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Abstract

In this paper, we study the problem of recommendation system where the users/items to be
recommended are ”rich” data structures with multiple entity types and with multiple sources
of side-information in the form of graphs. We provide a general formulation for the problem
that captures the complexities of modern real-world recommendations and generalizes many
existing formulations. In our formulation, each user/document that requires a recommendation
and each item/tag that is to be recommended, both are modeled by a set of static entities and
a dynamic component. The relationships between entities are captured by several weighted
bipartite graphs. To effectively exploit these complex interactions and learn the recommen-
dation model, we propose MEDRES– a multiple graph-CNN based novel deep-learning ar-
chitecture. MEDRES uses AL-GCN, a novel graph convolution network block, that harnesses
strong representative features from the underlying graphs. Moreover, in order to capture highly
heterogeneous engagement of different users with the system and constraints on the number of
items to be recommended, we propose a novel ranking metric pAp@k along with a method to
optimize the metric directly. We demonstrate effectiveness of our method on two benchmarks:
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a) citation data, b) Flickr data. In addition, we present two real-world case studies of our for-
mulation and the MEDRES architecture. We show how our technique can be used to naturally
model the message recommendation problem and the teams recommendation problem in the
Microsoft Teams (MSTeams) product and demonstrate that it is 5-6% points more accurate
than the production-grade models.

1 Introduction

Recommendation systems are a mainstay of most online systems and have been modeled using
various approaches such as (inductive) matrix completion, nearest neighbor based predictions,
content filtering [16, 10, 2]. However, typical formulations simplify the entire system significantly,
e.g., modeling users and items as a single static entity (collaborative filtering).While such simple
abstractions provide tractable formulations that can be addressed using rigorous algorithms, they
ignore key subtleties of the product environment. In a product system, information is available
in multiple and varied forms, all of which may be important for the recommendation module to
perform to its full potential. To capture all the information in the system and yet avoid the need for
changing the model formulation with the addition of a new form of information, several practical
recommender systems adhere to the content filtering based approaches. In these approaches, all
joint features for (user, item) tuples, extracted from the product, are fed into a classifier [18].
However, designing features for these approaches is a difficult problem, especially for real-world
systems with several sources of information. Consequently, such methods suffer from issues such
as poor accuracy and a difficult maintenance cycle.

Recent works in the domain of Heterogeneous Information Network (HIN) have proposed
to better model such real-life systems with multiple heterogeneous sources of side-information,
by constructing heterogeneous graphs and typically use certain metapaths side-information [6] or
powerful attention/LSTM based models [31] to extract meaningful information from the hetero-
geneous graphs. However, these methods still, in general, model a user or item as fixed static
entity with a few attributes, so do not capture challenges with many real-world systems where the
users/items themselves can be ”rich”, i.e., are associated with multiple static and dynamic entities
(see below).

In this paper, we propose a general formulation for the recommendation problem with rich
users and items. In particular, we model the real-world scenarios by considering two types of
entities: (a) static and (b) dynamic. In a given time window, static entities are (mostly) fixed while
dynamic entities are generated and modified at a high rate. For example, consider the citation
prediction problem [34], where the goal is to predict the set of papers that should be cited by
a given paper. Here, the authors and the conferences represent the static entities because their
attributes/behavior is fixed in a considerably large time window. On the other hand, the content of
the paper (e.g. title/abstract) represents the dynamic entities, as they are generated at a considerably
high frequency.

Given this notion of static and dynamic entities, we formalize both the user – an entity that
seeks out the recommendation – and the item–an entity to be recommended –as a collection of static
entities as well as a dynamic component. For example, consider an author who is seeking citation
recommendations for her paper in preparation, which she plans to submit to a particular conference
venue. Here, the user (i.e. the paper) is composed of static entities such as author and conference

2



venue while it’s dynamic component is the paper title or abstract. Similarly, the research papers to
be recommended are composed of their authors (static), conference venues (static) where they were
published, and their title or abstract (dynamic). We call this representation a ‘rich’ representation
of users and items. Notice that many items or users may have the same static entities but a different
dynamic component.

Standard systems log a multitude of behavioral information about static entities using their past
interaction with each other. These interactions, relationships, and engagements can be naturally
represented using graphs. One example is the author-conference graph, where an edge denotes the
number of papers an author has published in a particular conference. Typical systems would have
multiple such graphs among the entities.

Using the above mentioned ”rich” representation for users/items along with their behavior cap-
tured by multiple graphs, we formulate the recommendation problem as that of finding relevance of
an item for a user. The training data consists of labeled (user, item) tuples and multiple bi-partite
graphs between static entities. For this formulation, we propose a novel architecture, Multiple
Entity based Deep REcommendation System (MEDRES), that combines the multiple entities and
graphs associated with users and items via graph embedding techniques to embed each entity in a
vector space after accumulating information from multiple graphs for that entity. We then concate-
nate the entity embeddings with the dynamic component to obtain richer representations of users
as wells as items. These representations are then fed to a multi-layer perceptron (MLP) to infer
how relevant an item is for a user.

Now, in general, MEDRES can be combined with any standard graph embedding technique
like Graph Convolution Networks (GCN) [15], Graph Recurrent Neural Networks (GRNN) [33],
Node2Vec [9] to process the given multiple graphs and produce representations for static entities.
GCN, in particular, has been shown to be one of the most successful techniques in this domain
and allows for efficient end-to-end training of the architecture. However, GCN is designed for
semi-supervised settings where a node in the graph can correspond to only one labeled data point.
So GCN’s goal is to do label propagation over the graph. In our case, a node can correspond to
multiple labeled points, and the total volume of labeled data is substantial, so the goal of graph-
processing is to extract powerful features by training with the labeled data. To this end, we propose
a novel AL-GCN block, that builds upon GCN but adds residual connections, and also allows for
learning non-linear functions of edge-weights to extract powerful features. We observe empirically
that AL-GCN indeed improves the performance of MEDRES significantly, and due to it’s general-
ity as a Graph Neural Network block, can be used in various other graph embedding applications.

One crucial advantage of MEDRES is that it is an end-to-end architecture that can be trained
for the required metric. Thus, we may optimize MEDRES for standard metrics like AUC, partial-
AUC (pAUC), Precision@k (prec@k) [5, 22, 17]. However, existing metrics struggle with two
well-known characteristics of real-world recommendation systems: a) the number of items (k) to
be recommended per user is bounded, b) a large variance in the number of positives across users
(or nodes in the graph). Due to a combination of the above-mentioned issues, existing metrics can
fail to capture the ”correct” solution and can paint a misleading picture (see Section 3.3). In this
paper, we design a new metric –partial-AUC+precision@k (pAp@k)– that combines pAUC and
prec@k, and is aware of the above-mentioned characteristics. In fact, the metric is used in multiple
production systems deployed by MSTeams. In this paper, we formalize the metric and provide an
optimization algorithm for the same that we use to train our MEDRES architecture.

Finally, we study the wide-applicability of our formulation and effectiveness of our algorithm
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by modeling two problems in MSTeams: message recommendation and Team/Group recommen-
dation. We observe that MEDRES provides impressive gains over the production models for the
message recommendation system deployed in MSTeams. We also apply our MEDRES architec-
ture to two publicly available datasets: a) citation dataset, b) Flickr dataset. For both these datasets,
we show how challenging recommendation problems can easily be instantiated in our framework,
and can provide up to 5− 6% more accurate recommendations than standard baselines.

In summary, following are the key contributions of the paper:

• We propose a new formulation for the modern recommendation systems via ”rich” users and
items, that effectively captures dynamically generated content, static entities, and multiple
relationships among the entities (Section 2).
• We propose MEDRES, a multiple Graph-CNN based architecture to exploit the above formu-

lation (Section 3). MEDRES’ backbone architecture critically uses AL-GCN, a novel graph
embedding technique.
• We propose a new metric pAp@k, that captures subtleties in several real-world recommenda-

tion systems. We also provide an algorithm to optimize the proposed metric (Section 3). The
pAp@k metric is used for evaluation in multiple real-world recommendation systems.
• We present empirical validation of our proposed solutions on two benchmark datasets. We

also demonstrate our technique on two real-world recommendation systems for MSTeams1

where our method significantly outperforms strong production-grade models, and is being
deployed in the product.

1.1 Related Works
Heterogeneous Information Networks (HINs) is a popular approach to model multiple heteroge-
neous entities in the system, and are used in several representation learning problems [35, 37, 7].
The core idea of HINs is the emphasis on the graph’s heterogeneous entities, but the user-item
pairs are considered as static nodes in the graph, thus do not allow for rich users/items with mul-
tiple static entities or dynamic component. For example, in the formulation of HINs for citation
networks, if citations are required for a new paper, ideally the entire model needs retraining. Our
formulation, on the other hand, allows for a more flexible and richer aspect of user-item pairs by al-
lowing items to be dynamic and users and related entities to be static in the system. For instance, in
the case of a new paper, we model it as a dynamic item represented by the paper’s content vector in
our formulation. In another related study[28], the authors also use GCNs to learn embeddings from
multiple graphs to compute relevance between user-item pairs, but their approach is also restricted
to a static set of items, contrary to the proposed framework which can model items dynamically.
Thus, HIN and related works are complementary to our approach, where their architecture can be
used as the graph embeddings extraction block in our novel framework.

Graph Representation Learning (GRL) has been widely studied in the literature, and several
GRL approaches have been proposed such as Graph Convolutional Networks (GCN) [15], Graph
Recurrent Neural Networks (GRNN) [33], node2Vec [9], DeepWalk [24], NGM [3], etc. but all
these methods take graph weights as given, which could be problematic because of noise in the real
world graphs. GAM [27] is an exception to this, but the method proposed in GAM still uses the
same weighing scheme, with augmentation of the propagated weights. AL-GCN on the other hand

1MSTeams is an enterprise chat+meeting product with millions of active users

4



learns the graph weights in an end-to-end fashion, thereby extracting task-specific signals from the
graph.

Finally, there exists a vast literature on metrics in recommendation system. AUC, pAUC,
prec@k, and NDCG@k are the most well-known and popular metrics in this space [22, 11, 30,
19, 4]. However, these metrics do not address the bipartite ranking problem with varied user
engagement levels and limitations on the number of recommended items, a problem at the heart
of several modern recommendation systems. The pAp@k metric is designed to address the above-
mentioned problem and is in use by multiple production systems at MS Teams (see Section 3).

2 Problem Formulation
Given a user/document U and an item I, the goal is to find relevance score of I for U . Both U and
I are complex entities with several static sub-entities and a dynamic component. Let E (1), . . . , E (E)

be given entity types for some E ∈ Z+. An entity type can be a set of authors, groups, venues etc.
E (i)U denotes the i-th entity type for user. For example, if E (1) denotes the set of groups, then E (1)U
denotes the group of U . With these notations in place, U is now defined as:

U = (E (a1)U , . . . , E (ak1 )U , ζ(U)), (1)

where each U is associated with k1 entity types: E (ai), i ∈ [k1], and [k] = {1, . . . , k} denotes
the index set for k ∈ Z+. ζ(U) is the dynamic part of U . For example, for a research paper
U being written for conference C by author A, the entities are conference Econf.U = C and author
Eauth.U = A. The dynamic part is the text of the paper, i.e., ζ(U) ∈ RDU can be sayDU -dimensional
word2vec embedding [20] of the paper’s abstract and title. Similarly, an item I is defined as:

I = (E (b1)I , . . . , E (bk2 )I , ν(I)), (2)

where ν(I) ∈ RDI denotes the dynamic part of the item with DI being the dimension of the
dynamic component. For instance, a citation item has two static entities (authors and conference
venue) and it’s dynamic part is the word-embedding of paper title. The goal is to recommend
citations i.e. a set of items for a new research paper U .

Additionally, a multitude of behavioral information about static entities can be collected using
their past interactions. These interactions are expressed via (multiple) bipartite graphs. For exam-
ple, we may have an author-conference graph where an edge represents the number of times an
author has published at a conference. We denote these bipartite graphs between entities E (a), E (b)
as: Ga,b = (V a,b, Aa,b), where V a,b is the set of nodes and Aa,b ∈ R|E(a)|×|E(b)| is the adjacency ma-
trix of the graph. The rows and columns inAa,b are associated with entity instances of type E (a) and
E (b), respectively. For any two entity types E (a) and E (b), we may have multiple bipartite graphs de-
noting different interactions. Thus, let Ga,b = {Ga,b,1, . . . , Ga,b,|Ga,b|} be the set of graphs between
entities E (a) and E (b). Furthermore, let the set of all graphs be represented by G = {G1, . . . , G|G|}.
In addition to such graphs, we are provided the following dataset for training:

D = {(U1, I1, y1), . . . , (Un, In, yn)}, (3)

where yi ∈ {0, 1} is the label of the i-th (user, item) pair and denotes the binary relevance of
item Ii for user Ui. Given all this information, the goal is to find a scoring function that computes
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relevance of I for U . That is, givenD, entities E (1), . . . , E (E), graphs G, the goal is to find a scoring
function s(U , I) that works best for a certain metricM(D). For example, for binary labels yi’s,
the goal would be to find a score s s.t. s(Ui, Ii) > s(Uj, Ij) if yi > yj .

Note that most of the existing recommender system formulations can be expressed as a special
case of this general formulation. For example, typical collaborative filtering [16] is defined by
U = (Euser), I = (E item). That is, there are only two entity types: the set of users and set of items.
Furthermore, users/items do not have any dynamic content. Berg et al. [2] extended this model by
considering the ratings graph GU ,I between users and items. That is, edge (U , I) exists in graph if
U has given I a fixed rating. This model is also a special case of our formulation where we have
only two types of entities U , I, and the only graphs are the ratings graphs.

Similarly, inductive matrix factorization [10] models the problem as: U = (ζ(U)), I = (E item),
where the set of entities contains only the item entity itself. ζ(U) is the dynamic user/document
feature of U . Recently, several papers [25, 21, 37, 36, 31] have studied the matrix completion
problem with graph based side-information and several attributes. Typically, these works model
the users/items as: U = (Euser), I = (E item) with graphs among users, items, and their attributes.
Finally, the standard content filtering approaches [1, 13, 18] do not exploit graph structure and
directly models the (U , I) pair as: φ(U , I), i.e., via hand-coded features for U , I pair. This shows
that most of the existing recommendation problems are a special case of our general framework.
Moreover, unlike standard formulations, our general framework leads to a real-world recommen-
dation system that captures much more complex entities and stitches together various sources of
information.

3 Method
We first discuss the proposed architecture MEDRES, which stitches several types of interactions
amongst multiple entities to recommend Is for Us followed by AL-GCN which extends GCN by
using non-linear adjacency matrix. We then discuss the new metric, pAp@k, which appropriately
measures the effectiveness of a recommendation system in a classification+ranking scenario such
as ours followed by an optimization method for the proposed metric. Lastly, we discuss the training
of MEDRES for optimizing pAp@k metric.

3.1 MEDRES Architecture
In this section, we propose MEDRES, an end-to-end architecture, to learn multiple embeddings
for all entity instances of every entity type. We then concatenate all these embeddings along with
dynamic content to obtain rich [U , I] representations and feed them into a multi-layer perceptron
(MLP) network to obtain the final relevance score.

Unlike existing methods [18], which use feature extraction from graphs and a separate classi-
fication model, we learn all the parameters simultaneously for training our end-to-end architecture
while optimizing the proposed metric pAp@k. Please see Figure 1a for a block representation of
the framework.

Let us suppose that we are given a bipartite graph Ga,b between two entities E (a) and E (b). For
simplicity of exposition, let us represent the graph as G = {V (a) ∪ V (b), A}, where V (a) and V (b)

correspond to entity instances of entity types E (a) and E (b), respectively, and A is the adjacency
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Figure 1

matrix between the nodes defined as:

A =

(
0 Aa,b

(Aa,b)T 0

)
.

Let F (a) ∈ R|V (a)|×p and F (b) ∈ R|V (b)|×q be the feature matrices of entity instances associated
with E (a) and E (b), respectively2. Then, the embeddings for a and b are computed as:[

Z(a)

Z(b)

]
= fe(A,F ) (4)

where fe is an embedding function (such as Graph Convolution Networks [15]) that takes as input
the adjacency matrix A and the feature matrix F of Ga,b and outputs Z(a) ∈ R|V (a)|×DCN , Z(b) ∈
R|V (b)|×DCN , the embeddings of entities E (a) and E (b). Here, F is given by: F = [F (a) 0; 0 F (b)].

Now, as we discussed in Section 2, there can be multiple graphs between entity types E (a)
and E (b). For example, interactions such as ‘number of papers published’ and ‘number of papers
cited’ in a conference by an author may be represented as two different graphs. We merge all the
embeddings of an entity type learnt by fe independently from all the interaction graphs using a
fully connected layer. We refer to this layer as the Emb-merge layer. Formally, let Ga,b be the set
of graphs between entities E (a) and E (b). Then, we first concatenate all embeddings i.e. Z(a)’s (4)
of entity instances in E (a) emerging from the graphs in Ga,b and merge them using a fully connected
layer. The same is done for entity instances in E (b) as described in the following formulation:

Z̄a,b =

[
Z̄(a)

Z̄(b)

]
= RELU

([
Z

(a)
1 · · ·Z

(a)

|Ga,b|

Z
(b)
1 · · ·Z

(b)

|Ga,b|

] [
W (a)

W (b)

]
+

[
c(a)

c(b)

])
, (5)

where Z̄a,b ∈ R(|V a|+|V b|)×DMN with DMN being the Emb-merge layer’s embedding dimensions,
c(a), c(b) ∈ RDMN and W (a),W (b) ∈ R(|Ga,b|∗DCN)×DMN are the biases and weights of the Emb-merge

2In the absence of feature vectors, we can select the one-hot encoding of nodes for E(a).
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layer, respectively. Notice that we always have the flexibility to choose different dimensions DMN

for different entity types. Z̄(a) represents an embedding of entity instances in E (a) with regards
to E (b). For example, at this stage, we have embedding of authors due to all the interactions with
conferences.

After utilizing all the static information (graphs) to get entity embeddings, now we augment
the dynamic content as features. That is, we represent every user/document U as:

Φ(U) = [Z̄1,2
U , Z̄1,3

U , . . . , Z̄E,E
U , ζ(U)], (6)

where Zi,j
U is the Emb-merge embedding of U from all the graphs between entities E (i) and E (j). If

U is not of type E (i) and E (j), then Zi,j
U = 0. We represent each item I similarly.

We call the concatenation of user-item representations [Φ(U); Φ(I)] as the S-D-content em-
bedding, where S-D stands for ‘static’-‘dynamic’. We then apply an MLP layer on the final S-D-
content as follows:

s(U , I) = σ(RELU(RELU([Φ(U); Φ(I)]M1)M2)M3), (7)

where Mi’s are the weight matrices and σ is the sigmoid function (for binary classification prob-
lem).

3.2 Adjacency Learnt GCN (AL-GCN)
MEDRES can be combined with any standard graph embedding technique like GCN, GRNN,
Node2Vec to process multiple graphs, but now we propose AL-GCN, a new graph embedding
technique which performs better than these techniques, when combined with MEDRES. AL-GCN
is a novel GCN style graph embedding technique that provides more powerful representations than
the standard GCN methods (Section 6). Now, a typical GCN layer is defined as:

X l+1 = σ(AX lW l), (8)

where X l is lth layer embedding of GCN, W l is lth layer weight matrix, A is the Adjacency
Matrix, and σ is a non-linear function. Let us consider a multiple-graph setting, where graphs
A1...Am are given between entities E (a) and E (b). In AL-GCN, we apply a function on the adjacency
matrix before using it for propagating embeddings over the graph. That is, AL-GCN requires
functions fp : R → R that are applied entrywise and acts on the aggregation of all graphs, i.e,
Âij = [A1

ij, A
2
ij . . . A

m
ij ]:

X̃ l+1 = [σ(f1(Â)X̃ lW l), . . . , σ(fk(Â)X̃ lW l)], where fp(Âij) = σ(αpÂij + βp), (9)

X̃ l is the lth layer embedding, W l is the weight matrix, σ is a non-linear function, αp ∈ Rm and
βp ∈ R. Note that, W `, αp, βp are all learnable parameters in this model.

We further add residual connections in MEDRES to make it more robust to overfitting and to
allow richer embeddings of the entities to the MLP layers for classification. To add the residual
connections, we use the output of the AL-GCN filter at each hop and concatenate the outputs
together. After concatenation, the final embeddings looks like:

Z = X̃1 ⊕ X̃2 ⊕ · · · ⊕ X̃L, (10)
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where Z is the final embeddings obtained from AL-GCN, X̃ l is the output of lth layer AL-GCN as
defined in Eq (9) and ⊕ makes resiudal connections between output of these layers. Adding these
residual connections allows the network to effectively encode information from multiple hops of a
node’s neighborhood. Through our experiments, we observe that adding these residual connections
from multiple hops of AL-GCN always outperforms taking embeddings from only the last hop of
the architecture. See Fig 1b for a visual illustration of the AL-GCN method.

3.3 The Performance Metric – pAp@k
An important component of any strong recommendation system is the metric that is used to eval-
uate different methods, and it should capture and reflect the key nuances of the system. Modern
systems typically use prec@k, pAUC, AUC, NDCG@k style metrics for this purpose [5, 22, 11,
30, 19, 17].

Now, metrics like NDCG@k do not apply to bipartite ranking style problems where the goal is
to rank positives above negatives, and gain/loss for ranking a positive above a negative should not
change by their position in the list. For bipartite ranking, pAUC and prec@k style measures are
the most popular [5, 11]. However, both of them struggle when two key characteristics common to
several recommendation systems are in effect jointly: (a) amount of engagement, i.e., fraction of
positives, per user can have high variance, and (b) number of items to be recommended are limited,

For example, let k = 3 and let there be 8 points with 2 positives. Let there be two methods that
produce rankings r1 and r2 of the given points, and let f1 and f2 be the true labels corresponding
to the ranked order. For example, let f1 : {0, 0, 1, 1, 0, 0, 0, 0} and f2 : {1, 0, 0, 1, 0, 0, 0, 0}.
The value for prec@k is 0.33 for both f1 and f2, but it is clear that f2 is a better ordering as
a positive is at the top of the list in that case. Now, for a similar example with k = 3 and 3
positives, let certain methods produce ranked orders f3 and f4 where f3 = {1, 1, 0, 0, 0, 0, 0, 1}
and f4 = {0, 1, 1, 1, 0, 0, 0, 0}. Here for k = 3, f3 is clearly better but pAUC for threshold 3/6 is
0.66 for both the rankings.

Naturally, the issue is that in the first case, a classification metric like prec@k does not care for
the ranking, while in the second case pAUC is not much aware of top-k recommendations.

Next, we present pAp@k, a novel metric which attempts to mitigate the above mentioned
concerns with the existing methods. We first define pAp@k assuming only one user for which
we have a given set of labeled points (xi, yi), · · · , (xn, yn), where xi ∈ X and yi ∈ {0, 1} and a
scoring function s : X → R. Let n+ be the number of positives (i.e. yi = 1) in the data and n−
be the set of negatives (yi = 0). Let S+ be the set of top-β positives ordered by scoring function s,
where β = min(n+, k) and k is the number of items to be recommended. Similarly, let S− be the
set of top-k negatives ordered by s. Then,

pAp@k(s) =
1

βk

∑
xi∈S+

∑
xj∈S−

1[s(xi) ≥ s(xj)], (11)

where 1 is the indicator function. Note that the metric considers pairwise comparisons between
top negative items and top positives items and computes how many times a relevant item has
secured higher score than an irrelevant item. Thus, pAp@k rewards presence of every relevant
item in top-k scored elements and penalizes high scores of negative items. Also, note that the
metric essentially behaves like pAUC for n+ � k and like prec@k for n+ � k. Since, n+ can
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be significantly different for various users (and datasets), pAp@k provides a more nuanced and
comparative evaluation, due to which it is used as the key-performance-indicator by MSTeams’
production system.

We now define the micro and macro versions of pAp@k to handle multiple users:

Micro-pAp@k(s) =
1

P

∑
p

pAp@kp(s), Macro-pAp@k(s) =

∑
p

∑
xi∈S+

p

∑
xj∈S−

p
1[s(xi) ≥ s(xj)]

P · k ·
∑

p βp
,

(12)
where {Up}Pp=1 are the set of users. We define S+

p , S−p , βp for each user p as mentioned above.
Finally, pAp@kp is pAp@k computed for user Up. In this paper, we focus on the micro-pAp@k
since it is more accommodative of varied engagement level across users and indicative of average
of performance per user. For the rest of the paper, unless specified pAp@k refers to micro-pAp@k.

3.4 Training: optimizing pAp@k

MEDRES is trained to approximately optimize regularized pAp@k i.e. the goal is to find parame-
ters Θ of the MEDRES architecture to minimize: L = (1− pAp@k(Θ)) + τ‖Θ‖22, where the first
term is the pAp@k loss function and τ is the regularizer. Note that the loss function is discontin-
uous and hard to optimize in general. However, we propose a simple iterative procedure to refine
the Θ parameter. In each iteration, we create a pool of datapoints where the pool contains the set
of top-βp positives and top-k negatives for each user p according to the current scoring function.
Here, βp = min((n+)p, k) and (n+)p is the number of positives for user p. We then optimize the
standard cross-entropy loss on the selected points using Adam [14] optimizer. We then update the
score function, and again compute the set of top positives and negatives, and iterate till conver-
gence. See Algorithm 1 for a pseudo-code of the method. Note that Select-top(s,k,label) function
selects top k points of given label when sorted by the score s. Also, the subroutine in line 8 in
Algorithm 1 is fast since it runs on a few selected points.
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Figure 2: The current Production System de-
ploys a three layer architecture with layers– L1:
user weaning, L2: message classification and
L3: personalized delivery model. Our model is
relevant for the L2 layer and is evaluated against
the production-grade models for the L2 layer.

Table 1: Details of MS Teams Message Recom-
mendation Dataset

Statistic Training Data Val Data Test Data
Number of points 3416632 379626 1499083
% of positives 4.40 4.87 4.80
Users 901 898 898
Authors 677 509 593
Channels 476 367 391

Algorithm 1 Training MEDRES to optimize pAp@k
Input: TrainingData, Iterations, k, P : no. of users
Output: MEDRES model

1: procedure ITERATIVE TRAINING

2: S← TrainingData
3: model←Model Init()
4: (n+)p = no. of positives for user p, 1 ≤ p ≤ P
5: βp = min((n+)p, k), 1 ≤ p ≤ P
6: i← 0
7: while i ≤ Iterations do
8: model.train(S)
9: scoresp ← model.score(TrainingData, p),

1 ≤ p ≤ P
10: S← ∪p { Select-top(scoresp, k, ‘−’) ∪

Select-top(scoresp, βp, ‘+’)}
11: i← i+1
12: end while
13: end procedure

During our ablation studies (Table 3) we observe that the iterative procedure indeed improves
pAp@k metric significantly over the iterations of the proposed method. We leave further theoreti-
cal investigation into convergence and consistency guarantees for future work.

4 Experimental Setup
We now discuss the setup we use to evaluate our methods in the next three sections. We refer to
the AL-GCN-MEDRES setup with pAp@k optimization as MEDRES in the further sections.

Baselines: For most of our experiments, we use the standard content-filtering baseline (CoF)
based on LightGBM [12] and non-linear collaborative filtering Collab as the key baselines. We
later introduce other baselines that are scenario-specific. For CoF, we first compute joint fea-
tures between users and items by using one-hop graph features. That is, for each graph Gd,a =
(V d,a, Ad,a) between entity E (d) of the user U , and E (a) of the item I, we use edge Ad,a(U , I) as
the feature. We then collect all the features along with ν(I) and ζ(U) (see (1), (2)) to form data
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point {φ(Ui, Ii), yi}. For Collab baseline, as is standard, we learn features for each entity directly
from the given labelled data. That is, intuitively, Collab baseline is the same as MEDRES architec-
ture but rather than using the graphs to regularize/extract features, it learns features from scratch
to fit the given labels.

Note that we focus on CoF and Collab as baselines, because they are the most popular and
widely applicable techniques used routinely in real-world systems with multiple source of infor-
mation. Most of the other recommendation system techniques like GCNN-MC[21], HIN [7] do
not easily apply to the problems that we study. For example, GCNN-MC [21, 2] in it’s original
form handles only user and item graphs and their labels, hence if we have other entities or a dy-
namic component in users/items, it will not be able to exploit that information faithfully. Similar
observations hold for other methods like inductive matrix completion [10] and matrix completion
with graph side information [25].

To demonstrate the effectiveness of the AL-GCN block, we also provide a comparison with the
MEDRES-GCN architecture where the graph embedding is computed using the state-of-the-art
GCN method [15]. We also evaluate the effect of using pAp@k optimization in Section 5. Finally,
for the team recommendation problem (Section 6), which is a link-prediction problem with graph
side information, we use the Laplacian smoothing method by [25]. Furthermore, in this case,
MEDRES-GCN reduces to the standard matrix-completion with GCN formulation [21, 15].

Metrics: For all the benchmarks, we use pAp@k as the primary evaluation metric. In ad-
dition, we use prec@k metric for the Teams Recommendation scenario, which is essentially a
link-prediction problem, and hence prec@k is a standard metric. For the remaining benchmarks
and scenarios, we also compute AUC as it is the default evaluation metric for bipartite ranking
style problems.

Hyperparameters: For CoF, we sweep on the following hyper-parameters: learning rate
{10−3, 10−2}, number of trees {50, . . . , 300}, and number of leaves {10, 15, . . . , 30}. For MEDRES-
GCN, MEDRES and Collab, the cross-validation is done on embedding size {25, 26, 27}, regular-
ization parameter {10−4, 10−5}, nodes in fully connected layers {27, . . . , 210}, batch size {1, 3, 5}×
103, and learning rate {10−3, 10−4}. As stated earlier in the paper, we report only Micro-pAp@k
(Eq. 12) as it is more relevant metric with a large number of heterogeneous users, and refer to it as
pAp@k throughout this section. For the Laplacian smoothing approach [25], we tune on the fol-
lowing hyperparameters: learning rate {10−3, 10−4}, regularization parameter {10−3, 10−2, 10−1}
and embedding size {25, 26}.

5 Case Study 1: MS Teams Message Recommendation
Microsoft Teams (MSTeams) is a fast-growing enterprise conversation platform. It is composed of
teams, users, and channels, where users are a part of a team, and users post on channels to start a
conversation. Each user has access to all channels of a team that she/he is a part of, thus privy to
a large number of messages posted per day, hence prioritizing messages is a significant challenge
and creates an information overload [8]. This problem can be addressed by an accurate message
recommendation system that recommends the most relevant messages to users.

The message recommendation problem can be stated as learning a function s(U , I), which
takes as input a user U and a message I, and predicts whether the user would be interested in this
message or not. That is, the problem is a special case of our formulation in Section 2 with U being
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any user of MSTeams, item I being any message in a channel, and label y if the U engages with
the message. The term engagement can be defined in various ways, here we define a user to have
engaged with a message if the user likes the message or replies to the message.

Overall, the system has three entity types: (EU , EA, EC), i.e., the users, the authors of messages,
and the channels in which messages are posted. The user U is defined by only the user entity type.
Message I, on the other hand, is composed of the author of the message, channel of the message
as well as the content of the message. That is, I = (EAI , ECI , ν(I)) where EA is the set of authors,
EC is the set of channels, and ν(I) is a vector embedding of the message content. In addition, we
are given 10 graphs between the three entities: EU , EA, EC .

1. User-Author Graph: This is a graph between users and authors with directional edges such as
the number of times a user liked an author’s post, and vice versa, and number of times a user
replied to author’s post, etc.

2. User-Channel Graph: This graph models user channel interaction by capturing edges such
as how many times a user visited the channel in the past month, how many messages a user
posted on the channel, etc.

Production System Architecture: MSTeams has a daily budget of k messages to be recom-
mended per user. Furthermore, messages are recommended as they arrive, so the position of the
message is irrelevant, and hence NDCG style metrics are not suitable. Instead, the problem requires
bipartite ranking with limited items and highly varied engagement-per-user. Hence, pAp@k metric
is a good fit and is used in the production system. Now, the classifier s(U , I) needs to be invoked
for every message I and the set of users who can access the message. This can be computationally
infeasible due to a large volume of messages. The current production system avoids this issue by
deploying a three layer architecture with layers– L1: user weaning, L2: message classification and
L3: personalized delivery model. Our model is relevant for the L2 layer and is evaluated against
the production-grade CoF model.
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Figure 3: pAp@k accuracy obtained by various
methods. MEDRES outperforms baselines by sig-
nificant margin.

#Graphs = 1

k CoF
MEDRES-
GCN MEDRES

10 0.447 0.468 0.478
20 0.448 0.474 0.481
30 0.452 0.478 0.485
40 0.451 0.478 0.488
50 0.452 0.479 0.492

Table 2: Accuracy of MEDRES and CoF baseline
with only 2 graphs

Empirical Results: We use a subset of the production dataset for evaluating our MEDRES
method against various baselines (Section 4); Table 1 summarizes the dataset. Recall that we define
the label of a (user, message) pair to be positive, i.e., y = 1, if the user likes/replies to the message.
Figure 3 reports pAp@k (12) accuracy for various methods. MEDRES is significantly better than
both CoF and Collab baselines across various k values. Furthermore, MEDRES with AL-GCN
block is also 3% better than the MEDRES-GCN method. Table 6 shows the AUC measurements,
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Model K=10 K=20 K=30 K=40 K=50
CoF (Prod Model) 0.468 0.475 0.476 0.476 0.476
MEDRES-GCN Baseline 0.464 0.475 0.482 0.485 0.486
MEDRES-GCN + pAp@50 opt. 0.467 0.481 0.488 0.490 0.495
MEDRES 1 Layer(Concatenation) 0.482 0.491 0.496 0.500 0.503
MEDRES 1 Layer(Sum) 0.476 0.490 0.496 0.499 0.502
MEDRES 2 Layers (Concatenation) 0.495 0.499 0.499 0.499 0.501
MEDRES 2 Layers (Sum) 0.465 0.475 0.480 0.485 0.489
MEDRES 2 Layers
(Concatenation) + pAp@50 opt. 0.4961 0.5010 0.501 0.501 0.504

Table 3: Ablation results for impact of pAp@k optimization, aggregation method, number of layers, and
AL-GCN.

and we observe a similar trend. MEDRES performs the best followed by MEDRES-GCN and then
followed by Collab and CoF.

Next, we evaluate MEDRES when only two graphs are available, instead of the 10 graphs
used above. That is, 1 User-Author graph and 1 User-Channel graph. Figure 2 presents pAp@k
accuracy for this setting. We observe that the performance of MEDRES and MEDRES-GCN is
similar to the case when all 10 graphs are available. Thus, MEDRES is able to extract powerful
features from 2 graphs while the accuracy of the production baseline (CoF) suffers.

5.1 Ablation Study
We compare the performance of various flavors of MEDRES, including the impact of the AL-GCN
block against MEDRES-GCN, the impact of pAp@k optimization, and the impact of the aggre-
gation function (concatenation and sum). Figure 3 summarizes our results. Firstly, we observe
that MEDRES has superior performance to MEDRES-GCN for all K values (rows 2, 3 and 6),
demonstrating that the AL-GCN block learns powerful features. Secondly, the proposed pAp@k
optimization method improves accuracy for both MEDRES-GCN and MEDRES method by about
.5%. Thirdly, we observe that the concatenation method always performs better than the sum of
functions because the summation of embeddings could lead to a loss of signal which is otherwise
available in the concatenation aggregation. Finally, we also compare 1 layer and 2 layers of AL-
GCN and show that for concatenation aggregation method, the results improve as we move to 2
layers. This shows that 2 hops of neighborhood aggregation leads to more accurate embeddings.
For the sum aggregation method, we observe a different trend i.e. a decrease in performance with
2 layers because for 2 layers, the summation of embeddings is possibly leading to a massive loss
of relevant signal as compared to a 1 layer MEDRES.

6 Case Study 2: Team Recommendation (MS Teams)
In this section, we discuss the second real-world use case of our proposed method, which is that
of recommending Teams or groups (in MS Teams) that a user can join. This is a popular feature
in MS Teams to increase user engagement. The problem is essentially a link prediction problem,
but several users have joined limited Teams, so one needs side-information about users. This is
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Train Val Test
No. of points 8.7M 2.9M 2.9M
No. of positives 33K 8K 8K
Users 1K 300 300
Teams 9K 9K 9K

Table 4: Details of MS Teams Team Recommendation Dataset

provided in the form of a user-user graph which reflects how the user interacts with other users on
certain O365 products.

Formally, the problem is that we have two entities: Users EU , and Teams ET and the user-item
pair is also the same: Users U and Teams T . The only graph is between User-User entities, given
by: GUU . So the problem naturally fits in the MEDRES architecture, although it is a significantly
simpler problem from a modeling standpoint. Since it is a link prediction problem, we can also
use standard techniques like KNN (which is similar to the production model), Inductive Matrix
Completion (IMC) where the user features are generated using PCA of the user-user graph (referred
to as PCA), the Laplacian smoothed Graph Information method by [25], and finally the GCN based
matrix completion technique [15, 21] which reduces to MEDRES-GCN. CoF baseline does not
directly apply here as we cannot compute Teams feature from existing graphs (only graph given is
GUU ), and Collab baseline does not generalize to new users or users with little Team enrollment,
so instead we use the PCA based IMC method mentioned above.

Experiments: We perform our experiments on a subset of the production dataset, as described
in Table 4.

For evaluation, we measure both pAp@k and prec@k, which are also used by the production
system. Fig. 4 (a) shows the prec@k of the various approaches for different values of k. It can be
seen that MEDRES outperforms all the related approaches and performs 3-4% better than the KNN
based production baseline for all k > 3; and the performance gap increases with an increase in k,
which is the practically relevant setting. MEDRES also performs 2% better than MEDRES-GCN
and approx. 4% better than PCA for all k values. Fig. 4 (b) shows a similar trend for pAp@k,
with the only exception being relatively poor performance of MEDRES-GCN as it might not be
extracting strong features for relatively disconnected users on the graph; MEDRES with AL-GCN
block is the most accurate method on this dataset.
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Figure 4: (a), (b): prec@k and pAp@k accuracy for Teams Recommendation problem. Clearly, MEDRES
outperforms existing baselines significantly on both the metrics.
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Citation Dataset Flickr Dataset
Train Val Test Train Val Test

No. of Points 238k 84k 85k 260k 20k 59k
% of positives 9.99 9.40 9.48 12.87 12.24 12.72
Entities
(Count of Entity)

Users(1602);Authors(1147);
Conferences(951)

Users(839);Groups(464);
Entities(311);Categ(1471)

Table 5: Details of benchmark datasets

7 Benchmark Dataset Experiments

In this section, we apply our general formulation and MEDRES method on two publicly available
datasets of citation networks and Flickr3 and show the wide applicability of our proposed method.
We further make the citation dataset and source code available for reproducibility along with the
stated hyper-parameters in Section 4.

Citation network problem: Here, we study the problem of recommending relevant papers
for a given research paper, i.e., recommending relevant citations for a paper. In particular, the
goal is to recommend an existing paper from an author Aj , appearing in conference Cj to a new
research paper authored by Uj . That is, the user entity (U) is a new research paper and item I,
to be recommended, is a citation. There are three entity types: user/new-author EU , authors EA,
and conference EC venues. In addition, the paper-title is taken as the dynamic component of the
citation. So, U = (EUU , ζ(U)) where ζ(U) is the GloVe embedding of the paper-title [23]. Similarly,
I = (EAI , ECI , ν(I)) where ν(I) is the GloVe embedding of the title of the paper-to-be-cited. For
citation networks, we consider 5 graphs: 1) User-Published-Conference graph: Number of times a
user published in a conference; 2) User-Cited-Conference graph: Number of times a user cited a
conference; 3) User-CoAuthor-Author graph: Number of times, a user and author were coauthors
in a paper; 4) User-Cited-Author graph: Number of times a user cited an author; and 5) Author-
Cited-User graph: Number of times the user (as an author) was cited by another author. We extract
data from the Citation-network V14 – a publicly available citation dataset [29]. For creating entity
graphs and training data, we used the citation data from 2000-2003, while the test set was created
using citation data from 2004-2005. We consider every author and citation pair for a given paper
as positive data points. For generating the negative class points, we use the following method: if
a user Ui has cited any paper of author Aj , then all the papers of Aj which are not cited by Ui are
considered as negative data points. We further sample this data such that a user should have at least
20 data points in the training set, and the author being referred should also have at least 20 data
points in the training data. We further remove all rows in the test set where either the user, author,
or conference did not occur in the training data. For the paper-titles, we use 50-dimensional GloVe
embedding. Table 5 provides key statistics of the training and the test dataset.

Flickr dataset: Here, we consider the task of recommending relevant Flickr groups for users
to post their images. Flickr has various groups based on different themes where each group can be
associated with several categories as well as tags. The original dataset denotes tags as entities, but
we avoid that term to avoid confusion. We want to recommend groups to photos, so we refer to a
particular group as item I and a photo as a user/document U . U is represented by the specific user

3www.flickr.com
4https://aminer.org/citation
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Dataset CoF Collab
MEDRES
GCN MEDRES

Message
Reco. 0.8901 0.8973 0.9026 0.9029

Citation
Reco. 0.7645 0.8198 0.8105 0.8156

Group
Reco. 0.7535 0.7404 0.7651 0.7874

Table 6: AUC ROC Results
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Figure 5: (a): pAp@k accuracy on Citation networks dataset, (b): pAp@k accuracy on Flickr dataset. For
Flickr, MEDRES is 4-5% more accurate than baselines.

entity E (U) and the content of the photograph itself, i.e., U = (E (U), ζ(U)); we embed images into
4096 dimensional features using VGG19 [26] and then do 100 dimensional PCA reduction of the
same to consume as image features. Each item is just the group entity itself, i.e., I = (E (G)). In
addition, we have the following engagement graphs: 1) User-PublishedIn-Group: Number of posts
in a group by a user; 2) User-PublishedIn-Category: Number of posts by a user in a category; and
3) User-PublishedIn-Entity: Number of posts by a user in groups containing the entity type under
consideration. We use the publicly available Flickr dataset [32]. For each photo posted by a user
in a particular group, we create a positive class data point. We further create negative class data
points for a user and photo pair from all groups which belong to the same category as the original
group of the photo. We then randomly sample the dataset to consider only 10% of the data-points
for generating train and test datasets. Table 5 provides statistics for the dataset.

Empirical Results: We applied MEDRES with the same hyperparameters, as discussed in the
experimental setting section. Figure 5(c) shows pAp@k obtained by various methods with varying
k for the citation recommendation problem. For recommending k = 10 articles, MEDRES-GCN
is (≥)4.37% more accurate than the CoF baselines, and similar trend holds for varying values of k,
showing that MEDRES, even with vanilla GCN can outperform content filtering model. We further
observe an increase of 0.5% increase for pAp@k when using AL-GCN over GCN and Collab. To
understand the gain of MEDRES over Collab, we computed results when only 50% data is used in
training. While for 100% data the performance of Collab was close to MEDRES, for 50% data, we
saw a drop in pAp@k of 3.2% Collab compared to only a 1.5% drop in MEDRES, with pAp@50
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for Collab at 0.6658 and while for MEDRES it is 0.6870. Table 6 shows the AUC values where
we observe that the Collab baseline has a slightly higher value than MEDRES. This results from
the issue that different users have different numbers of data points as stated in Section 3.3. To
further understand it, we computed the average of per user AUC (micro-AUC). For MEDRES, its
value is 0.7427 and for the Collab baseline, it is 0.7426 which is a reverse trend compared to AUC.
This clearly indicates need for more fine-grained metric like pAp@k. Moreover, the pAp@k trend
remains clear across datasets.

Finally, we observe a similar trend for the Flickr group problem (Figure 5(d)) where MEDRES
performs 2.5% better than MEDRES-GCN, 3% better than CoF and approximately 9% better than
Collab at k = 10. Thus demonstrating that MEDRES can extract signals which are otherwise not
available in CoF and Collab baselines.

8 Conclusion and Future Work
We considered the problem of constructing a recommendation system with ”rich” users/items, with
multiple entities expressed through multiple engagement/relationship graphs. We showed that our
framework encapsulates several existing formulations, and used it to develop a novel MEDRES
architecture that pools together signals from the graphs via Grah Neural Networks (GNN). We
proposed AL-GCN, a novel GNN block that can be used with MEDRES architecture to learn
graph weights and extract more powerful task-specific signals. Our training method can optimize
MEDRES for the proposed pAp@k metric. Finally, we used our framework to model several dif-
ferent recommendation problems, including two real-world tasks, and demonstrated effectiveness
of MEDRES against different baselines.

Due to the generality of our framework, it can be applied with several other embedding tech-
niques like Heterogeneous Information Networks (HIN) that can be richer in some settings than
GCN and AL-GCN. Furthermore, further exploring optimization of pAp@k metric and studying
it’s theoretical properties is also an exciting research direction.
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