. We assume that b∗ is a k∗-sparse vector albeit one with potentially unbounded
entries. The constant k∗ will be called the corruption index of the problem. We assume the oblivious
adversary model where b∗ is chosen independently of X,w∗ and ε.

Although there exist works that operate under a fully adaptive adversary [3, 7], none of these works
are able to give a consistent estimate, whereas our algorithm CRR does provide a consistent estimate.
We also note that existing works are unable to give consistent estimates even in the oblivious adversary
model. Our result requires a significantly finer analysis; the standard `2-norm style analysis used by
existing works [3, 7] seems incapable of offering a consistent estimation result in the robust regression
setting.

We will require the notions of Subset Strong Convexity and Subset Strong Smoothness similar to [3]
and reproduce the same below. For any set S ⊂ [n], let XS := [xi]i∈S ∈ Rd×|S| denote the matrix
with columns in that set. We define vS for a vector v ∈ Rn similarly. λmin(X) and λmax(X) will
denote, respectively, the smallest and largest eigenvalues of a square symmetric matrix X .
Definition 1 (SSC Property). A matrix X ∈ Rd×n is said to satisfy the Subset Strong Convexity
Property at level m with constant λm if the following holds:

λm ≤ min
|S|=m

λmin(XSX
>
S )

Definition 2 (SSS Property). A matrix X ∈ Rd×n is said to satisfy the Subset Strong Smoothness
Property at level m with constant Λm if the following holds:

max
|S|=m

λmax(XSX
>
S ) ≤ Λm.

Intuitively speaking, the SSC and SSS properties ensure that the regression problem remains well
conditioned, even if restricted to an arbitrary subset of the data points. This allows the estimator to
recover the exact model no matter what portion of the data was left uncorrupted by the adversary. We
refer the reader to the Appendix A for SSC/SSS bounds for Gaussian ensembles.

5 CRR: A Hard Thresholding Approach to Consistent Robust Regression

We now present a consistent method CRR for the RLSR problem. CRR takes a significantly different
approach to the problem than previous works. Instead of attempting to exclude data points deemed
unclean (as done by the TORRENT algorithm proposed by [3]), CRR focuses on correcting the errors.
This allows CRR to work with the entire dataset at all times, as opposed to TORRENT that works
with a fraction of the data at any given point of time.

To motivate the CRR algorithm, we start with the RLSR formulation
minw∈Rp,‖b‖0≤k∗

1
2

∥∥X>w − (y − b)
∥∥2

2
, and realize that given any estimate b̂ of the cor-

ruption vector, the optimal model with respect to this estimate is given by the expression
ŵ = (XX>)−1X(y − b̂). Plugging this expression for ŵ into the formulation allows us to
reformulate the RLSR problem.

min
‖b‖0≤k∗

f(b) =
1

2
‖(I − PX)(y − b)‖22 (6)

where PX = X>(XX>)−1X . This greatly simplifies the problem by casting it as a sparse parameter
estimation problem instead of a data subset selection problem (as done by TORRENT). CRR directly
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optimizes (6) by using a form of iterative hard thresholding. Notice that this approach allows CRR
to keep using the entire set of data points at all times, all the while using the current estimate of the
parameter b to correct the errors in the observations. At each step, CRR performs the following
update: bt+1 = HTk(bt −∇f(bt)), where k is a parameter for CRR. Any value k ≥ 2k∗ suffices
to ensure convergence and consistency, as will be clarified in the theoretical analysis. The hard
thresholding operator HTk(·) is defined below.

Definition 3 (Hard Thresholding). For any v ∈ Rn, let the permutation σv ∈ Sn order elements
of v in descending order of their magnitudes. Then for any k ≤ n, we define the hard thresholding
operator as v̂ = HTk(v) where v̂i = vi if σ−1

v (i) ≤ k and 0 otherwise.

We note that CRR functions with a fixed, unit step length, which is convenient in practice as it avoids
step length tuning, something most IHT algorithms [12, 13] require. For simplicity of exposition, we
will consider only Gaussian ensembles for the RLSR problem i.e. xi ∼ N (0,Σ); our proof technique
works for general sub-Gaussian ensembles with appropriate distribution dependent parameters. Since
CRR interacts with the data only using the projection matrix PX , for Gaussian ensembles, one can
assume without loss of generality that the data points are generated from a spherical Gaussian i.e.
xi ∼ N (0, Id×d). Our analysis will take care of the condition number of the data ensemble whenever
it is apparent in the convergence rates.

Before moving to present the consistency and convergence guarantees for CRR, we note that
Gaussian ensembles are known to satisfy the SSC/SSS properties with high probability. For instance,
in the case of the standard Gaussian ensemble, we have SSC/SSS constants of the order of Λm ≤
O
(
m
√

log n
m +

√
n
)

and λm ≥ n − O
(

(n−m)
√

log n
n−m +

√
n
)

. These results are known
from previous works [3, 10] and are reproduced in Appendix A.

6 Consistency Guarantees for CRR

Theorem 4. Let xi ∈ Rd, 1 ≤ i ≤ n be generated i.i.d. from a Gaussian distribution, let yi’s
be generated using (5) for a fixed w∗, and let σ2 be the noise variance. Also let the number of
corruptions k∗ be s.t. 2k∗ ≤ k ≤ n/10000. Then for any ε, δ > 0, with probability at least 1−δ, after

O
(

log
‖b∗‖2
σk+ε + log n

d

)
steps, CRR ensures that ‖wt −w∗‖2 ≤ ε+O

(
σ√

λmin(Σ)

√
d
n log nd

δ

)
.

The above result establishes consistency of the CRR method with an error rate of Õ(σ
√
d/n) that is

known to be statistically optimal. It is notable that this optimal rate is being ensured in the presence of
gross and unbounded outliers. We reiterate that to the best of our knowledge, this is the first instance
of a poly-time algorithm being shown to be consistent for the RLSR problem. It is also notable that
the result allows the corruption index to be k∗ = Ω(n), i.e. allows upto a constant factor of the total
number of data points to be arbitrarily corrupted, while ensuring consistency, which existing results
[3, 6, 16] do not ensure.

We pause a bit to clarify some points regarding the result. Firstly we note that the upper bound on
recovery error consists of two terms. The first term is ε which can be made arbitrarily small simply by
executing the CRR algorithm for several iterations. The second term is more crucial and underscores
the consistency properties of CRR. The second term is of the form O

(
σ
√
d log(nd)/n

)
and is

easily seen to vanish with n→∞ for any constant d, σ. Secondly we note that the result requires
k∗ ≤ n/20000 i.e. α ≤ 1/20000. Although this constant might seem small, we stress that these
constants are not the best possible since we preferred analyses that were more accessible. Indeed,
in our experiments, we found CRR to be robust to much higher corruption levels than what the
Theorem 4 guarantees. Thirdly, we notice that the result requires the CRR to be executed with the
corruption index set to a value k ≥ 2k∗. In practice the value of k can be easily tuned using a simple
binary search because of the speed of execution that CRR offers (see Section 7).

For our analysis, we will divide CRR’s execution into two phases – a coarse convergence phase and
a fine convergence phase. CRR will enjoy a linear rate of convergence in both phases. However, the
coarse convergence analysis will only ensure ‖wt −w∗‖2 = O (σ). The fine convergence phase
will then use a much more careful analysis of the algorithm to show that in at most O (log n) more
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iterations, CRR ensures ‖wt −w∗‖2 = Õ(σ
√
d/n), thus establishing consistency of the method.

Existing methods, such as TORRENT, ensure an error level of O (σ), but no better.

As shorthand notation, let λt := (XX>)−1X(bt−b∗), g := (I −PX)ε, and vt = X>λt +g. Let
S∗ := supp(b∗) be the true locations of the corruptions and It := supp(bt) ∪ supp(b∗).

Coarse convergence: Here we establish a result that guarantees that after a certain number of steps
T0, CRR identifies the corruption vector with a relatively high accuracy and consequently ensures
that

∥∥wT0 −w∗
∥∥

2
≤ O (σ).

Lemma 5. For any data matrix X that satisfies the SSC and SSS properties such that 2Λk+k∗

λn
< 1,

CRR, when executed with k ≥ k∗, ensures for any ε, δ > 0, with probability at least 1 − δ (over
the random Gaussian noise ε in the responses – see (3)) that after T0 = O

(
log
‖b∗‖2
e0+ε

)
steps,∥∥bT0 − b∗

∥∥
2
≤ 3e0 + ε, where e0 = O

(
σ
√

(k + k∗) log n
δ(k+k∗)

)
for standard Gaussian designs.

Using Lemma 12 (see the appendix), we can translate the above result to show that
∥∥wT0 −w∗

∥∥
2
≤

0.95σ + ε, assuming k∗ ≤ k ≤ n
150 . However, Lemma 5 will be more useful in the following fine

convergence analysis.

Fine convergence: We now show that CRR progresses further at a linear rate to achieve a consistent
solution. In Lemma 6, we show that ‖X(bt − b∗)‖2 has a linear decrease for every iteration t > T0

along with a term which is Õ(
√
dn). The proof proceeds by showing that for any fixed λt such that

‖λt‖2 ≤ σ
100 , we obtain a linear decrease in ‖λt+1‖2 = ‖(XXT )−1X(bt+1 − b∗)‖2. We then take

a union bound over a fine ε-net over all possible values of λt to obtain the final result.

Lemma 6. Let X = [x1,x2, . . . ,xn] be a data matrix consisting of i.i.d. standard normal vectors i.e
xi ∼ N (0, Id×d), and ε ∼ N (0, σ2 · In×n) be a standard normal vector of white noise values drawn
independently of X . For any λ ∈ Rd such that ‖λ‖2 ≤

σ
100 , define bnew = HTk(X>λ + ε + b∗),

znew = bnew − b∗ and λnew = (XXT )−1Xznew, where k ≥ 2k∗, |supp(b∗)| ≤ k∗, k∗ ≤ n/10000,
and d ≤ n/10000. Then, with probability at least 1− 1/n5, for every λ s.t. ‖λ‖2 ≤

σ
100 , we have

‖Xznew‖2 ≤ .9n‖λ‖2 + 100σ
√
d · n log2 n,

‖λnew‖2 ≤ .91‖λ‖2 + 110σ

√
d

n
log2 n.

Putting all these results together establishes Theorem 4. See Appendix B for a detailed proof. Note
that while both the coarse/fine stages offer a linear rate of convergence, it is the fine phase that ensures
consistency. Indeed, the coarse phase only acts as a sort of good-enough initialization. Several
results in non-convex optimization assume a nice initialization “close” to the optimum (alternating
minimization, EM etc). In our case, we have a happy situation where the initialization and main
algorithms are one and the same. Note that we could have actually used other algorithms e.g.
TORRENT to perform initialization as well since TORRENT [3, Theorem 10] essentially offers the
same (weak) guarantee as Lemma 5 offers.

7 Experiments

Experiments were carried out on synthetically generated linear regression datasets with corruptions.
All implementations were done in Matlab and were run on a single core 2.4GHz machine with
8GB RAM. The experiments establish the following: 1) CRR gives consistent estimates of the
regression model, especially in situations with a large number of corruptions where the ordinary least
squares estimator fails catastrophically, 2) CRR scales better to large datasets than the TORRENT-FC
algorithm of [3] (upto 5× faster) and the Extended Lasso algorithm of [17] (upto 20× faster). The
main reason behind this speedup is that TORRENT keeps changing its mind on which active set of
points it wishes to work with. Consequently, it expends a lot of effort processing each active set.
CRR on the other hand does not face such issues since it always works with the entire set of points.

Data: The model w∗ ∈ Rd was chosen to be a random unit norm vector. The data was generated
as xi ∼ N (0, Id). The k∗ responses to be corrupted were chosen uniformly at random and the
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Figure 1: Variation of recovery error with varying number of data points n, dimensionality d, number of
corruptions k∗ and white noise variance σ. CRR and TORRENT show better recovery properties than the
non-robust OLS on all experiments. Extended Lasso offers comparable or slightly worse recovery in most
settings. Figure 1(a) ascertains the Õ

(√
1/n

)
-consistency of CRR as is shown in the theoretical analysis.
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Figure 2: Figure 2(a) show the average CPU run times of CRR, TORRENT and Extended Lasso with varying
sample sizes. CRR can be an order of magnitude faster than TORRENT and Extended Lasso on problems
in 1000 dimensions while ensuring similar recovery properties.. Figure 2(b), 2(c) and 2(d) show that CRR
eventually not only captures the total mass of corruptions, but also does support recovery of the corrupted points
in an accurate manner. With every iteration, CRR improves upon its estimate of b∗ and provides cleaner points
for estimation of w. CRR is also able to very effectively utilize larger data sets to offer much faster convergence.
Notice the visibly faster convergence in Figure 2(d) which uses 10x more points than figure (c).

value of the corruptions was sets as b∗i ∼ Unif (10, 20). Responses were then generated as yi =
〈xi,w∗〉+ ηi + b∗i where ηi ∼ N (0, σ2). All reported results were averaged over 20 randomly trials.

Evaluation Metric: We measure the performance of various algorithms using the standard L2 error:
rŵ = ‖ŵ −w∗‖2. For the timing experiments, we deemed an algorithm to converge on an instance
if it obtained a model wt such that ‖wt −wt−1‖2 ≤ 10−4.

Baseline Algorithms: CRR was compared to two baselines 1) the Ordinary Least Squares (OLS)
estimator which is oblivious of the presence of any corruptions in the responses, 2) the TORRENT
algorithm of [3] which is a recently proposed method for performing robust least squares regression,
and 3) the Extended Lasso (ex-Lasso) approach of [15] for which we use the FISTA implementation
of [23] and choose the regularization paramaters for our model data as mentioned by the authors.

Recovery Properties & Timing: CRR, TORRENT and ex-Lasso were found to be competitive, and
offered much lower residual errors ‖w − w∗‖2 than the non-robust OLS method when varying
dataset size Figure 1(a), dimensionality Figure 1(b), number of corrupted responses Figure 1(c), and
magnitude of white noise Figure 1(d). In terms of scaling properties, CRR exhibited faster runtimes
than TORRENT-FC as depicted in Figure 2(a). CRR can be upto 5× faster than TORRENT and upto
20× faster than ex-Lasso on problems of 1000 dimensions. Figure 2(a) suggests that executing
both TORRENT and ex-Lasso becomes very expensive with an order of magnitude increase in the
dimension parameter of the problem while CRR scales gracefully. Also, Figures 2(c) and 2(d) show
the variation of ‖bt − b∗‖2 for various values of the noise parameter σ. The plot depicts the fact
that as σ → 0, CRR is correctly able to identify all the corrupted points and estimate the level of
corruption correctly, thereby returning the exact solution w∗. Notice that in Figure 2(d) which utilizes
more data points, CRR offers uniformly faster convergence across all white noise levels.

Choice of Potential Function: In Lemmata 5 and 6, we show that ‖bt − b∗‖2 decreases with every
iteration. Figures 2(c) and (d) back this theoretical statement by showing that CRR’s estimate of b∗
improves with every iteration. Along with estimating the magnitude of b∗, Figure 2(b) shows that
CRR is also able to correctly identify the support of the corrupted points with increasing iterations.
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8 Response to Reviewer Comments

We are thankful to the reviewers for their comments aimed at improving the manuscript. Below we
offer some clarifications regarding the same.

1. We have fixed all typographical errors pointed out in the reviews.

2. We have included additional references as pointed out in the reviews.

3. We have improved the presentation of the statement of the results to make the theorem and
lemma statements more crisp and self contained.

4. We have fixed minor inconsistencies in the figures by executing experiments afresh.

5. We note that CRR’s reduction of the robust recovery problem to sparse recovery is not
only novel, but also one that offers impressive speedups in practice over the fully corrective
version of the existing TORRENT algorithm [3]. However, note that the reduction to sparse
recovery actually hides a sort of “fully-corrective” step wherein the optimal model for a
particular corruption estimate is used internally in the formulation. Thus, CRR is implicitly
a fully corrective algorithm as well.

6. We agree with the reviewers that further efforts are needed to achieve results with sharper
constants. For example, CRR offers robustness upto a breakdown fraction of 1/20000 which,
although a constant, nevertheless leaves room for improvement. Having shown for the first
time that tolerating a non-trivial, universally constant fraction of corruptions is possible
in polynomial time, it is indeed encouraging to study how far can the breakdown point be
pushed for various families of algorithms.

7. Our current efforts are aimed at solving the robust sparse recovery problems in high di-
mensional settings in a statistically consistent manner, as well as extending the consistency
properties established in this paper for non-Gaussian, for example fixed, designs.
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