
Shallow RNNs: A Method for Accurate Time-series
Classification on Tiny Devices

Don Kurian Dennis�
Carnegie Mellon University

Durmus Alp Emre Acar
Boston University

Vikram Mandikal:
University of Texas at Austin

Vinu Sankar Sadasivan:
IIT Gandhinagar

Harsha Vardhan Simhadri
Microsoft Research India

Venkatesh Saligrama
Boston University

Prateek Jain
Microsoft Research India

Abstract

Recurrent Neural Networks (RNNs) capture long dependencies and context, and
hence are the key component of typical sequential data based tasks. However, the
sequential nature of RNNs dictates a large inference cost for long sequences even if
the hardware supports parallelization. To induce long-term dependencies, and yet
admit parallelization, we introduce novel shallow RNNs. In this architecture, the
first layer splits the input sequence and runs several independent RNNs. The second
layer consumes the output of the first layer using a second RNN thus capturing
long dependencies. We provide theoretical justification for our architecture under
weak assumptions that we verify on real-world benchmarks. Furthermore, we show
that for time-series classification, our technique leads to substantially improved
inference time over standard RNNs without compromising accuracy. For example,
we can deploy audio-keyword classification on tiny Cortex M4 devices (100MHz
processor, 256KB RAM, no DSP available) which was not possible using standard
RNN models. Similarly, using ShaRNN in the popular Listen-Attend-Spell (LAS)
architecture for phoneme classification [4], we can reduce the lag in phoneme
classification by 10-12x while maintaining state-of-the-art accuracy.

1 Introduction
We focus on the challenging task of time-series classification on tiny devices, a problem arising in
several industrial and consumer applications [25, 22, 31], where tiny edge-devices perform sensing,
monitoring and prediction in a limited time and resource budget. A prototypical example is an
interactive cane for people with visual impairment, capable of recognizing gestures that are observed
as time-traces on a sensor embedded onto the cane [24].

Time series or sequential data naturally exhibit temporal dependencies. Sequential models such as
RNNs are particularly well-suited in this context because they can account for temporal dependencies
by attempting to derive relations from the previous inputs. Nevertheless, directly leveraging RNNs
for prediction in constrained scenarios mentioned above is challenging. As observed by several
authors [29, 14, 30, 9], the sequential nature by which RNNs process data fundamentally limits
parallelization leading to large training and inference costs. In particular, in time-series classification,
at inference time, the processing time scales with the size, T , of the receptive window, which is
unacceptable in resource constrained settings.
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A solution proposed in literature [29, 14, 30, 9] is to replace sequential processing with parallelizable
feed-forward and convolutional networks. A key insight exploited here is that most applications
require relatively small receptive window, and that this size can be increased with tree-structured
networks and dilated convolutions. Nevertheless, feedforward/convolutional networks utilize sub-
stantial working memory, which makes them difficult to deploy on tiny devices. For this reason,
other methods such as [28, 2] also are not applicable for our setting. For example, a standard audio
keyword detection task with a relatively modest setup of 32 conv filters would itself need a working
memory of 500KB and about 32X more computation than a baseline RNN model (see Section 5).

Shallow RNNs. To address these challenges, we design a novel layered RNN architecture that is
parallelizable/limited-recurrence while still maintaining the receptive field length (T ) and the size of
the baseline RNN. Concretely, we propose a simple 2-layer architecture that we refer to as ShaRNN.
Both the layers of ShaRNN are composed of a collection of shallow recurrent neural networks that
operate independently. More precisely, each sequential data point (receptive window) is divided into
independent parts called bricks of size k, and a shared RNN operates on each brick independently,
thus ensuring a small model size and short recurrence. That is, ShaRNN’s bottom layer restarts from
an initial state after every k    T steps, and hence only has a short recurrence. The outputs of T {k
parallel RNNs are input as a sequence into a second layer RNN, which then outputs a prediction
after T {k time. In this way, for k � Op?T q we obtain a speedup of Op?T q in inference time in the
following two settings:

(a) Parallelization: here we parallelize inference over T {k independent RNNs thus admitting
speed-ups on multi-threaded architectures,

(b) Streaming: here we utilize receptive (sliding) windows and reuse computation from older
sliding window/receptive fields.

We also note that, in contrast to the proposed feed-forward methods or truncated RNN methods [23],
our proposal admits fully receptive fields and thus does not result in loss of information. We further
enhance ShaRNN by combining it with the recent MI-RNN method [10] to reduce the receptive
window sizes; we call the resulting method MI-ShaRNN.

While a feedforward layer could be used in lieu of our RNN in the next layer, such layers lead to
significant increase in model size and working RAM to be admissible in tiny devices.

Performance and Deployability. We compare the two-layer MI-ShaRNN approach against other
state-of-art methods, on a variety of benchmark datasets, tabulating both accuracy and budgets. We
show that the proposed 2-layer MI-ShaRNN exhibits significant improvement in inference time
while also improving accuracy. For example, on Google-13 dataset, MI-ShaRNN achieves 1%
higher accuracy than baseline methods while providing 5-10x improvement in inference cost. A
compelling aspect of the architecture is that it allows for reuse of most of the computation, which
leads to its deployability on the tiniest of devices. In particular, we show empirically that the method
can be deployed for real-time time-series classification on devices as those based on the tiny ARM
Cortex M4 microprocessor3 with just 256KB RAM, 100MHz clock-speed and no dedicated Digital
Signal Processing (DSP) hardware. Finally, we demonstrate that we can replace bi-LSTM based
encoder-decoder of the LAS architecture [4] by ShaRNN while maintaining close to best accuracy
on publicly-available TIMIT dataset [13]. This enables us to deploy LAS architecture in streaming
fashion with a lag of 1 second in phoneme prediction and Op1q amortized cost per time-step; standard
LAS model would incur lag of about 8 seconds as it processes the entire 8 seconds of audio before
producing predictions.

Theory. We provide theoretical justification for the ShaRNN architecture and show that significant
parallelization can be achieved if the network satisfies some relatively weak assumptions. We also
point out that additional layers can be introduced in the architecture leading to hierarchical processing.
While we do not experiment with this concept here, we note that, it offers potential for exponential
improvement in inference time.

3https://en.wikipedia.org/wiki/ARM_Cortex-M#Cortex-M4

2

https://en.wikipedia.org/wiki/ARM_Cortex-M#Cortex-M4


In summary, the following are our main contributions:

• We show that under relatively weak assumptions, recurrence in RNNs and consequently, the
inference cost can be reduced significantly.

• We demonstrate this inference efficiency via a two-layer ShaRNN (and MI-ShaRNN) architecture
that uses only shallow RNNs with a small amount of recurrence.

• We benchmark MI-ShaRNN (enhancement of ShaRNN with MI-RNN) on several datasets and
observe that it learns nearly as accurate models as standard RNNs and MI-RNN. Due to limited
recurrence, ShaRNN saves 5-10x computation cost over baseline methods. We deploy MI-ShaRNN
model on a tiny microcontroller for real-time audio keyword detection, which, prior to this work,
was not possible with standard RNNs due to large inference cost with receptive (sliding) windows.
We also deploy ShaRNN in LAS architecture to enable streaming phoneme classification with less
than 1 second of lag in prediction.

2 Related Work

Stacked Architecture. Our multi-layered RNN resembles stacked RNNs studied in the literature [15,
16, 27] but they are unrelated. The goal of Stacked RNNs is to produce complex models and subsume
conventional RNNs. Each layer is fully recurrent, and feeds output of the first layer to the next level.
The next level is another fully recurrent RNN. As such, stacked RNN architectures lead to increased
model size and recurrence, which results in worse inference time than standard RNNs.

Recurrent Nets (Training). Conventional works on RNNs primarily address challenges arising during
training. In particular for large receptive window T , RNNs suffer from vanishing and exploding
gradient issues. A number of works propose to circumvent this issue in a number of ways such
as Gated architectures [7, 17] or adding residual connections in RNNs [18, 1, 21] or through
constraining the learnt parameters [32]. Several recent works attempt to reduce the number of gates
and parameters [8, 6, 21] to reduce model size but as such suffer from poor inference time, since they
are still fully recurrent. Different from these works, our focus is on reducing model size as well as
inference time and view these works as complementary to our paper.

Recurrent Nets (Inference Time). Recent works have begun to focus on RNN inference cost. [3]
proposes to learn skip connections that can avoid evaluating all the hidden states. [10] exploits
domain knowledge that true signature is significantly shorter than the time-trace to trim down length
of the sliding windows. Both of these approaches are complementary and we indeed leverage the
second in our approach. A recent work on dilated RNNs [5] is interesting. While it could serve as
a potential solution, we note that, in its original form, dilated RNN also has a fully recurrent first
layer, which is therefore infeasible. One remedy is to introduce dilation in the first layer to improve
inference time. But, dilation skips steps and hence can miss out on critical local context.

Finally, CNN based methods [29, 14, 30, 9, 2] allow higher parallelization in the sequential tasks but
as discussed in Section 1, also lead to significantly larger working RAM requirement when compared
to RNNs, thus cannot be considered for deployment on tiny devices (see Section 5).

3 Problem Formulation and Proposed ShaRNN Method

In this paper, we primarily focus on the time-series classification problem, although the techniques
apply to more general sequence-to-sequence problems like phoneme classification problem discussed
in Section 5. Let Z � tpX1, y1q, . . . , pXn, ynqu where Xi is the i-th sequential data point with Xi �
rxi,1, xi,2, . . . , xi,T s P Rd�T and xi,t P Rd is the t-th time-step data point. yi P rCs is the label of
Xi where C is the number of class labels. xi,t:t�k is the shorthand for xi,t:t�k � rxi,t, . . . , xi,t�ks.
Given training data Z , the goal is to learn a classifier f : Rd�T Ñ rCs that can be used for efficient
inference, especially on tiny devices. Recurrent Neural Networks (RNN) are popularly used for
modeling such sequential problems and maintain a hidden state ht�1 P Rd̂ at the t-th step that is
updated using:

ht � Rpht�1, xtq, t P rT s, ŷ � fphT q,
where ŷ is the prediction by applying a classifier f on hT and d̂ is the dimensionality of the hidden
state. Due to the sequential nature of RNN, inference cost of RNN is ΩpT q even if the hardware
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supports large amount of parallelization. Furthermore, practical applications require handling a
continuous stream of data, e.g., smart-speaker listening for certain audio keywords.

A standard approach is to use sliding windows (receptive field) to form a stream of test points on
which inference can be applied. That is, given a stream X � rx1, x2, . . . , s, we form sliding windows
Xs � xps�1q�ω�1:ps�1q�ω�T P Rd�T which stride by ω ¡ 0 time-steps after each inference. RNN is
then applied to each sliding window Xs which implies amortized cost for processing each time-step
data point (xt) is ΘpTω q. To ensure high-resolution in prediction, ω is required to be a fairly small
constant independent of T . Thus, amortized inference cost for each time-step point is OpT q which is
prohibitively large for tiny devices. So, we study the following key question: “Can we process each
time-step point in a data stream in opT q computational steps?”

3.1 ShaRNN

Shallow RNNs (ShaRNN) are a hierarchical collection of RNNs organized at two levels. T
k RNNs at

ground-layer operate completely in parallel with fully shared parameters and activation functions,
thus ensuring small model size and parallel execution. An RNN at the next level take inputs from the
ground-layer and subsequently outputs a prediction.

Formally, given a sequential point X � rx1, . . . , xT s (e.g. sliding window in streaming data), we
split it into bricks of size k, where k is a parameter of the algorithm. That is, we form T {k bricks:
B � rB1, . . . , BT {ks where Bj � xppj�1q�k�1q:pj�kq. Now, ShaRNN applies a standard recurrent
model Rp1q : Rd�k Ñ Rd̂1 on each brick, where d̂1 is the dimensionality of hidden states of Rp1q.
That is,

ν
p1q
j � Rp1qpBjq, j P rT {ks.

Note that Rp1q can be any standard RNN model like GRU, LSTM etc. We now feed output of each
layer into another RNN to produce the final state/feature vector that is then fed into a feed forward
layer. That is,

ν
p2q
T {k � Rp2qprνp1q1 , . . . , ν

p1q
T {ksq, ŷ � fpνp2qT {kq,

where Rp2q is the second layer RNN and can also be any standard RNN model. νp2qT {k P Rd̂2 is the

hidden-state obtained by applying Rp2q to νp1q1:T {k. f applies the standard feed-forward network to

ν
p2q
T {k. See Figure 1 for a block-diagram of the architecture. That is, ShaRNN is defined by parameters

Λ composed of shared RNN parameters at the ground-level, RNN parameters at the next level, and
classifier weights for making a prediction. We train the ShaRNN based on minimizing an empirical
loss function over training set Z .

Naturally, ShaRNN is an approximation of a true RNN and in principle has less modeling power (and
recurrence). But as discussed in Section 4 and shown by our empirical results in Section 5, ShaRNN
can still capture enough context from the entire sequence to effectively model a variety of time-series
classification problems with large T (typically T ¥ 100). Due to parallel k RNNs in the bottom layer
that are processed by R2 in the second layer, ShaRNN inference cost can be reduced to OpT {k � kq
for multi-threaded architectures with k-wise parallelization; k � ?

T leads to smallest inference cost.

Streaming. Recall that in the streaming setting, we form sliding windows Xs � xs�ω�1:s�ω�T P
Rd�T by striding each window by ω ¡ 0 time-steps. Hence, if ω � k � q for q P N then the inference
cost of Xs�1 can be reduced by reusing previously computed νp1qj vectors @j P rq � 1, T {ks for Xs.

Below claim provides a formal result for the same.

Claim 1. Let both layers RNNs Rp1q and Rp2q of ShaRNN have same hidden-size and per-time step
computation complexity C1. Then, given T and ω, the additional cost of applying ShaRNN to Xs�1

given Xs is OpT {k� q � kq �C1, where Xs � xps�1q�ω�1:ps�1q�ω�T , ω is the stride-length of sliding
window, and the brick-size ω � q � k for some integer q ¥ 1. Consequently, the total amortized cost
can be bounded by Op?q � TC1q if k �aT {q.

See Appendix A for a proof of the claim.
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Figure 1: (a) ShaRNN applies RNN Rp1q independently to bricks x1:k, xk�1:2k, . . . to compute νp1qk

for all k. The second layer RNN Rp2q produces class labels or in multi-layer case, inputs for the
next layer. Note that νp1q2 , νp1q3 can be reused for evaluating the next window. (b), (c): Mean squared
approximation error and the prediction accuracy of ShaRNN with zeroth and first order approximation
(M � 1, 2 respectively in Claim 3) with different brick-sizes k (for Google-13). Note the large
error with M � 1 (same as truncation method in [23]). M � 2 introduces significant improvement,
especially for small k, but clearly needs larger M to achieve better accuracy. (d): Comparison of
norm of gradient vs Hessian of Rpht, xt�1:t�kq with varying k. R is FastRNN [21] with swish
activation. Smaller Hessian norm indicates that the first-order approximation of R (Claim 3) by
ShaRNN is more accurate than the 0-th order one (ShaRNN with M � 1) suggested by [23].

3.2 Multi-layer ShaRNN

Above claim shows that selecting small k leads to a large number of bricks and hence, a large number
of points to be processed by second layer RNN Rp2q which will be the bottleneck in inference.
However, using the same approach, we can replace the second layer with another layer of ShaRNN to
bring down the cost. By repeating the same process, we can design a general L layer architecture
where each layer is equipped with a RNN model Rplq and the output of a l-th layer brick is given by:

ν
plq
j � Rplqprνpl�1q

pj�1q�k�1, . . . , ν
pl�1q
pj�1qk�ksq,

for all 1 ¤ j ¤ T {kl, where νp0qj � xj . The predicted label is given by ŷ � fpνpLq
T {kL�1q.

Using argument similar to the claim in the previous section, we can reduce the total inference cost to
Oplog T q by using k � Op1q and L � log T .
Claim 2. Let all layers of multi-layer ShaRNN have same hidden-size and per-time step complexity
C1 and let k � ω. Then, the additional cost of applying ShaRNN to Xs�1 is OpT {kL � L � kq � C1,
where Xs � xps�1q�ω�1:ps�1q�ω�T . Consequently, selecting L � logpT q, k � Op1q, and assuming
ω � Op1q, the total amortized cost is OpC1 � log pT qq.
That is, we can achieve exponential speed-up over OpT q cost for standard RNN. However, such a
model can lead to a large loss in accuracy. Moreover, constants in the cost for large L are so large
that a network with smaller L might be more efficient for typical values of T .

3.3 MI-ShaRNN

Recently, [10] showed that several time-series training datasets are coarse and the sliding window size
T can be decreased significantly by using their multi-instance based algorithm (MI-RNN). MI-RNN
finds tight windows around the actual signature of the class, which leads to significantly smaller
models and reduces inference cost. Our ShaRNN architecture is orthogonal to MI-RNN and can
be combined to obtain even higher amount of inference saving. That is, MI-RNN takes the dataset
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Z � tpX1, y1q, . . . , pXn, ynqu with Xi being a sequential data point over T steps and produces a
new set of points X 1

j with labels y1j , where each X 1
j is sequential data point over T 1 and T 1 ¤ T .

MI-ShaRNN applies ShaRNN to the output of MI-RNN so that the inference cost is dependent only
on T 1 ¤ T , and captures the key signal in each data point.

4 Analysis

In this section, we provide theoretical underpinnings of ShaRNN approach and we also put it in
context of work by [23] that discusses RNN models for which we can get rid of almost all of the
recurrence.

Let R : Rd�d̂ Ñ Rd̂ be a standard RNN model that maps the given hidden state ht�1 P Rd̂

and data point xt P Rd into the next hidden state ht � Rpht�1, xtq. Overloading notation,
Rph0, x1, . . . , xtq � Rpht�1, xtq. We define a function to be recurrent if the following holds:

Rph0, x1, . . . , xtq � RpRph0, x1, . . . , xt�1q, xtq.
The final class prediction using feed-forward layer is given by: ŷ � fphT q � fpRph0, x1:T qq. Now,
ShaRNN attempts to untangle and approximate the dependency of fphT q and Rph0, x1:T q on h0,
by using Taylor’s theorem. Below claim shows the condition under which the approximation error
introduced by ShaRNN is small.
Claim 3. Let Rph0, x1, . . . , xtq be an RNN and let }∇M

h Rph, xt:t�kq} ¤ Opε � M !q for some
ε ¥ 0 where ∇M

h is M th order derivative with respect to h. Also let }Rph0, x1:tq � h0} � Op1q,
}∇m

h Rph0, xt�1:t�kq} � Opm!q for all t P rT s. Then, there exists an ShaRNN defined by functions
Rp1q, Rp2q and brick-size k, s.t.:

}Rp2qpνp1q1 , . . . , ν
p1q
T {kq �Rph0, x1:T q} ¤ ε �M � T, where νp1qj � Rp1qph0, xpj�1q�k�1:j�kq.

See Appendix A for a detailed proof of the claim.

The above claim shows that the hidden state computed by ShaRNN is close to the state computed by
a fully recursive RNN, hence the final output ŷ would also be close. We now compare this result to
the result of [23], which showed that }Rph0, x1:T q�Rph0, xT�k�1:T q} ¤ ε for large enough k if R
satisfies a contraction property. That is, if }Rpht�1, xtq �Rph1t�1, xtq} ¤ λ}ht�1 � h1t�1} where
λ   1. However, λ   1 is a strict requirement and do not hold in practice. Due to this, if we only
compute Rph0, xT�k�1:T q as suggested by the above result (for some reasonable values of k), then
resulting accuracy on several datasets drops significantly (see Figure 1(b),(c)).

In the context of Claim 3, result of [23] is a special case with M � 1, i.e., the result only applies a
0�th order Taylor series expansion. Figure 1 (d) shows how norm of the gradient that bounds error
due to the 0-th order expansion is significantly larger than the norm of the Hessian which bounds
error due to the 1-st order expansion.

Case study with FastRNN: We now instantiate Claim 3 for a simple FastRNN model [21] with a
first-order approximation i.e., with M � 2 in Claim 3.
Claim 4. Let Rph0, x1, . . . , xtq be a FastRNN model with parameters U,W . Let }U} ¤ Op1q,
}∇2

hRph0, xt:t�kq} ¤ Opεq for any k-length sequence. Then, there exists an ShaRNN defined
by functions Rp1q, Rp2q and brick-size k s.t.: }Rp2qpνp1q1 , . . . , ν

p1q
T {kq � Rph0, x1:T q} ¤ ε, where

ν
p1q
j � Rp1qph0, xpj�1q�k�1:j�kq.

Note that }U} � Op1q holds for all the benchmarks that were tried in [21]. Moreover, this assumption
is significantly weaker than the typical }U}   1 assumption required by [23]. Finally, the Hessian
term is significantly smaller than the derivative term (Figure 1 (d)), hence the approximation error and
prediction error should be significantly smaller than the one we would get by 0-th order approximation
(see Figure 1 (b), (c)).

5 Empirical Results

We conduct experiments to study: a) performance of MI-ShaRNN with varying hidden state dimen-
sions at both the layers Rp1q and Rp2q to understand how its accuracy stacks up against baseline
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Table 1: Table compares maximum accuracy achieved by each of the method for different model sizes,
i.e., different hidden-state sizes indicated by numbers in bracket; MI-ShaRNN reports two numbers
for the first and the second layer, respectively. Table also reports the corresponding computational
cost (amortized number of flops required per data point inference) for each method. T denotes the no.
of time-steps for the dataset, T 1 denotes the trimmed number of time-steps obtained by MI-RNN, k is
the selected brick-length for MI-ShaRNN. Note that for all but one datasets MI-ShaRNN is able to
achieve similar or better accuracy compared to baseline LSTMs.

Dataset Baseline LSTM MI-RNN MI-ShaRNN
Acc(%) Flops T Acc(%) Flops T 1 Acc(%) Flops k

Google-13 91.13 (64) 4.89M 99 93.16 (64) 2.42M 49 94.01 (64, 32) 0.59M 8
HAR-6 93.04 (32) 1.36M 128 91.78 (32) 0.51M 48 94.02 (32, 8) 0.17M 16

GesturePod-5 97.13 (48) 8.37M 400 98.43 (48) 4.19M 200 99.21 (48, 32) 0.83M 20
STCI-2 99.01 (32) 2.67M 162 98.43 (32) 1.33M 81 99.23 (32, 32) 0.30M 8

DSA-19 85.17 (64) 7.23M 129 88.11 (64) 5.05M 90 87.36 (64, 48) 1.10M 15
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Figure 2: (a),(b),(c): Accuracy vs inference cost: we vary model size (hidden dimensions) to obtain
accuracy vs inference cost curve for different methods. All the three plots show that MI-ShaRNN
produces more accurate models with as much as 8�10x reduction in the inference cost. (d): Error-rate
of standard LAS method [12] and of ShaRNN based streaming LAS with varying brick-sizes k on
the TIMIT [13] dataset. We report results when both Listener+Speller use ShaRNN vs when only
Listener uses it. ShaRNN Listener+Speller with k � 64 incurs 12x smaller lag in phoneme prediction
vs baseline LAS (k � 784).

models across different model sizes, b) inference cost improvement that MI-ShaRNN produces
for standard time-series classification problems over baseline models and MI-RNN models, c) if
MI-ShaRNN can enable certain time-series classification tasks on devices based on the tiny Cortex
M4 with only 100MHz processor and 256KB RAM. Recall that MI-ShaRNN uses ShaRNN on top of
trimmed data points given by MI-RNN. MI-RNN is known to have better performance than baseline
LSTMs, so naturally MI-ShaRNN has better performance than ShaRNN. Hence, we present results
for MI-ShaRNN and compare them to MI-RNN to demonstrate advantage of ShaRNN technique.

Datasets: We benchmark our method on standard datasets from different domains like audio keyword
detection (Google-13), wake word detection (STCI-2), activity recognition (HAR-6), sports activity
recognition (DSA-19), gesture recognition (GesturePod-5). The number after hyphen in dataset name
indicates the number of classes in the dataset. See Table 3 in appendix for more details about the
datasets. All the datasets are available online (see Table 3) except STCI-2 which is a proprietary wake
word detection dataset.

Baselines: We compare our algorithm MI-ShaRNN (LSTM) against the baseline LSTM method as
well as MI-RNN (LSTM) method. Note that MI-RNN as well as MI-ShaRNN build upon an RNN
cell. For simplicity and consistency, we have selected LSTM as the base cell for all the methods, but
we can train each of them with other RNN cells like GRU [7] or FastRNN [21]. We implemented
all the algorithms on TensorFlow and used Adam for training the models [19]. The inference code
for Cortex M4 device was written in C and compiled onto the device. All the presented numbers are
averaged over 5 independent runs. The implementation of our algorithm is released as part of the
EdgeML [11] library.

Hyperparameter selection: The main hyperparameters are: a) hidden state sizes for both the layers
of MI-ShaRNN. b) brick-size k for MI-ShaRNN. In addition, the number of time-steps T is associated
with each dataset. MI-RNN prunes down T and works with T 1 ¤ T time-steps. We provide results
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Table 2: Deployment on Cortex M4: accuracy of different methods vs inference time cost (ms) on M4
device with 256KB RAM and 100MHz processor. For low-latency keyword spotting (Google-13),
the total inference time budget is 120 ms.

Baseline MI-RNN MI-ShaRNN
16 32 16 32 (16, 16) (32,16)

Acc. 86.99 89.84 89.78 92.61 91.42 92.67
Cost 456 999 226 494 70.5 117

with varying hidden state sizes to illustrate trade-offs involved with selecting this hyperparameter
(Figure 2). We select k � ?

T with some variation to optimize w.r.t the stride length ω for each
dataset; we also provide an ablation study to illustrate impact of different choices of k on accuracy
and the inference cost (Figure 3, Appendix).

Comparison of accuracies: Table 1 compares accuracy of MI-ShaRNN against baselines and
MI-RNN for different hidden dimensions at R1 and R2. In terms of prediction accuracies, MI-
ShaRNN performs much better than baselines and is competitive to MI-RNN on all the datasets. For
example, with only k � 8, MI-ShaRNN is able to achieve 94% accuracy on the Google-13 dataset
while MI-RNN model is applied for T � 49 steps and baseline LSTM for T � 99 steps. That is, with
only 8-deep recurrence, MI-ShaRNN is able to compete with accuracies of 49 and 99 deep LSTMs.

For inference cost, we study the amortized cost per data point in the sliding window setting (See
Section 3). That is, baseline and MI-RNN for each sliding window recomputes the entire prediction
from scratch. But, MI-ShaRNN can re-use computation in the first layer (see Section 3) leading
to significant saving in inference cost. We report inference cost as the additional floating point
operations (flops) each model would need to execute for every new inference. For simplicity, we treat
both addition and multiplication to be of same cost. The number of non-linearity computations are
small and are nearly same for all the methods so we ignore them.

Table 1 clearly shows that to achieve best accuracy, MI-ShaRNN is up to 10x faster than baselines
and up to 5x faster than MI-RNN, even on a single threaded hardware architecture. Figure 2 shows
computation vs accuracy trade-off for three datasets. We observe that for a range of desired accuracy
values, MI-ShaRNN is 5-10x faster than the baselines.

Next, we compute accuracy and flops for MI-ShaRNN with different brick sizes k (see Figure 3
of Appendix). As expected, k � ?

T setting requires fewest flops for inference, but the story for
accuracy is more complicated. For this dataset, we do not observe any particular trend for accuracy;
all the accuracy values are similar, irrespective of k.

Deployment of Google-13 on Cortex M4: we use ShaRNN to deploy a real-time keyword spotting
model (Google-13) on a Cortex M4 device. For time series classification (Section 3), we will need
to slide windows and infer classes on each window. Due to small working RAM of M4 devices
(256KB), for real-time recognition, the method needs to finish the following tasks within a budget
of 120ms: collect data from the microphone buffer, process them, produce ML based inference and
smoothened out predictions for one final output.

Standard LSTM models for this task work on 1s windows, whose featurization generates a 32� 99
feature vector; here T � 99. So, even a relatively small LSTM (hidden size 16), takes on 456ms
to process one window, exceeding the time budget (Table 2). MI-RNN is faster but still requires
225ms. Recently, a few CNN based methods have also been designed for low-resource keyword
spotting [26, 20]. However, with just 40 filters applied to the standard 32�99 filter-bank features, the
working memory requirement balloons up to � 500KB which is beyond typical M4 devices’ memory
budget. Similarly, compute requirement of such architectures also easily exceed the latency budget of
120ms. See Figure 4, in the Appendix for a comparison between CNN models and ShaRNN.

In contrast, our method is able to produce inference in only 70ms, thus is well-within latency budget
of M4. Also, MI-ShaRNN holds two arrays in the working RAM: a) input features for 1 brick and
b) buffered final states from previous bricks. For the deployed MI-ShaRNN model, with timesteps
T � 49, brick-size k � 8 working RAM requirement is just 1.5 KB.

ShaRNN for Streaming Listen Attend Spell (LAS): LAS is a popular architecture for phoneme
classification in given audio stream. It forms non-overlapping time-windows of length 784 (� 8
seconds) and apply an encoder-decoder architecture to predict a sequence of phonemes. We study
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LAS applied to TIMIT dataset [13]. We enhance the standard LAS architecture to exploit time-
annotated ground truth available in TIMIT dataset, which improved baseline phoneme error rate from
publicly reported 0.271 to 0.22. Both Encoder and Decoder layer in standard and enhanced LAS
consists of fully recurrent bi-LSTMs. So for each time window (of length 784) we would need to
apply entire encoder-decoder architecture to predict the phoneme sequence, implying a potential lag
of � 8 seconds (784 steps) in prediction.

Instead, using ShaRNN we can divide both the encoder and decoder layer in bricks of size k. This
makes it possible to give phoneme classification for every k steps of points thereby bringing down lag
from 784 steps to k steps. However, due to small brick size k, in principle we might lose significant
amount of context information. But due to the corrective second layer in ShaRNN (Figure 1) we
observe little loss in accuracy. Figure 2 shows performance of two variants of ShaRNN + LAS: a)
ShaRNN Listener that uses ShaRNN only in encoding layer, b) ShaRNN Listener + Speller that
uses ShaRNN in both the encoding and decoding layer. Figure 2 (d) shows that using ShaRNN in
both the encoder and decoder is more beneficial than using it only in encoder layer. Furthermore,
decreasing k from 784 to 64 leads to marginal increase in error from 0.22 to 0.238 while reducing the
lag significantly; from 8 seconds to 0.6 seconds. In fact, even at k � 64 this model’s performance is
significantly better than the reported error of standard LAS (0.27) [12]. See Appendix C for details.
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A Proofs

Proof of Claim 1. Recall that for streaming setting, sliding windows Xs can then be broken intro
bricks Bj � xppj�1q�k�1q:pj�kq where ps � 1q � q � 1 ¤ j ¤ ps � 1q � q � T {k. Now first layer of

ShaRNN compute νp1qj for all j. Hence, for the next sliding window Xs�1 � xs�ω�1:s�ω�T , we

can reuse νp1qj from the previous window where s � q � 1 ¤ j ¤ ps � 1q � q � T {k. Note that the
second layer would still need to be computed from scratch. Hence, for new window Xs�1, we need
to compute Rp1q over ω � q � k new steps. Furthermore, Rp2q needs to be computed over T {k steps.
So the total compute requirement is:

�
T
k � q � k� � C1. Second part of Claim follows by setting

k �aT {q.

We note that Claim 2 is for multi layer ShaRNN case and it agrees with Claim 1 if L � 1.

Proof of Claim 3. Define,

ν
p1q
j � vecprRph0, xt:t�k�1q;∇1

hRph0, xt:t�k�1q; . . . ; 1

M !
∇M�1

h Rph0, xt:t�k�1qsq, (1)

where t � pj � 1q � k � 1 and j P rT {ks. Using Claim 5, νp1qj is a recurrent function of h0, xi’s, and
can be computed by an RNN Rp1q applied to xt:t�k�1 and h0.

Similarly, define:

ν
p2q
j � Rph0, xt:t�k�1q �

M�1¸

m�1

1

m!
∇m

h Rph0, xt:t�kq � pνp2qj�1 � h0qbm�

1

M !
∇M

h Rpζ, xt:t�kq � pνp2qj�1 � h0qbM , (2)

where νp2q0 � h0. Note that there exists a simple bi-linear function Rp2q s.t. νp2qj � Rp2qpνp2qj�1, ν
p1q
j q.

Using the assumptions mentioned in the Claim, we will now show that νp2qj � ht for ShaRNN with
Rp1q, Rp2q defined above and where t � j � k.

Using Taylor’s theorem:

Rph0, x1:t�k�1q � Rph0, xt:t�k�1q �
M�1¸

m�1

1

m!
∇m

h Rph0, xt:t�kq � pht�1 � h0qbm�

1

M !
∇M

h Rpζ, xt:t�kq � pht�1 � h0qbM , (3)

where ζ � λh0 � p1� λqht�1 for some λ ¡ 0.

Using triangular inequality:

}Rph0, x1:t�k�1q � ν
p2q
j } ¤ }

1

M !
∇M

h Rpζ, xt:t�k�1q} � }pht�1 � h0q
bM}�

M�1¸

m�1

1

m!
}∇m

h Rph0, xt:t�k�1q} � }pht�1 � h0q
bM � pν

p2q
j�1 � h0q

bM},

where t � pj�1q�k�1. Using the assumptions of claims along with standard algebraic manipulations,
we get:

}Rph0, x1:t�k�1q � ν
p2q
j } ¤ ε�OpMεq}νp2qj�1 � ht�1}.

The claim now follows by applying the above result recursively for all j P T {k.

Claim 5. If f is a recurrent function, i.e., fph0, xt:t�kq � fpfpxt:t�k�1, h0q, xt�kq. Then, it’s
higher-order derivatives are also recurrent.
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Proof of Claim 4. FastRNN updates hidden state as: ht � α � σpUht�1 �Wxt � bq � βht�1 where
β � 1 � α, α � Op1{T q and the activation function σ is ReLU. Using the updates, we have:
}ht � ht�1} ¤ }U}�1

T }ht�1}, i.e., }ht} ¤ expp}U} � 1q for all t. Now by assumption }U} � Op1q,
we have: }ht} � Op1q for all t. Similarly, }∇hRpht�1, xtq} ¤ p1 � }U}�1

T q}∇hRpht�2, xt�1q}.
Using similar arguments as above, we have }∇hRpht�1, xtq} ¤ Op1q for all t. Claim now follows
by combining Claim 3 with the bounds on }ht}, }∇hRpht�1, xtq} and }∇2

hRpht�1, xtq}.

B Additional Empirical Results

Dataset #Steps (Baseline) Feat. Dim. #Train #Val #Test Source
Google-13 99 32 51088 6798 6835 URL1
HAR-6 128 9 6220 1132 2947 URL2
STCI-2 162 32 42788 5223 5224 Proprietary
DSA-19 129 45 4560 2280 2280 URL3
GesturePod-5 400 6 13432 2684 2552 URL4
TIMIT 784 39 4389 231 1680 URL5

Table 3: Dataset details: Source of dataset, the number of timesteps, feature dimension and the
number of data points in train, test and validation tests.

URL1 http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz

URL2 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

URL3 https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities

URL4 https://www.microsoft.com/en-us/research/publication/

gesturepod-programmable-gesture-recognition-augmenting-assistive-devices/

URL5 https://catalog.ldc.upenn.edu/LDC93S1

(a) (b)

Figure 3: Accuracy and inference cost vs brick size (k) on HAR-6 dataset for a model with hidden
dimension 32 at both the layers. Inference cost in terms of number of floating point operations (flops)
behaves as expected as show in in (a). The accuracy trend, shown in (b), is tricky at extreme values
of k. When k is very small, the lower layer is very shallow, while for high values of k, the higher
layer becomes shallow.

A comparison of CNN based models and ShaRNN is given in Figure 4 for Google-13. Note that none
of the CNN models satisfy compute requirement of ¤ 0.15M flops on M4 device. The best CNN
model that at least satisfies the RAM requirement (  256KB) is 3% less accurate than ShaRNN.
Interestingly, an RNN even with a small k is more powerful than CNN as it applies non-linearity k
times while a CNN layer applies non-linearity only once per k-sized filter.
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# Filters # Pools Accuracy Size(KB) Flops

10 2 0.81 375.1 1.1M
10 4 0.85 90.4 1.5M
20 2 0.83 753.3 3.9M
20 4 0.88 190.1 5.6M
30 4 0.90 299.1 12.1M

ShaRNN - 0.91 26.5 0.09M

Figure 4: Accuracy, size and number of flops comparison of ShaRNN and CNN models.

C Online LAS with ShaRNN

Listen-Attend-Spell is a popular end-to-end architecture for transcribing speech with phonemes. The
architecture consists of two parts— the listener and the speller. The listener is a pyramidal recurrent
network which encodes the filter bank spectra input. The speller uses an attention-based recurrent
network to decode the listener output and produces phonemes. Standard LAS transcribes audio
input with 784 steps which corresponds to about 8secs worth of audio clip. While standard LAS
architecture’s phoneme error-rate on the TIMIT dataset is 0.27 4, after a few enhancements like
dropping a layer and thresholding out predictions with low confidence, we can achieve the baseline
error rate of 0.251.

Now, the LAS architecture is designed to transcribe static input, i.e., where a fixed-length audio clip
(of ¤ 8sec or 784 steps) and does not readily generalize to the streaming setting where the audio
data is flowing in continuously. One approach is to form non-overlapping windows of fixed size and
apply LAS on each of them independently. Naturally such a technique would incur a large lag in
phoneme predictions. Another approach is to form sliding windows, but in that case it is not clear
how to reconcile predictions from the overlapping sliding windows.

We focus on the streaming setting and propose an ShaRNN based approach for making the LAS
architecture streaming, i.e., with predictions with small lag of say ¤ 1sec — this has been illustrated
in Figure 5. Intuitively, as new batch of audio data arrives, the goal is to process the new batch of
data and predict phonemes contained in the batch; note that batch-size should ideally be small so
that there is a small lag in prediction. However, as phoneme prediction can be highly contextual, we
cannot process every batch independently and would require context from past few batches of audio
as well. But, standard LAS architecture is ill-suited for such task, furthermore, naively processing the
past few batches would lead to significant computational overhead.

Below we describe our ShaRNN-based architecture that can appropriately re-use computation to
ensure accurate phoneme prediction with a small batch of audio thus ensuring prediction with small
lag and low computational cost.

C.1 Encoder

We replace the bottom two layers of pyramidal encoder by a 3-layer ShaRNN where the first two
layers partitions the input into “bricks" of size lf while the third layer recaptures the receptive
field by processing bottom layer’s output via a bi-LSTM. The output of the third layer is the final
code/embedding of the input-sequence. Similar to sliding-window streaming setting (Section 3), we
can re-use computation from the bricks to process the new lf -sized brick of audio data efficiently.

C.2 Decoder

We replace the attention-based architecture in LAS with an inverted pyramidal decoder — the number
of output states for each of the layer in the inverted pyramidal decoder is twice the number of input
states. Thus, after two layers of the inverted pyramidal decode we obtain the same number of output
states as the input to the encoder. Each of these output states are then processed by an Multilayer
Perceptron (MLP) layer to compute the probability distribution over the space of all phonemes.

4[4] did not report results on any publicly available dataset, but this error-rate matches the publicly reported
numbers [12]
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Figure 5: ShaRNN based online LAS.

Applying the above Decoder in the streaming setting will incur significant computation overhead.
To alleviate this concern, we again use ShaRNN to enable re-use of the computation across the
decoder layer as was done for the encoder layer. In particular, we use one recurrent network to
compute the ‘summary’ of all the output states (denoted as Si in Figure 5) of a given fragment.
Another recurrent network processes the past “summaries" Si�1, Si�2 and Si�3 to produce Hi which
is the ‘correction’ factor for each of the output states (uj in Figure 5) of the ith fragment. This
correction term concatenated with each uj is the input to a two layer MLP with softmax output over
the phonemes.

Hence, the phoneme distribution is obtained for each new input frame/batch and the network is trained
using the time aligned phoneme transcription available in the TIMIT dataset. The final prediction by
the model is obtained by removing labels predicted with a low confidence (less than a threshold) and
collapsing the repeating phonemes.

C.3 Argument

We first replace the encoder in LAS while retaining the decoder, we see an improvement in the
phoneme error rate from 0.251 to 0.240 (lf � 64) by doing this. Using the ShaRNN encoder,
the streaming input can be transcribed every lf input frames, thus there is no need to wait for the
entire speech input. Even though the lag for prediction is reduced, this still involves the attention
computation across all the encoder states which is expensive especially when the input speech is
long and runs into hours. To avoid this, we replace the decoder with an ShaRNN decoder where the
need for attention is eliminated by predicting a phoneme for each input frame and not just the unique
phonemes. With this substitution, we observe a further improvement in the phoneme error rate to
0.238 (lf � 64).

Surprisingly, it turns out that our new architecture is able to better model the phoneme prediction
problem. The error rate for the “offline" version of our model, i.e., where lf � 784 is 0.220. This
error-rate is significantly better than the rate of 0.251 that we could obtain using enhancements of the
standard LAS model.

As noted above, using our ShaRNN based architecture with lf � 64, we could still achieve error rate
of 0.238 which is marginally larger than the best error rate achieved by lf � 784. However, lag in
phoneme predictions in lf � 64 case is 12x smaller than the lag incurred by our architecture with
lf � 784, i.e., in the offline case.
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