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Abstract a few items (top-k) out of a vast repository of items, and 
Modern recommendation and notifcation systems 
must be robust to data imbalance, limitations 
on the number of recommendations/notifcations, 
and heterogeneous engagement profles across 
users. The pAp@k metric, which combines the 
partial-AUC and the precision@k metrics, was 
recently proposed to evaluate such recommenda-
tion systems and has been used in real-world de-
ployments. Conceptually, pAp@k measures the 
probability of correctly ranking a top-ranked pos-
itive instance over top-ranked negative instances. 
Due to the combinatorial aspect surfaced by top-
ranked points, little is known about the character-
istics and optimization methods of pAp@k. In 
this paper, we analyze the learning-theoretic prop-
erties of pAp@k, particularly its benefts in evalu-
ating modern recommender systems, and propose 
novel surrogates that are consistent under certain 
data regularity conditions. We then provide gradi-
ent descent based algorithms to optimize the sur-
rogates directly. Our analysis and experimental 
evaluation suggest that pAp@k indeed exhibits 
a certain dual behavior with respect to partial-
AUC and precision@k. Moreover, the proposed 
methods outperform all the baselines in various 
applications. Taken together, our results motivate 
the use of pAp@k for large-scale recommender 
systems with heterogeneous user-engagement. 

1. Introduction 
Modern recommendation services are quickly shifting from 
the search based pull paradigm, which requires users to be 
aware of the information in the frst place, to push services, 
where the relevant information is recommended automati-
cally. To devise high-quality push services, system designers 
must grapple with a variety of issues, which include data im-
balance, space constraints, i.e., the recommendation of only 
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heterogeneity in the engagement profles of users with the 
system, i.e., varied fraction of relevant items across users. 
Examples of platforms that must manage these constraints 
are ubiquitous – the Microsoft Teams platform1 constructs 
the activity feed by displaying only a few essential messages 
to the users, the Behance2 news feed includes only a few 
photos based on user’s preferences, and Google Scholar3 

notifes users about a selected subset of the most relevant ci-
tations to the user’s research. For such application domains, 
the recommendation problem can be formulated as a bipar-
tite ranking problem. Further, in top-k settings, an ideal 
ranking metric rewards ordering the most relevant items at 
the top of the list, whereas accurate ranking in the remaining 
part is not of great importance (Rakotomamonjy, 2012). 

To this end, several metrics have been proposed such 
as area under the receiver operating characteristic curve 
(AUC) (Rakotomamonjy, 2004), partial-AUC (McClish, 
1989), and precision@k (Agichtein et al., 2006). Unfor-
tunately, these standard metrics often fail to address one 
or more of the outlined challenges. For instance, while it 
is widely accepted that AUC is suitable for ranking prob-
lems characterized by imbalanced class priors (Cortes & 
Mohri, 2004), it can provide a misleading picture to the 
practitioners when the focus is on accuracy at the top of 
the list (Agarwal, 2011). Consider the example in Table 1, 
where three ranking functions f1, f2, and f3 provide rank-
ing to a dataset of fve relevant (label = 1) and six irrelevant 
(label = 0) instances. While f1 has the highest AUC, its 
accuracy at the top is the worst among the three functions. 

The partial-AUC (pAUC) is designed to address this is-
sue (Jiang et al., 1996; Agarwal, 2011); however, pAUC 
itself is often inadequate as it unnecessarily pits all the rel-
evant items beyond the privileged set of k relevant items 
against the top scored irrelevant items – thus over-penalizing 
predictions that are suffciently accurate at the top-k. Again, 
take the example in Table 1: f2’s accuracy at the top is not 
the most adequate; however, it achieves the highest pAUC 
when recommendations are limited to k = 2 items as pAUC 
rewards gain in ranking all the relevant items (even beyond 
top-2) over irrelevant items. This issue is exacerbated when 
the model is learned jointly across multiple users with a 
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Table 1: Ranking of labeled instances by score functions. 
k = 2 k = 6 

Ranking f1 f2 f3 Ranking f4 f5 

(1) 0 1 1 (1) 1 1 
(2) 1 0 1 (2) 1 1 
(3) 1 1 0 (3) 0 1 
(4) 0 1 0 (4) 1 0 
(5) 1 1 0 (5) 1 1 
(6) 1 0 0 (6) 1 1 
(7) 1 0 0 (7) 0 0 
(8) 0 0 0 (8) 0 0 
(9) 0 0 1 (9) 0 0 
(10) 0 0 1 (10) 0 0 
(11) 0 1 1 (11) 0 0 
AUC 

pAUC(0, 2/6] 
pAp@2 

22/30 21/30 12/30 
2/10 5/10 4/10 
2/4 3/4 1 

prec@6 
pAp@6 

-

5/6 5/6 
27/30 28/30 

- -

large variance in the number of relevant items, as in that 
case the model would be overwhelmingly driven by prefer-
ences of a few users with loads of relevant items. 

On the other extreme, the Precision@k (prec@k) metric 
ignores ranking of items anywhere but at the top of the list, 
and is widely used in both classifcation (Prabhu & Varma, 
2014) and ranking (Le & Smola, 2007) domains. However, 
when there are fewer than k relevant items, perhaps for 
users with low engagement with the system, prec@k does 
not reward the few relevant items being ranked above the 
irrelevant items within the top-k and thus may give a false 
sense of achieving a perfect system. For example, consider 
the functions f4 and f5 in Table 1 which provide ranking on 
the same dataset. While prec@6 for both is at the highest 
achievable value, clearly f5 provides better ranking since 
it puts more relevant items above the (inevitable) irrelevant 
items in top-6. This issue is exacerbated when there are a 
signifcant number of users with less than k relevant items. 

Building on the disjoint properties of pAUC and prec@k 
metrics, Budhiraja et al. (2020) recently proposed a novel 
joint classifcation and ranking metric for recommender sys-
tem - the ‘partial-AUC + precision@k’ (namely pAp@k). 
Intuitively, for a given score function, pAp@k measures 
AUC between the top-k irrelevant items and top-β relevant 
items, where β is the minimum of k and the number of 
relevant items. The metric behaves like prec@k when the 
number of relevant items are larger than k and like pAUC 
otherwise, and is currently used in Microsoft Teams’ pro-
duction system (Budhiraja et al., 2020). In this work, we 
shed light on how pAp@k eliminates the defciencies of 
both prec@k and pAUC in top-k setting for systems having 
users with varied engagement. Furthermore, since pAp@k 
intertwines aspects of prec@k and pAUC in a complicated 
manner, existing optimization and analysis for the compo-
nent metrics do not extend to pAp@k. This manuscript 
highlights the advantages of pAp@k in evaluating mod-
ern recommender systems and provides an analysis of the 
pAp@k metric. We further provide a novel optimization pro-
cedure for training models to optimize pAp@k. In summary, 
the key contributions of this paper are: 

• We analyze the pAp@k metric, discuss its utility for mod-
ern recommendation systems, and further motivate its use 
to evaluate such systems. 

• We propose four novel surrogates for pAp@k (Section 4), 
which are inspired by the structural surrogate for multi-
variate losses (Joachims, 2005). The surrogates are con-
structed as upper bounds of pAp@k and are shown to be 
consistent under certain data regularity conditions. 

• We then provide procedures to compute sub-gradients for 
each of the surrogates and use them to enable sub-gradient 
descent methods for optimizing the surrogates (Section 5). 

• We derive a uniform convergence generalization bound 
for the pAp@k performance measure, thus establishing 
that good training performance in terms of pAp@k also 
implies good generalization performance (Section 6). 

Beyond conceptual and theoretical contributions, through a 
variety of simulated studies, we illustrate how pAp@k can 
be advantageous compared to pAUC and prec@k in outlined 
settings. We also conduct extensive experiments to show 
that the proposed methods optimize pAp@k better than a 
range of baselines in disparate recommendation applications 
involving image, text, or latent features (Section 7). Lastly, 
the proofs derived in this work are provided in the appendix. 

2. Related Work 
Many metrics have been proposed for bipartite ranking prob-
lem (Baeza-Yates et al., 1999; Menon & Williamson, 2016), 
each capturing different ranking notions. While the litera-
ture has focused on issues with data imbalance and ranking 
accuracy at the top (Joachims, 2005; Narasimhan & Agar-
wal, 2017; Kar et al., 2014), accommodating different en-
gagement profles of the system’s users and thus different 
amount of data imbalance per user has largely been ignored. 
By incorporating properties of both prec@k and pAUC, the 
pAp@k metric (Budhiraja et al., 2020) is able to eliminate 
their defciencies for a variety of ranking scenarios. For 
example, when the number of relevant items are more than 
k, pAp@k ignores rewards gained by performing better in 
other parts of the ranked list, unlike pAUC. On the other 
hand, when the number of relevant items are less than k, 
pAp@k focuses on ranking relevant items above irrelevant 
items in top-k, thus addressing this defciency of prec@k. 

Subset wise or list wise metrics such as NDCG@k (Wang 
et al., 2013) and MAP@k (Yilmaz & Aslam, 2006) are 
also popular ranking-at-the-top metrics, but they artifcially 
assign different gain for different ranking positions which 
makes them challenging to use for bipartite ranking style 
problems that we encounter. For example, if the gain varies 
signifcantly with each position, then at the lower positions 
in top-k, presence of a positive or negative instance would 
not matter and hence it is easy to come up with scenarios 
where they can be swapped. In contrast, if the gains remain 
almost constant throughout top-k, then a ranking where top-
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k/2 are negatives and bottom k/2 are positives might still 
give almost 90% accuracy. A broader family of bipartite 
ranking metrics are W-ranking measures (Cl´ ¸con &emenc 
Vayatis, 2009), which include metrics such as AUC and 
NDCG@k as special cases. Since W-ranking measures are 
defned on the positives and involve comparisons to all the 
negatives, no W-ranking measure is able to consider some 
specifc (e.g. top-k) negatives. In particular, W-ranking mea-
sures have similar drawbacks as pAUC when the model is 
learned jointly across users, since under heterogeneous user 
engagement, the model can be driven by a few users with 
many negatives. Finally, two-way pAUC (Yang et al., 2019) 
is another related metric, but it requires the true positive 
rate to be lower-bounded which for many users, who have 
a large number of positives, implies that the measure will 
focus on a large part of the list (i.e., k would be high). 

From the optimization point of view, there have been several 
techniques like structural support vector machines and direct 
gradient descent on surrogates that have been proposed 
and analyzed in literature (Herbrich, 2000; Joachims, 2002; 
Freund et al., 2003; Burges et al., 2005; Joachims, 2005; Kar 
et al., 2015). However, such techniques do not apply to the 
pAp@k metric as it combines challenging aspects of both 
pAUC and prec@k. To our knowledge, ours is the frst work 
to develop conditionally consistent surrogates and principled 
gradient descent methods that can directly optimize the non-
convex, computationally hard pAp@k metric. 

3. Preliminaries and Background 
Let X ⊆ Rd and Y = {0, 1} represent the instance and label 
space (0 = negative class, 1 = positive class), respectively. 
Let the training sample be S = S+ ∪ S− containing n+ 

+ +positive instances S+ = (x1 , . . . , x ) ∈ X n+ drawn n+ 

independent and identically distributed (iid) according to 
a probability distribution D+ and n− negative instances 

− −S− = (x1 , . . . , x ) ∈ X n− drawn iid according to an− 

probability distribution D−. Given S, the goal is to learn a 
scoring function f : X → R that provides optimal pAp@k 
value (defned below), where k ∈ Z+ is the number of item 
recommendations to the users. Typically, k is set to be a 
constant and as most users may have low engagement with 
the system (i.e., very few positives in train/test data), we 
study pAp@k with the assumption that k ≤ n−. On the 
other hand, prec@k requires a stronger k ≤ n+ assumption 
to ensure comparable metric across users (Kar et al., 2015)). 

Defnition 1. pAp@k (risk): Let f : X → R be a score 
function and β = min(n+, k). The pAp@k measures the 
probability of correctly ranking a pair of positive and neg-
ative instances, where the positive is one among the top-β 
positives and the negative is one among the top-k negatives, 
i.e.: β kXX1 +b −RpAp@k(f ; S) = 1[f(x ) ≤ f(x )], (1)(i)f (j)fβk 

i=1 j=1 

+ −where x and x denote the positive instance ranked in (i)f (j)f 

i-th position (among positives in decreasing order of scores) 
and negative instance ranked in j-th position (among nega-
tives in decreasing order of scores) by f , respectively. 

The above defnition can be extended for multiple users in 
the system leading to its Macro and Micro version (see (17)). 
Next, we compare the defnitions of pAp@k to that of AUC 
and pAUC (Narasimhan & Agarwal, 2017). Recall that 
AUC considers all pairs of positive and negative instances, 
while pAUC(0, k/n−] considers pairs where the negative’s 
score (according to f ) is amongst the top-k scores of all 
negatives. In contrast, pAp@k restricts the positives also 
to be one among the top-β positives. This added restric-
tion allows pAp@k to focus on the absolute top of the list 
while pAUC can be affected by positives with scores much 
lower down the list. On the other hand, when n+ � k and 
hence β = n+, then unlike prec@k, pAp@k focuses on the 
pairwise ranking of the top-n+ positives with the negatives; 
thus, reducing to pAUC(0, k/n−]. In summary, pAp@k 
is maximized when relevant items are in the top-k items, 
and when there are less than k relevant items, pAp@k is 
maximized by placing the relevant items before the irrele-
vant items. Thus, as shown in Table 1, pAp@k can handle 
both large as well as small n+ when compared to k (e.g. 
rewards better rankers f3, f5), while pAUC struggles when 
n+ is large (e.g. compare rankers f2, f3) and prec@k can be 
misleading when n+ is small (e.g. compare rankers f4, f5). 

For the rest of the paper, we consider linear score functions 
Tof the form f(x) = w x for w ∈ Rd . The methods easily 

extend to non-linear functions/non-Euclidean spaces via 
Reproducing Hilbert Space kernels (Yu & Joachims, 2008). 

3.1. Background: Structural surrogate for AUC 
Like the majority of classifcation metrics, directly optimiz-
ing pAp@k (1) is computationally hard, so we propose a 
surrogate for the same. In preparation, we briefy outline 
the construction of the structural surrogate for AUC in the 
following. Let AUC risk be defned as: 

n+ n−XX1b T + T −RAUC(f ; S) = 
n+n− 

1[w xi ≤ w xj ]. (2) 
i=1 j=1 

Let us denote the errors in relative ordering of the positives 
and negatives via the matrix π ∈ {0, 1}n+×n− as follows: ( 

1 if x + is ranked below x − 

=πij + 
i 

− 
j 

0 if x is ranked above x .i j 

Moreover, let Πn+,n− denote the subset of matrices in 
{0, 1}n+×n− that correspond to valid orderings. Note that 
an optimal relative ordering π∗ has entries πij 

∗ = 0 ∀i, j. 
For any π ∈ Πn+,n− , we may now defne the AUC loss of 
π with respect to (w.r.t.) π∗ as: 
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n+ n− 

n+ ×n−Δ (π ∗ , π) = 
1 XX 

(3)AUC πi,j . 
n+n− i=1 j=1 

Also let us defne a joint feature map between the in-
put training sample and an output ordering matrix π as:P Pn+ n− + −φ(S, π) := (1 − πij )(x − x ). This choice i=1 j=1 i j 

of joint features ensures that for any fxed w ∈ Rd , 
arg maxπ w

T φ(S, π) is a π ∈ Πn+,n− that is consistent 
with the score function wT x and hence for which the loss 
term evaluates to RbAUC(w; S) (2). Consequently, minimiz-
ing AUC risk w.r.t. w reduces to a saddle point of the form: 

Rstruct Rstructminw 
b 

AUC (w; S), where the surrogate b 
AUC (w; S) := 

wT (φ(S, π∗) − φ(S, π))n+×n− max Δ (π ∗ , π) − . 
π∈Πn+,n− 

AUC n+n− 

(4) 

The above structural surrogate is an upper bound of the 
empirical AUC (Joachims, 2005). Moreover, this surrogate 
is convex in w as it is a maximum of convex functions in w. 

We may construct a convex surrogate for pAp@k by a di-
rect application of the above structural surrogate framework, 
e.g., by replacing the frst term in (4) by ΔpAp@k(π

∗, π) = Pβ Pk1 , where (i)π and (j)π denotes the βk i=1 j=1 π(i)π,(j)π 

index of the i-th and j-th ranked positive and negative, re-
spectively, by any fxed ordering consistent with π. How-
ever, this surrogate is a loose upper bound on pAp@k since 
the joint feature map φ is defned on all the instances and not 
just the ones relevant for pAp@k. Clearly, these terms alter 
the emphasis of the surrogate for a given k; hence, we shall 
now focus on constructing tighter surrogates for pAp@k. 

4. Novel Surrogates for pAp@k 
A proxy for pAp@k is called a surrogate when (a) the proxy 
upper bounds pAp@k (1) so that minimizing the proxy pro-
motes small pAp@k (aka upper bounding property), and (b) 
optimizing the proxy yields an optimal solution for pAp@k, 
under some regularity assumptions (aka conditional consis-
tency). Having set the requirements for a surrogate, we next 
discuss a family of surrogates for pAp@k. 

4.1. The Ramp Surrogate for pAp@k 

Let Z+ ⊆ S+ and Z− ⊆ S− be the sets of positives and 
negatives, respectively. Let RbAUC(w; Z+, Z−) denote the 

Tfull AUC risk of scoring function w x calculated on a sam-
ple containing the subsets of positives Z+ and negatives Z−. 

TThen pAp@k of w x is equivalent to the maximum over 
all k-sized subsets of Z− ⊆ S− of the minimum over all 
β-sized subsets Z+ ⊆ S+ of RbAUC (w; Z+, Z−). This is 
formalized in the following theorem: 

Theorem 1. Given data S and a score function w ∈ Rd: 

RbpAp@k(w; S) = max min RbAUC(w; Z+, Z−) (5)
Z− ⊆S−, Z+⊆S+, 
|Z− |=k |Z+|=β X X 

T T = max min 
1 

1(w x + ≤ w x −). 
Z−⊆S−, Z+⊆S+, βk 
|Z−|=k |Z+|=β x+∈Z+ x−∈Z− 

Notice that the order of the min-max over subsets Z− and 
Z+ does not affect the metric pAp@k and can be inter-
changed. Now, similar to Section 3.1, we upper bound the 
inside term RbAUC(w; Z+, Z−) with a convex function such 
that the features are independent of w. In particular, let us 
denote truncated ordering matrices π ∈ {0, 1}β×k for any 

+ +subset of positive instances Z+ = {z1 , · · · z } ⊆ S+ andβ 
− −negative instances Z− = {z1 , · · · z } ⊆ S− as:k ( 

1 if z + is ranked below z − 

=πij 
i 
+ − 

j 

0 if z is ranked above z .i j 

The set of valid orderings is denoted by Πβ×k, and the 
0β×kcorrect ordering is given by π∗ = . Let the joint 

feature map ϕ : (X β × X k) × Πβ×k → Rd be defned asPβ Pk + −ϕ(Z+, Z−, π) := (1−πi,j )(z −z ). Further, i=1 j=1 i j 
let the AUC in terms of π among any two subsets Z+ and 
Z− of positives and negatives be denoted by: 

β kXX 
β×kΔAUC(π ∗ , π) := ΔAUC (π ∗ , π) := 

1 
πi,j . 

βk 
i=1 j=1 

By applying the upper bound of AUC (4) from Section 3.1 
to the inner term RbAUC(w; Z+, Z−) in (5), we can defne a 
ramp surrogate of the metric pAp@k as follows: 

rampRb 
pAp@k(w; S) = max min max 

� 
ΔAUC (π ∗ , π)− 

Z−⊆S− , Z+⊆S+ , π∈Πβ×k 

|Z− |=k |Z+|=β 

1 
w T (ϕ(Z+, Z−, π ∗ ) − ϕ(Z+, Z−, π)) . (6)

βk 
rampNote that Rb 
pAp@k(w; S) is similar to the “ramp” losses for 

binary classifcation (Do et al., 2008). Next we show that the 
rampramp surrogate Rb 
pAp@k(w; S) upper bounds pAp@k and is 

consistent under the following margin condition. 

Defnition 2. Weak (β, δ)-margin (Kar et al., 2015): A 
dataset S satisfes the weak (β, δ)-margin condition if for 
some scoring function f and a set Se 

+ ⊆ S+ of size β, 

min fi − max fj ≥ δ. (7) 
i∈ e j∈S−S+ 

Moreover, we state that the function f realizes this margin. 
We refer the weak (β, 1)-margin condition as simply the 
weak β-margin condition. 

TProposition 1. For any scoring function w x, we have 
rampRb RbpAp@k(w; S). Moreover, if the scoring pAp@k(w; S) ≥ 

Tfunction w x realizes the weak β-margin condition over a 
rampdataset S, then Rb 
pAp@k(w; S) = RbpAp@k(w; S) = 0. 
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rampProposition 1 establishes that RpAp@k(w; S) upper bounds 
pAp@k and is indeed consistent w.r.t. pAp@k under the 
weak β-margin condition, then when there exist some β 
positive points that substantially outrank all the negatives. 
For β = k < n+, this notion of margin is weaker than the 
standard notion of margin for binary classifcation, but the 
ramp surrogate (6) turns out to be non-convex in this case. 
Proposition 2. The ramp surrogate (6) for pAp@k is non-
convex in general. It is convex when n+ ≤ k. 

4.2. The Average Surrogate for pAp@k 
Let us expand the ramp surrogate as: ⎡ 

β kXX 
rampRb max min max 

1 ⎣ 
pAp@k(w; S) = πi,j

Z−⊆S− Z+⊆S+ π∈Πβ×k βk 
i=1 j=1|Z−|=k |Z+|=β ⎤ 

β kX X 
T + T −− piw zi + qj w zj 

⎦ , (8) 
i=1 j=1 Pk Pβwhere pi = πi,j ≥ 0 and qj = πi,j ≥ 0. Inj=1 i=1 

general, the min and the max (over π) cannot be exchanged; 
however, notice that since pi’s are always non-negative for 
any π ∈ Πβ×k and set Z− ⊆ S−, we may push the mini-
mum inside as shown below: ⎡ 

β kXX 
rampbRpAp@k(w; S) = max max 

1 ⎣ πi,j
Z− ⊆S− π∈Πβ×k βk 

i=1 j=1|Z−|=k ⎤ X Xk
T − 

β

T +⎥ 
+ qj w zj − max piw zi ⎦ . (9)

Z+⊆S+ 
j=1 i=1|Z+|=β 

Given a π, the maximum in the third term of the ramp 
surrogate as defned in (9) is lower bounded by average of Pβ tzi over all the subsets of size β. Formally, i=1 piw 

β βX X X(n+ − β)!T + T + max piw z ≥ piw z , 
Z+⊆S+ 

i n+! i∈Ze 

|Z+|=β Z+∈Zi=1 e i=1 

where Z is the set of all ordered sets of size β. Now 
notice that the right hand side is the sum of pi’s 
weighted by the average score of the positive instances,Pn+ T + Pβi.e. ( 1 x ) i=1 pi. Using this in (9) allows us n+ l=1 w l 

to defne the average surrogate as follows:⎡ 
β kXX1avg b ⎣R max maxpAp@k(w; S) = πi,j + 

Z−⊆S− π∈Πβ×k βk 
i=1 j=1|Z−|=k ⎤ 

β k n+ β kXX X XX1T − T +πi,j w z − w x πi,j ⎦ . (10)j ln+i=1 j=1 l=1 i=1 j=1 

This surrogate is a point-wise maximum over convex func-
tions in w, thus it is convex. It also upper bounds the pAp@k 
metric, since it upper bounds the ramp surrogate. This surro-
gate is consistent under the (β, δ)-margin condition defned 
as follows: 

Defnition 3. (β, δ)-margin (Kar et al., 2015): A dataset 
S satisfy the (β, δ) margin condition if for some scoring 
function f , we have, for all sets Se 

+ ⊆ S+ of size β, X1 
fi − max fj ≥ δ. (11)

β j∈S− 
i∈Se 

+ 

We say that the function f realizes this margin. We refer the 
(β, 1)-margin condition as simply the β-margin condition. 

TProposition 3. For any scoring function w x, we have b bRavg Moreover, if the scoring pAp@k(w; S) ≥ RpAp@k(w; S). 
Tfunction w x realizes the β-margin condition over a dataset 

avg S, then Rb 
pAp@k(w; S) = RbpAp@k(w; S) = 0. 

A note on Max surrogate for pAp@k (Appendix C): We 
relax the ramp surrogate by replacing the maximum over Z+ 

in (9) by a minimum (which becomes max when pushed out-
side) and thus construct another surrogate, namely the max 
surrogate (24). Due to space constraints and its similarity 
with the average surrogate in construction, we defer the de-
tails to Appendix C. Notice that the max surrogate is further 
loose than the average surrogate since the maximum in (9) is 
replaced by a minimum. Moreover, it is consistent under the 
strong (β, δ)-margin condition (Defnition 5), which is the 
standard notion of binary classifcation margin, i.e, where 
all positives are separated by negatives by a margin δ, and 
hence is much stronger than the (β, δ)-margin condition. 

Notice that slight variants of the weak-β, β, and strong-
β margin conditions were proposed by Kar et al. (2015) 
for prec@k. Despite the apparent similarity, we note that 
the “natural” origin of these conditions and the consistency 
proofs for pAp@k follow an entirely different path, because 
pAp@k and its surrogates, by defnition, deal with pairwise 
comparisons of positives and negatives; whereas, prec@k 
and its surrogates are not pairwise. We next propose our 
fourth surrogate for pAp@k and its consistency condition. 

4.3. The tight-struct surrogate for pAp@k 
The following surrogate was developed by noting close links 
between pAp@k and pAUC(0, k/n−]. By subtracting the 
pairwise ranking loss for n+ − β positives from loss for all 
the positives in (5), we may write RbpAp@k(w; S) = ⎡ 

n+ kXX1 T + T − max min ⎣ 1(w xi ≤ w zj )− 
Z−⊆S− Z+⊆S+ βk 

i=1 j=1|Z−|=k |Z+|=n+−β ⎤ 
nX+−β kX 

T + T −1(w zi ≤ w zj )]⎦ . (12) 
i=1 j=1 

The frst term is AUC considering all the positives and the 
set of negatives Z− ⊆ S− w.r.t to w. We already have a 
convex upper bound for this term from Section 3.1. The 
second term in (12) is relative ordering of the bottom n+ −β 

Tpositives w.r.t w x and negatives in the set Z− ⊆ S−, i.e.: 
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nX+−β k nX+ −β kX X 
max πi,j = π(β+i)w ,j , (13)

Z+ ⊆S+ 
i=1 j=1 i=1 j=1|Z+ |=n+−β 

where (i)w is the index of the i-th ranked positive instance 
in S+, when the instances are sorted in descending order by 

Tw x. Combining the above upper bound and (13) together 
in (12), we obtain the following tight-struct (TS) surrogate:⎡ 

n+ k
1 

RbpAp@k(w, S) ≤ max max ⎣X X 
πi,j

Z−⊆S− π∈Πn+×k βk 
i=1 j=1|Z−|=k ⎤ 

nX+−β k n+ kX X X 
T + T −− π(β+i)w ,j − piw xi + qj w zj 

⎦ 
i=1 j=1 i=1 j=1 ⎡ 

β kXX1 ≤ max max ⎣ π(i)π ,j
Z−⊆S− π∈Πn+×k βk 

i=1 j=1|Z−|=k ⎤ 
n+ kX X 

T + T − RTS− piw xi + qj w zj 
⎦ =: bpAp@k(w; S), (14) 

i=1 j=1 

Pk Pn+where pi = πi,j , qj = πi,j , and (i)π isj=1 i=1 
the index of the i-th ranked positive by any fxed order-
ing consistent with π. The second inequality follows Pβ Pk Pβ Pkfrom ≤ sincei=1 j=1 π(i)w ,j i=1 j=1 π(i)π ,j , 
the maximum is taken over π. This is a convex surro-

tightgate similar to the structural surrogate Rb 
pAUC provided for 

pAUC(0, k/n−] (Narasimhan & Agarwal, 2017), with the 
difference in the frst term, as the π term only includes the 
top-β positives in the rank ordering by π. Interestingly, un-
like other proposed surrogates, this surrogate takes features 
from all the positives into account. By construction, TS 
surrogate is an upper bound to the metric pAp@k and is 
consistent under the following interpolation of the weak and 
the strong (β, δ)-margin conditions. 

Defnition 4. Moderate (β, δ)-margin: A dataset S satis-
fes the moderate (β, δ)-margin condition if for some scor-
ing function f and a set Se 

+ ⊆ S+ of size β, 

min fi − max fj ≥ 0, min fi − max fj ≥ δ. (15)
i∈S+ j∈S− i∈ e j∈S−S+ 

Moreover, we state that the function f realizes this margin. 
We refer the moderate (β, 1)-margin condition as simply the 
moderate β-margin condition. 

The above condition not only requires positives to be sepa-
rated from negatives but also requires the top-β positives to 
be further separated from negatives by a margin δ. 

TProposition 4. For any scoring function w x, we have 
RbTS b Moreover, if the scoring pAp@k(w; S) ≥ RpAp@k(w; S). 

Tfunction w x realizes the moderate β-margin condition 
RTS bover a dataset S, then b 

pAp@k(w; S) = RpAp@k(w; S) = 0. 

Algorithm 1 GD-pAp@k-surr 

Input: Step lengths ηt, feasible set W , surrogate ‘surr’, k 
Output: A model w ∈ W 

1: w0 ← 0, t ← 0 
2: while not converged do 

Rbsurr3: Set gt ∈ ∂w pAp@k(wt; X, y, k) {See Algorithm 2}
4: wt+1 ← ΠW [wt − ηt · gt], t ← t + 1 {project onto W} 
5: return w = wt+1 

Algorithm 2 Subgradient calculation for pAp@k surrogates 

Input: A model w, data X, y, surrogate ‘surr’, k 
RbsurrOutput: A subgradient g ∈ ∂w pAp@k(w; X, y, k) 

1: Obtain top-k neg. Z− ordered in dec. order of scores by w 
2: if ‘surr’==‘avg’ then 

T 1 Pn+ + −3: Set πi,j = 1(1 − w ( − z ) ≥ 0)
n+ l=1 xl j 

1 Pβ Pk − 1 Pn+ +4: Set g = πi,j [z − ]
βk i=1 j=1 j n+ l=1 xl 

5: else if ‘surr’==‘max’ then 
6: Get bottom-β pos. Z+ based on scores by w 

T + −7: Set πi,j = 1P(1 
β 

− wPk 

(z i − zj ) ≥ 0) 
1 − +8: Set g = − z ]
βk i=1 j=1 πi,j [zj i 

9: else 
10: Sort pos. in dec. order of scores assigned by w 

T + −11: Set π(i)w ,j = 1{w (x − z̄ ) ≤ 1(i ≤ β)}(i)w j 
1 Pn+ 

Pk − +12: Set g = πi,j [z − x ]
βk i=1 j=1 j i 

13: return g 

4.4. Comparing the Margins and Surrogates 
Recall that the β-margin condition is stronger than the weak 
β-margin condition and weaker than the strong β-margin 
condition. Similar is the case with the moderate β-margin 
condition. However, there is no concrete relation between 
the β-margin and the moderate β-margin conditions and 
their respective consistent surrogates. We show this in our 
simulated experiments in Section 7.2. We conclude this 
section by summarizing the hierarchy in the surrogates. 

Proposition 5. For a dataset S and a scoring function 
T ramp avg w x, RbpAp@k(w; S) ≤ Rb 

pAp@k(w; S) ≤ Rb 
pAp@k(w; S) ≤ 

Rmax ramp RTSRb 
pAp@k(w; S) and b 

pAp@k(w; S) ≤ b 
pAp@k(w; S). 

5. Gradient Descent Algorithms for pAp@k 
We now present sub-gradient descent (GD) based algorithms 
for maximizing the pAp@k performance measure. The pro-
posed algorithms can be readily modifed for stochastic 
GD (Kar et al., 2015), or cutting plane based (Joachims, 
2005) methods as well. In particular, we discuss optimiza-
tion routines for the three proposed surrogates i.e. average 
surrogate (10), max surrogate (24), and TS surrogate (14) in 
Algorithm 1. The algorithms for optimizing the surrogates 
follow a common routine with an exception of computing 
their respective non-trivial subgradients which are specifed 
in Algorithm 2; see Appendix D for more details. Fur-
thermore, since the algorithms use subgradient descent for 
optimizing convex (except ramp surrogate) but non-smooth 
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functions, the resulting method converges to an at most 
�-sub optimal solution in O(1/�2) steps (Bubeck, 2014). 

6. Generalization 
We now derive a uniform convergence generalization bound 
for the pAp@k metric. This will establish that good training 
performance w.r.t pAp@k will also imply good generaliza-
tion performance. Let us frst defne the population version 
of pAp@k for a general scoring function f : X → R. Let 
γ− ∈ (0, 1] (equiv. to k/n− in the empirical pAp@k (1)), 
then the population pAp@k is defned as: 

RpAp@k(f ; D) = 
1 

E +∼D+ 

� 
1{f(x +) ≤ f(x −)}×xγ+γ− 

x −∼D− � 
×Tγ+ (f, x+)Tγ− (f, x−) , (16) 

where γ+ is 1 if P[x ∼ D+] ≤ γ−, and γ− otherwise, 
Tγ− (f, x−) is 1 if Pxe−∼D− 

[f(xe−) > f(x−)] ≤ γ− and 
0 otherwise, and Tγ+ (f, x+) is 1 if Pxe+∼D+ 

[f(xe+) > 
f(x+)] ≤ γ+ and 0 otherwise. Next, we provide a bound on 
the generalization performance of any learned scoring func-
tion chosen from a function class F of reasonably bounded 
capacity in terms of its empirical risk. We measure the ca-
pacity of such a function class F using the VC dimension 
of the class of thresholded classifers obtained from scoring 
functions in the class: τF = {sign(f − t) | f ∈ F , t ∈ R}. 
We have the following convergence bound for pAp@k: 
Theorem 2. Let F be a class of real-valued functions on 
X , and τF = {sign(f − t) | f ∈ F , t ∈ R}. Let ρ > 0. 
Then with probability at least 1 − ρ (over draw of sample 

n+ n−S = (S+, S−) from D ×D ), we have for all f ∈ F ,+ − bRpAp@k(f ; D) ≤ RpAp@k(f ; S) + ⎛ ⎞s s 
d ln n+ + ln 1/ρ 1 d ln n− + ln 1/ρ

C ⎝ 1 + ⎠ ,
γ+ n+ γ− n− 

where d is the VC-dimension of τF , and C > 0 is a 
distribution-independent constant. 

The tightness of this bound depends on k (via γ− = k/n−). 
In particular, the smaller the value for k, looser is the bound. 
Moreover, the proof of this result bounds eight terms in 
tandem and differs substantially from the existing litera-
ture (Agarwal et al., 2005; Narasimhan & Agarwal, 2017). 

7. Experiments 
In this section, we present evaluation of our methods on sim-
ulated and real data.4 Section 7.1 highlights the advantages 
of pAp@k in evaluating modern recommender/notifcations 
systems via simulations. In Section 7.2, we discuss the 
behavior of the proposed surrogates for different margin 
conditions. Finally, in Section 7.3, we compare our methods 
to baselines for optimizing pAp@k on real-world datasets. 
4 Source code: https://github.com/gaurush-hiranandani/pap-k 

7.1. pAp@k Interwining pAUC and prec@k 
In this section, we demonstrate that pAp@k is a more use-
ful evaluation criterion in varied per-user fraction of posi-
tives than prec@k and pAUC and thus optimizing pAp@k 
maybe advantageous. To this end, we simulate a bipartite 
ranking dataset. The positives and negatives are generated 
from the multivariate Gaussian distributions N (−1d, Id×d) 
and N (0d, Id×d), respectively. 1d, 0d, and Id×d denote 
the vector of ones, vector of zeros, and identity matrix of 
dimension d, respectively. We fx d = 5. In this experi-
ment, GD-pAp@k-avg is used for optimizing pAp@k. We 
also use the algorithms SGD@k-avg (Kar et al., 2015) and 
SVM-pAUC (Narasimhan & Agarwal, 2017) that directly 
optimize prec@k and pAUC(0, k/n−], respectively. The 
reported results are averaged over 300 random runs. 

Case 1 (n+ < k): We sample 10 positives and 160 nega-
tives, and fx k = 20. We then apply GD-pAp@k-avg and 
SGD@k-avg methods until they converge. In Table 2, we 
report prec@k and AUC@k when the number of positives in 
top-k is same for both methods, i.e. AUC@k when prec@k 
is same. The number of runs over which the mean and stan-
dard deviation are computed is in parenthesis. We observe 
that GD-pAp@k-avg achieves not only better prec@k, but 
also signifcantly higher AUC@k when prec@k is the same 
for both methods. This suggests that when the number of 
positives is same in top-k for both methods, GD-pAp@k-
avg pushes positives above negatives thus getting a better 
solution than optimizing prec@k. Furthermore, we see 
that GD-pAp@k-avg achieves higher prec@k and higher 
AUC@k (when prec@k is same) in the majority of the 
runs implying that the data settings which are tough for 
GD-pAp@k-avg are tougher for SGD@k-avg. 

Case 2 (n+ > k): We sample 20 positives and 160 negatives, 
and fx k = 10. We then apply SVM-pAUC and GD-
pAp@k-avg methods until they converge. In this case, we 
seek which method puts more positives in top-k i.e. whose 
prec@k is higher. In Table 2, we see that GD-pAp@k-avg 
has higher prec@k than SVM-pAUC . This shows that SVM-
pAUC tries to improve ranking beyond top-k; whereas, 
GD-pAp@k-avg has a higher focus on ranking at the top. 
Furthermore, GD-pAp@k-avg achieves higher prec@k in 
the majority of the runs in this case as well. 

7.2. Behavior of Surrogates 

We simulate ranking for one user for d = 5. We generate 
250 positives from N (0d, Id×d). We fx k = 30, w = 1d, 
and margin to be 1. We then generate 2000 negatives from 
N (0.5 × 1d, Id×d) while maintaining three data regularity 
conditions, i.e., β, moderate β, and strong β-margin condi-
tions. We do not consider the weak β-margin condition in 
this experiment since we lack an exact optimization method 
for the non-convex ramp surrogate. For the remaining mar-

https://github.com/gaurush-hiranandani/pap-k
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Table 2: Dual Behavior of pAp@k: When n+ < k and when the number of positives is same in top-k for both GD-pAp@k-
avg and SGD@k-avg, GD-pAp@k-avg pushes positives above negatives. When n+ > k, SVM-pAUC tries to improve 
ranking beyond top-k; whereas, GD-pAp@k-avg has a higher focus on ranking at the top. 

Metric
Method prec@k #runs when 

prec@k is higher 
AUC@k when 
prec@k is same 

#runs when AUC@k is 
higher and prec@k is same 

Case 1: n+ = 10, k = 20, n− = 160 
SGD@k-avg 

GD-pAp@k-avg 
0.20 ±0.14 (300) 
0.27 ±0.13 (300) 

5 
207 

0.59 ±0.34 (88) 
0.68 ±0.34 (88) 

30 
58 

Case 2: n+ = 20, k = 10, n− = 160 
SVM-pAUC 

GD-pAp@k-avg 
0.62 ±0.29 (300) 
0.68 ±0.28 (300) 

15 
129 

0.66 ±0.31 (156) 
0.71 0.30 (156) 

82 
74 

Figure 1: Behavior of surrogates under different margin conditions. See Section 7.2 for details. 

gin conditions, we optimize their respective consistent sur-
rogates and observe the behavior of all the surrogates. 

First, in Figure 1(a), we see that all the surrogates con-
verge to zero when the max surrogate is optimized in the 
strong β-margin condition. This validates Proposition 6 
(Appendix C). Also notice that despite no direct connection 
with the max surrogate (Section 4.4), the TS surrogate still 
converges to zero as the strong β-margin condition is stricter 
than the moderate β-margin condition. Second, as we see 
in Figure 1(b), the ramp and average surrogates converge 
to zero in the β-margin condition validating Proposition 3; 
whereas, max and TS surrogates do not, and in fact, they 
increase in the later half of the optimization. Thus, the pro-
posed surrogates might not be consistent with each other in 
general. Third, while optimizing TS surrogate in the moder-
ate β-margin condition, we see in Figure 1(c) that the ramp 
and TS surrogates converge to zero validating Proposition 4. 

7.3. Real-World Experiments 

7.3.1. DATASETS 

We take three publicly available datasets and process them to 
refect data imbalance and heterogeneity in per-user fraction 
of positives. Moreover, we focus on recommending k items. 
The schema for our datasets is <user-feat, item-feat, prod-
feat, label>, where prod-feat is the Hadamard product of 
the user and item features. We summarize data properties 
below and defer detailed statistics to Appendix F. 

Movie Recommendation (70K instances, 15.5K positives, 
638 users, d = 90, k = 8 − 24): We use the Movielens 

100K dataset (Harper & Konstan, 2015), where the task is 
to recommend movies (items) to users. We create a rating 
matrix by considering the frst 20 ratings by timestamp of 
the users. Then we apply matrix factorization (Lee & Seung, 
2001) to construct 30-dimensional user and item features. 
The rest of the ratings are used for constructing our dataset, 
where label 1 denotes a movie with rating 5, and 0 otherwise. 

Citation Recommendation (142K instances, 21K positives, 
2477 users, d = 157, k = 6 − 18): The task in the citation 
dataset (Budhiraja et al., 2020) is to recommend relevant 
research papers (items) for a paper in-progress (user). The 
50-dimensional Glove embedding (Pennington et al., 2014) 
of the papers and the binary labels for relevance are given. 
The other 7 features denote author-conference interactions. 

Image Recommendation (670K instances, 111K positives, 
2498 users, d = 150, k = 5 − 25): We take the Behance 
dataset (He et al., 2016), where the task is to recommend 
images (items) to users. We frst apply UMAP (McInnes 
et al., 2018) to reduce image dimensions from 4096 to 50. 
We then defne user features by averaging features of ran-
domly selected 50 liked images by that user. For the rest of 
the images, label 1 is given when a user has liked an image. 
Instances for label 0 are generated by random sampling. 

7.3.2. EVALUATION METRIC AND BASELINES 

Since pAp@k, by construction, is fexible to varied engage-
ment level across users, our metric of interest with multiple 
users is the micro version of pAp@k (in gain form):X1

Micro-pAp@k(f) = pAp@k (f), (17)u|U| 
u∈U 
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Table 3: Micro-pAp@k gain (in %) for different methods on Movielens, Citation, and Behance datasets. Higher values are 
better. The performance of the proposed methods, especially GD-pAp@k-avg is better than the baselines. 

Datasets→ Movielens Citation Behance 
↓ Methods, k → 8 12 16 20 24 6 9 12 15 18 5 10 15 20 25 
GD-pAp@k-max 32.6 35.1 37.6 40.5 43.7 17.5 21.4 28.6 34.8 35.1 19.2 24.3 28.4 28.6 31.8 
GD-pAp@k-avg 35.5 34.4 36.1 42.5 46.5 20.7 25.6 26.7 33.6 33.4 21.6 26.5 29.7 30.8 33.7 
GD-pAp@k-TS 33.5 33.3 35.6 42.2 46.0 15.0 19.3 31.6 31.0 34.3 22.8 26.9 28.6 30.5 33.0 

SVM-pAUC 34.9 33.7 35.7 41.1 46.3 14.5 24.4 29.5 32.3 30.8 19.7 24.4 27.8 30.7 32.8 
Greedy-pAp@k 29.3 31.5 34.1 37.4 40.0 18.5 19.6 29.9 30.1 29.4 20.1 24.5 27.5 28.8 31.4 

SGD@k-avg 30.7 32.3 32.8 35.0 36.3 20.4 23.0 24.2 28.1 30.5 19.6 26.6 31.7 30.6 35.3 
Select-pAp@k 31.0 34.9 36.9 39.8 41.5 20.0 23.7 27.0 30.4 31.9 15.6 18.9 22.0 24.3 25.9 

where f is the scoring function, U is the set of users, and 
pAp@k (f) is pAp@k (gain) for the user u’s ranked list. u 

We compare our proposed methods to (a) SVM-pAUC, an 
optimization method for pAUC(0, k/n−] (Narasimhan & 
Agarwal, 2017), (b) SGD@K-avg, a method for optimizing 
prec@k (Kar et al., 2015), (c) a greedy heuristic method (Ri-
camato & Tortorella, 2011) extended so to optimize pAp@k, 
denoted by Greedy-pAp@k, and (d) a procedure to optimize 
pAp@k from Algorithm 1 of (Budhiraja et al., 2020), de-
noted by Select-pAp@k. The baseline Select-pAp@k is a 
meta-procedure where in each iteration, the procedure cre-
ates a pool of datapoints by selecting top-β positives and 
top-k negatives for each user and then fully optimize a stan-
dard classifcation loss on the pooled sample. We choose to 
optimize cross entropy with gradient descent in each itera-
tion of Select-pAp@k. All the methods are compared using √ 
linear models. We fx ηt = η/ t + 1 in our methods and 
use a regularized version of the surrogates by adding λkwk2 . 
For all the methods, including baselines, the learning rate 
and regularization parameters are cross validated on the set 
{10−4 , 2×10−4 , 5×10−4 , 10−3 , . . . , 0.5} and 10{−3,...,1}, 
respectively. For fair comparisons, baseline methods are 
also cross-validated on Micro-pAp@k (17) instead of the 
metrics for which they were introduced. 

7.3.3. RESULTS 

Table 3 compares pAp@k accuracy of our methods against 
baselines. Overall, we see that our methods consistently 
outperform baselines especially for small k. On Movielens 
dataset, the proposed GD-pAp@k-max and GD-pAp@k-
avg methods provide 1.5 − 2% gains, while the relative 
improvement ranges from 1.8 − 5%, e.g. for k = 16, GD-
pAp@k-max is relatively 5.3% better than SVM-pAUC . 
Moreover, our best method has a relative improvement of 
7.1% over Select-pAp@k on an average. Similarly, for ci-
tation dataset, we observe that GD-pAp@k-avg performs 
better than the other methods, especially for smaller values 
of k. For larger values of k, all the three surrogates perform 
comparable but much better than the baselines. For exam-

ods perform comparably to each other. However, they are 
closely followed by SGD@k-avg for smaller values of k, 
and beaten by it for larger values of k = 15, 25. So, in 
conclusion, our methods perform better in two out of three 
real-world datasets for optimizing pAp@k. Among the 
proposed methods, we fnd that methods based on tighter 
surrogates such as GD-pAp@k-avg are indeed benefcial. 

8. Conclusion 
In this paper, we investigated the bipartite ranking metric 
pAp@k. We found that the pAp@k metric possesses a 
dual behavior with respect to both partial-AUC and preci-
sion@k, and is particularly useful in evaluating large-scale 
recommender systems with heterogeneous user-engagement 
profles. We then provided four novel, conditionally con-
sistent surrogates for pAp@k and developed algorithms to 
optimize the surrogates directly. With a variety of simulated 
and real-world experiments, we demonstrated effectiveness 
of our proposed surrogates and algorithms in optimizing the 
pAp@k metric. 
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