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Abstract

In this paper, we consider the problem of dif-
ferentially private learning where access to
the training features is through a kernel func-
tion only. As mentioned in Chaudhuri et al.
(2011), the problem seems to be intractable
for general kernel functions in the standard
learning model of releasing different private
predictor. We study this problem in three
simpler but practical settings. We first study
an interactive model where the user sends its
test points to a trusted learner (like search en-
gines) and expects accurate but differentially
private predictions. In the second model, the
learner has access to a subset of the unla-
beled test set using which it releases a pre-
dictor, which preserves privacy of the train-
ing data. (NIH, 2003) is an example of such
publicly available test set. Our third model
is similar to the traditional model, where
learner is oblivious to the test set but the
kernels are restricted to functions over vec-
tor spaces. For each of the models, we derive
differentially private learning algorithms with
provable “utility” or error bounds. More-
over, we show that our methods can also
be applied to the traditional model where
they demonstrate better dimensionality de-
pendence when compared to the methods of
(Rubinstein et al., 2009; Chaudhuri et al.,
2011). Finally, we provide experimental val-
idation of our methods.

1. Introduction

Modern systems can log and mine a lot of data to learn
interesting trends/patterns which can then be used for
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different tasks. Typically, these logs contain sensitive
information from individuals and releasing the learned
patterns/model might compromise an individual’s pri-
vacy. To address this issue, there have been several
works that study the problem of privacy preserving
learning (Rubinstein et al., 2009; Pathak et al., 2010;
Chaudhuri et al., 2011).

Typically, the goal of these works is to learn a privacy
preserving parameter vector w∗ (for example a linear
classifier) from the data which also generalizes well on
unseen test data. There are several notions of privacy
in the literature, but differential privacy (Dwork et al.,
2006b) has been one of the most theoretically sound
and widespread notion.

In particular, Chaudhuri et al. (2011); Rubinstein
et al. (2009) introduced a general framework for differ-
entially private regularized empirical risk minimization
(ERM) that guarantees privacy as well as small “ex-
cess” error, in addition to the generalization error of
the best non-private solution. Popular applications of
such methods include private version of Support Vec-
tor Machines (SVM) and logistic regression.

However, the above private algorithms are mostly re-
stricted to the “linear” case only, where each data
point lies in a low dimensional vector space and can
be explicitly accessed. Moreover, to provide privacy,
these methods need to add noise proportional to the
dimensionality of the data (d). Hence, their gen-
eralization error guarantees become weak for high-
dimensional datasets. Chaudhuri et al. (2011) and
Rubinstein et al. (2009) briefly looked at kernel ERMS
where the dimensionality (d) can be allowed to be po-
tentially infinite. However, their algorithms are re-
stricted to the class of translation invariant kernels
and does not capture a wide variety of kernels, e.g.,
polynomial kernels or pyramid match kernel from the
computer vision domain (Grauman & Darrell, 2007).

In this work, we study the problem of differentially
private learning using kernel ERM (kERM), where ac-
cess to each data point is through a kernel function
only. As the optimal solution to kERMs can only
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be obtained implicitly and is defined in terms of the
training data points themselves, it is not clear how a
solution to general kERMs can be released privately
(Chaudhuri et al., 2011). To address this issue, we
propose three simpler but practical models for privacy
preserving kERM. For each model, we provide an algo-
rithm that guarantees differential privacy to the train-
ing points, while also providing strong “utility” guar-
antees, i.e., error bounds. In contrast to bounds by
(Chaudhuri et al., 2011; Rubinstein et al., 2009), our
bounds are independent of the dimensionality of the
feature space.

The key insight behind our models is that the end goal
of solving kERM for a user is to obtain accurate pre-
dictions for its test set. Now, while providing explicit
access to the optimum of the kERM (without violating
privacy) might be difficult, privacy preserving predic-
tions on the test set should still be possible. Here, by
“privacy preserving” we mean privacy of the training
data points. Each of our model tries to exploit this
insight in a different setting.

Our first model (see Figure 1 (a)) is an interactive
model, where the user sends its test data to a trusted
learner (who solves an ERM over the training points),
and the learner sends back predictions over those
points. A typical scenario would be an online ad sys-
tem where the learner (for example, Google) uses click-
logs to predict whether a particular ad is relevant for
a given user. See Section 5 for more details. For this
model, we adapt an algorithm by Gupta et al. (2011)
and show that we can provide accurate privacy pre-
serving predictions for a large number (exponentially
many in the training set size) of test points.

Our second model is “semi-interactive”, where the user
sends a small subset of its test data to the trusted
learner and the learner returns a differentially private
version ŵ of the optimum to the kERM (w∗). An ex-
ample scenario can be a learner using a private dataset
from a biology lab to learn a model that it uses to pre-
dict a disease over some public dataset (NIH, 2003)
(see Section 6.1). Another example can be situations
where a user is willing to “sell” his/her privacy. For
this model, we provide an algorithm that takes as in-
put a random sample from the test set (or the test
distribution) and outputs ŵ that is differentially pri-
vate with respect to the training data. We also show
that ŵ incurs small prediction error (O(1/

√
n)) on the

test set, in addition to the error incurred by w∗. (Here
n is the size of the training data.) We stress that the
“goodness” of ŵ will be restricted to the test set (or
its distribution) only and might not extend to all the
possible input points. We demonstrate the practical
validity of our theoretical bounds by performing ex-
periments with the polynomial kernel.

Our third model is a non-interactive model where the

learner is oblivious to the test data but still sends a ŵ
that is private and guarantees accurate predictions for
all possible test points which are in the feature space
representation of the domain points. While this model
is similar to the model of Chaudhuri et al. (2011),
there is a subtle distinction. In the traditional model,
we require the difference in predictions | 〈w∗ − ŵ,v〉 |
to be small for all v while in our model we require
| 〈w∗ − ŵ,v〉 | to be small only for v’s that are feature
space representation of domain points. The kERM
approach of Rubinstein et al. (2009); Chaudhuri et al.
(2011) addresses this problem to some extent, but their
methods are restricted to translation invariant kernels
and essentially reduces the kERM to a linear ERM.

Our algorithm for the non-interactive model can also
be applied to standard linear ERMs. Here, our sam-
ple complexity is O(d1/3) compared to O(d) samples
required by (Chaudhuri et al., 2011; Rubinstein et al.,
2009).

Finally, we provide empirical validation of our semi-
interactive method on benchmark datasets using poly-
nomial kernels (where existing methods do not apply
directly). Our results show that for reasonably small
ε ≈ 0.1, our method achieves accuracy similar to the
non-private baseline classifier. Additionally, in the set-
tings where the dimensionality of the problem is large,
and where algorithms of (Chaudhuri et al., 2011) and
ours are applicable, experimentally our algorithm we
outperform them.

1.1. Contributions:

We consider the problem of differentially private
kernelized learning and study it under three practical
models. Our algorithms for the first two models are
computationally efficient but for the third model they
can have exponential time complexity for some kernel
functions.
Interactive: Our interactive model is useful for
several learning tasks faced by online systems like
ad-systems, recommendation systems. We provide
an efficient algorithm that can accurately predict
for exponentially many test points, in terms of error
bound and training points.
Semi-interactive: Our semi-interactive model is
useful when public test sets are available. Here, we
provide an efficient differentially private algorithm
with additional generalization error that is indepen-
dent of the dimensionality of the data.
Non-interactive: Finally, we provide a privacy pre-
serving algorithm with generalization error bound for
the standard learning model but where kernel function
is restricted to a function of low-dimensional vector
spaces. Although our algorithm for this setting might
not be computationally efficient in general, but for
the case of linear kernels we can prove it to be efficient.
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2. Related work

Recently, there has been a lineage of results which try
to understand the privacy implications of learning al-
gorithms (Rubinstein et al., 2009; Chaudhuri et al.,
2011; Pathak et al., 2010; Williams & McSherry, 2010;
Chaudhuri & Hsu, 2011; Kifer et al., 2012; Jain et al.,
2012). Typically, the generalization error of these algo-
rithms depends polynomially on the dimensionality of
the parameter vector. One notable exception is the
method by (Kifer et al., 2012), that achieves loga-
rithmic dependence on the dimensionality when the
underlying dataset satisfies Restricted Strong Convex-
ity (RSC) property. Another notable exception is the
work of (Chaudhuri et al., 2011), which shows that if
the underlying kernel function is translation invariant,
then their method outputs a differentially private pa-
rameter vector ŵ with good generalization error. In
contrast, our algorithms for releasing private parame-
ter vectors applies to general RKHS where one might
not have a translation invariant reproducing kernel.

Another relevant work is by Hall et al. (2012) that pro-
vides a method to release function values in RKHS in a
differentially private manner. Their techniques can be
directly applied to our models but a direct adaptation
of their technique suggests significantly worse utility
guarantees. For example, using their technique with
our interactive model, one can make accurate differen-
tially private predictions for only quadratically many
(in the number of training points) test points while
our method can predict for exponentially many test
points. Blum et al. (2008) also proposed differentially
private techniques for estimating model parameters (or
the optima to the ERM). However, their method as-
sumes that the class of possible parameter vectors has
a finite number of candidate parameter vectors. Ad-
ditionally, the running time of the algorithm by Blum
et al. (2008) is exponential in the size of the output.

Finally, Gupta et al. (2011); Hardt & Rothblum
(2010); Hardt et al. (2010) used online learning tech-
niques to interactively answer linear queries where the
error in each query only depends logarithmically on
the number of queries. Our algorithms adapt tech-
niques by these methods, for our kERM problem, to
provide accurate predictions/parameter vectors in our
interactive and semi-interactive models.

3. Preliminaries
Privacy: In this work, we select the notion of differ-
ential privacy (Definition 1) for guaranteeing privacy
of each of the input data point. Differential privacy
is a well studied privacy notion and has emerged as a
well accepted definition of privacy for statistical data
analysis (Dwork, 2006; 2010). Intuitively, the defini-
tion requires that perturbing an individual data point
should not lead to any noticeable change in the distri-

bution over the space of possible outputs of a random-
ized algorithm A.
Definition 1 (Differential privacy (Dwork et al.,
2006b;a)). An algorithm A is (ε, δ)-differentially pri-
vate if for any two datasets G,G′ ∈ (X×Y)n s.t. G and
G′ differ in exactly one data point, and for all measur-
able sets O ⊆ Range(A), the following holds:

Pr[A(G) ∈ O] ≤ eε Pr[A(G′) ∈ O] + δ.
Here (X × Y) is the domain of the data entries.

Convex Optimization and Kernel Methods: We
assume that the loss functions are convex and are of
the form: ` : Rdφ × (X × Y) → R, where X is the
input domain and Y is the target output domain. For
a given prediction function f : X × Rdφ → R, the loss
function is alternatively represented as `(f(w,x), y),
where x ∈ X , y ∈ Y and w ∈ Rdφ . The dimensionality
dφ refers to the output dimensionality of the feature
map φ : X → Rdφ . For the chosen feature map φ,
we assume that there exists a kernel function K which
can efficiently compute the inner product of any φ(x)
and φ(v) as K(x,v) = 〈φ(x), φ(v)〉, where x,v ∈ X .
Additionally, we assume that the feature map φ is Lφ-
Lipschitz and the loss function ` is L-Lipschitz in the
first parameter. We denote vectors in bold (w) while
matrices with capital letters (X).

4. Problem Formulation

In this section, we study the problem of differentially
private learning using regularized empirical risk mini-
mization (ERM) in kernel space. ERM is a canonical
learning method for several concept classes; regular-
ization helps in avoiding over-fitting to the training
data and guaranteeing good generalization error. In
general, a regularized ERM can be written as the fol-
lowing optimization problem:

min
w

1

n

n∑
i=1

`(f(w,xi); yi)) +
λ

2
r(w), (1)

where f : X × Rdφ → R is the prediction function,
w ∈ Rdφ are the prediction function parameters, and
(xi, yi) ∈ X × Y are training samples from a fixed
(unknown) distribution P, i.e., (xi, yi) ∼ P. X is
the input domain, while Y is the prediction domain.
For example, Y = {−1,+1} for classification problem.
Here, ` is the (surrogate) convex loss function for the
predictions f(·, ·).

Typically, f is selected to be a linear prediction func-
tion, i.e., f(w,xi) = 〈w,xi〉. However, several practi-
cal applications have complex decision boundaries that
cannot be captured by linear predictors. In fact for
several applications (e.g., computer vision) obtaining
a vector representation for data points itself might not
be possible. A common approach to circumvent this
problem is by using “kernel trick”. That is each xi is
mapped to a higher dimensional feature space and f
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is required to be linear in that mapped feature space.
That is, f(w,xi) = 〈w, φ(xi)〉, where φ : X → Rdφ
and dφ is the dimensionality of the mapped feature
space. Also, K(x,v) = 〈φ(x), φ(v)〉 is assumed to be
an efficiently computable kernel function.

In this work, we restrict our ERM formulation to L2

regularization, i.e., r(w) = 1
2‖w‖

2
2. Formally, we con-

sider the following general ERM:

w∗ = arg min
w∈Rdφ

1

n

n∑
i=1

`(〈w, φ(xi)〉 ; yi) +
λ

2
‖w‖22, (2)

where dφ is the dimensionality of mapped feature
space, λ > 0 is the regularization parameter. Note
that w∗ is dependent on each of the data point and
observing it might lead to privacy compromise of an
individual point (xi, yi). Hence, the goal is to provide
predictions that are similar to predictions using op-
timal w∗ while preserving privacy of each individual
point. To guarantee privacy, we use the well-known
notion of differential privacy (Definition 1).

Recently Chaudhuri et al. (2011); Rubinstein et al.
(2009) proposed algorithms for approximately solv-
ing (2) while preserving differential privacy. However,
their algorithms are either restricted to linear decision
functions (f(w,x) = 〈w,x〉) (which has polynomial
dependence of the error on the dimensionality of the
feature space) or non-linear decision functions using
a restricted class of translation-invariant kernels, e.g.,
the Gaussian kernel.

In contrast, we address the above mentioned prob-
lem of privately learning from data points in arbitrary
RKHS. Now, w∗ is a dφ dimensional vector, where dφ
can potentially be very large and might not even be
representable explicitly. Kernel methods exploit the
fact that w∗ is of the form w∗ =

∑
i µiφ(xi) and hence

maintain µi, 1 ≤ i ≤ n to store/use w∗. As observed
by Chaudhuri et al. (2011), releasing w∗ in this case
is hard, since the learner does not have explicit access
to w∗ and in fact relies on each training point (or sup-
port vector) xi to compute prediction values. Hence,
the “traditional” model of releasing a differentially pri-
vate ŵ which approximates w∗ over the entire domain
X might be too restrictive for this problem.

In the next section, we consider an interactive model
that does not release w∗ explicitly but provides predic-
tions similar to w∗ while preserving privacy. Then in
Section 6.1, we provide a semi-interactive model where
a differential private version of w∗ is released but ac-
curacy in its predictions are guaranteed only for the
data coming from a fixed distribution. Finally in Sec-
tion 6.2, we provide a method for our non-interactive
model where the learner releases a differentially pri-
vate version of w∗ with guaranteed accurate predic-
tions (compared to w∗) over entire input domain X .

However, here, we need to restrict input space X and
also unlike our other methods, this method might re-
quire exponential (in n) amount of computation time.
See Figure 1 for a block schematic of our three models.

5. Interactive Model

In this section, we describe our interactive model for
releasing privacy preserving predictions for given test
points. Our model consists of three parties: a dataset,
a learner, and a user. A trusted learner obtains su-
pervised data from the dataset and learns model pa-
rameters w∗ by solving (2). Then, user sends its test
points to the learner (in online/batch mode) and the
learner provides predictions that preserve privacy of
each training point and are also close to the predic-
tions obtained using w∗.

Example Scenario 1: Consider the case of an spon-
sored search ad system where the ad delivery engine
needs to find the relevance of a particular ad for a
given user query. Now, typically ad engines use stored
user-click logs to learn a classifier for such tasks. In the
context of our differentially private interactive model,
the goal of the ad engine (learner) would be to pre-
dict relevance of a given ad, user query pair (user test
point) accurately while preserving privacy of the train-
ing data, i.e, user-click logs (dataset).

Similar privacy preserving learning scenarios can be
found in several other online systems as well, such as
recommendation system, social networks etc.

Example Scenario 2: Consider two hospitals A and
B. Hospital A sends its labeled data (health profile of
its patients) to a trusted research lab (learner) that
learns a classifier using the supplied data by A. Then,
Hospital B sends its unlabeled data to the trusted lab
(learner), which returns back reasonably accurate la-
bels for the test data from B while guaranteeing pri-
vacy to each data point from A.

We now formalize our model. The dataset provides
labeled samples G = {(x1, y1), . . . , (xn, yn)} to the
learner using which learner estimates w∗ by solving
(2). The user provides its test points over T rounds.
During each round, the user provides the learner a test
point zt ∈ X for which the learner predicts ŷt that is
differentially private w.r.t. G. The learner should en-
sure that with high probability, ∀t, |ŷt−〈w∗, φ(zt)〉 | ≤
σ, where σ is a fixed parameter.

For this problem, we adopt a recent technique from the
literature of private interactive dataset release: itera-
tive dataset construction (IDC) method (Gupta et al.,
2011). Gupta et al. (2011) show that their IDC based
method can be used to release accurate answers to lin-
ear queries over a private dataset. In the context of
our problem, the private “dataset” is w∗ and the goal
is to answer linear queries ŷt = f(w; zt) = 〈w, zt〉. At
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(a) Interactive Model (b) Semi-interactive model (c) Non-interactive Model

Figure 1. Models for kernelized privacy preserving learning using kernel ERM. We have three parties: a dataset, a trusted
learner and a user. Learner learns optimum (w∗) of the ERM using the training data from the dataset. User’s goal is to
obtain labels for its test set while learner’s goal is to provide user with accurate predictions/model parameters without
violating dataset’s privacy. (a) Interactive Model: In this model, the user sends its test data to the learner for which
it returns back accurate predictions without violating dataset’s privacy. (b) Semi-interactive model: In this model,
the user sends a small subset of its test set, and then learner sends a differentially private ŵ that is guaranteed to obtain
similar predictions to w∗ on user’s test set. (c) Non-interactive Model: In this model, learner sends the user a
differentially private ŵ that is expected to provide similar predictions to w∗ on all the points in the input space.

a high level, the algorithm at each step maintains a dif-
ferentially private version wt of the true dataset w∗.
For a given query zt, algorithm first tries to answer
using wt, i.e., ŷt = 〈wt, zt〉. However, if the prediction
is inaccurate w.r.t. w∗, i.e., | 〈wt, zt〉 − 〈w∗, zt〉 | > σ,
then ŷt is predicted using true w∗ with appropriately
added noise, i.e., ŷt = 〈wt, zt〉 + ζt for appropriately
calibrated noise ζt. Also, in this case, the algorithm
updates wt so that it gets “closer” to w∗.

Main Algorithmic Idea: In the case of learning with
kernels, we cannot explicitly maintain wt. However, it
is easy to see that wt obtained using IDC updates is
of the form wt =

∑t
τ=1 ατφ(zτ ). Further, each zt is

public (to the user). Hence, to maintain differentially
private wt, we need to maintain differentially private
αt’s only. Algorithm 1 (Algorithm PINP) provides a
pseudo-code of our method for releasing predictions
in the case of (non-linear) kernels. Below, we provide
both privacy as well as utility (i.e., accuracy in predic-
tion w.r.t. w∗) guarantees for PINP.

Theorem 2 (Privacy Guarantee). Let w∗ be the op-
timal solution to (2) and let ŷt be predicted by Al-
gorithm 1 for a given point zt. Then, each out-
put ŷt, 1 ≤ t ≤ T and hence Algorithm 1 is (ε, δ)-
differentially private w.r.t. input training samples
G = {(x1, y1), . . . , (xn, yn)}.

See supplementary material for a proof of Theorem 2.

Utility analysis of Algorithm 1

Theorem 3 (Error bound). Let ŷt, 1 ≤ t ≤ T be the
prediction by Algorithm 1 for the t-th step test point
zt. Let w∗ =

∑n
i µiφ(xi) be the optimal solution to (2)

with ‖w∗‖2 ≤ C. Then, with probability at least 1−β,
for each prediction ŷt, the error incurred by Algorithm
1 is bounded by:

|ŷt − 〈φ(zt),w
∗〉 | = O

(
CR2

φ

√
L log(T/β) log2 1

δ√
nελ

)
.

The above theorem shows that the error in Algorithm 1

depends only logarithmically on the number of test
points (T ), while increasing the number of training
points (n) rapidly decreases error incurred. See Ap-
pendix A.2 for a proof sketch of the above theorem.

Note that we assume a differentially private bound C

on ‖w∗‖2. A simple bound of C =
2LRφ
λ follows di-

rectly using optimality of w∗. Otherwise, C can also
be estimated differentially privately by adding a small
noise to ‖w∗‖2. For clarity, in the later sections we
assume that ‖w∗‖2 is available publicly and hence can
be used by our algorithms without violating privacy.

6. Non-Interactive Setting

In the previous section we presented an algorithm
that provides prediction (f(w∗; z) = 〈w∗, φ(z)〉) for
each of the test samples Z = {z1, z2, . . . , zT } within

O(
√

(log T )/n) error while guaranteeing privacy for
each of the n training samples (G). However, in this
model the “learner” itself needs to answer each test
query which might be undesirable for both “learner”
and the “user”.

In some applications, it would be useful for the
“learner” to release a differentially private version of
w∗ so that it would have similar generalization error
as w∗ on test samples of the “user”. As mentioned
earlier in Section 4, the learner maintains w∗ only im-
plicitly in terms of training data points (xi, yi). Hence,
it seems impossible for the learner to privately release
w∗ unless it makes assumption about the test samples
or makes assumptions about the input space X and/or
the kernel space K.

(Chaudhuri et al., 2011) took the later approach for
differentially private kernel ERM, i.e., they assumed
that X is a finite dimensional vector space and K
is translation invariant. However, for several applica-
tions one or both of the above mentioned constraints
may not be satisfied.

In this section we propose two different models for
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Algorithm 1 Private Interactive Non-linear Predic-
tion Algorithm (PINP)

Require: Optimum of (2): w∗ =
∑n
i=1 µiφ(xi); Test

points: Z = {z1, · · · , zT }, ∀t, zt ∈ X ; Kernel:
K(x,v) = 〈φ(x), φ(v)〉; Rφ = maxz∈X ‖φ(z)‖2;
Privacy parameters: (ε, δ); failure probability
β; Non-private bound C: ‖w∗‖2 ≤ C; Lipschitz
constant of `: L; regularization parameter: λ.

1: Set the bound on the number of updates: B ←
nλεC2

200LRφ
√

2 log(2T/β) log(4/δ)

2: Noise parameter: ε0 ← nελ
200LR2

φ

√
B log(4/δ)

, error:

σ ← 4
ε0

log(2T/β), step size: η ← σ
4R2

φ

3: Set α0 ← 0 //Implicitly assume,w0 = 0
4: for t ∈ {1, · · · , T} and counter < B do
5: ât ← 〈w∗, φ(zt)〉+ ζt =

∑n
i=1 µiK(zt,xi) + ζt,

ζt ∼ Lap(1/ε0)

6: d̂t ← ât −
∑t−1
τ=0 ατK(zt, zτ )

7: if |d̂t| > σ then

8: αt ← ηsign(d̂t) and counter ← counter + 1

//Implicitly,wt =
∑t
τ=1 ατφ(zτ )

9: Output prediction: ŷt = ât
10: else
11: αt ← 0
12: Output prediction: ŷt =

∑t
τ=1 ατK(zτ , zt)

13: end if
14: end for

this problem: 1) Test Data Dependent Learner (Semi-
interactive model) and 2) Test Data Independent
Learner (Non-interactive model). In the first model
(see Section 6.1), we assume that the learner is pro-
vided with a small set of random samples from the
test data and then the learner provides a differentially
private ŵ with provable error bounds over the test
set. In this model, we do not make any assumption
about the input space X or the kernel function K.
Our second model is agnostic to the test data, i.e., it
does not seek any test samples, but it needs to as-
sume X to be a low-dimensional vector space (i.e., the
dimensionality has to be lesser than O(n2), see Sec-
tion 6.2 for more details). Furthermore, unlike our al-
gorithm for the semi-interactive setting, our algorithm
(for the non-interactive setting) can potentially take
exponential amount of time in the dimensionality of
X . One notable exception is the case of linear ker-
nels, where we can provide an efficient algorithm for
our non-interactive setting as well. Also note that, for
linear kernels, non-interactive setting is essentially the
standard setting of differentially private ERM intro-
duced by (Chaudhuri et al., 2011).

6.1. Test Data Dependent Learner
(Semi-interactive model)

In this section, we propose our test data dependent
model for differentially private release of the optimal

solution w∗ to the regularized kernel based ERM (2).
In this model, we assume that the user sends a small
subset Z = {z1, . . . , zT } of its test data points Q =
{q1, · · · } to the learner and the learner in turn sends
ŵ which is: 1) differentially private w.r.t. training
data G and 2) has small excess error on the test data
in addition to the error incurred by w∗. Figure 1 (b)
shows our semi-interactive model.

Example scenario: This scenario is motivated by
the HapMap project of the National Institute of
Health (NIH). HapMap (NIH, 2003) is a public dataset
that contains genetic data from four populations with
African, Asian, and European ancestry. Several ge-
nomic research labs, with great effort, collect labeled
genetic data using which they can learn a good (non-
linear) classifier (for say a particular disease). In the
context of our semi-interactive model, the private ge-
netic data of the lab is the private dataset and the lab
is the learner. While the lab (learner) would like to (or
is required to) predict disease for new data points (test
points), it wouldn’t like to violate privacy of its own
data. Hence, a privacy preserving mechanism would
be required to release a reasonably accurate (non-
linear) classifier. While this task for general kernels
seems infeasible, one can exploit the publicly available
HapMap data to release differentially private classifier
that guarantees good accuracy on sample points “sim-
ilar” to the HapMap dataset. That is, the HapMap
dataset would be the sample from test set that our
model requires.

Our Solution : The main idea of our solution is
to learn a differentially private ŵ that gives “sim-
ilar” prediction to w∗ on the dataset Z while also
preserving privacy. We then use standard stochas-
tic optimization based generalization error guarantees
to argue for excess error incurred by ŵ for the en-
tire test domain. To this end, we first ensure that
each prediction over Z is differentially private by
adding appropriate noise bt for all t. We then learn
ŵ by solving a simple least squares problem: ŵ =
arg min

w∈C
1
T

∑T
t=1 (〈w, φ(zt)〉 − 〈w∗, φ(zt)〉 − bt)2

. Note

that bt typically has to scale as O(
√
T ) in the above

mentioned approach; one can use algorithm given in
the previous section to add only O(log T ) noise per bt.
However, the analysis is more involved and it doesn’t
provide significantly stronger utility guarantees.

Below, we show that ŵ returned by our algorithm pre-
serves privacy of training data G as well as incurs small
additional error on Q compared to w∗.

Privacy: The privacy guarantee follows directly
from the composition property of differential privacy
(Dwork et al., 2010); see supplementary material.

Theorem 4. Algorithm 2 is (ε, δ)-differentially pri-
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Algorithm 2 Test Data Dependent Learner (TDDL)

Require: Optimal solution to (2): w∗ =∑n
i=1 µiφ(xi); K(x,v) = 〈φ(x), φ(v)〉;

Rφ = maxz∈X ‖φ(z)‖2; Privacy parameters: (ε, δ);
Lipschitz constant of `: L; regularization

parameter: λ; Z = {z1, z2, . . . , zT } uniformly
sampled from test set Q; convex set C.

1: Sample random entries b1, · · · , bT i.i.d. from

Lap(ν), where ν = O

(
LRφ

2
√
T log(1/δ)

λnε

)
.

2: Output ŵ = arg min
w∈C

1
T

∑T
t=1 (〈w −w∗, φ(zt)〉 − bt)2

.

vate.

Utility: The theorem below shows that given a fixed
set Q, the learner can supply a differentially private ŵ
that incurs small loss in additional to the loss incurred
by w∗. See supplementary material for a proof.

Theorem 5 (Error bound). Let Q = {q1, . . . ,q|Q|}
be the test set, let Z = {z1, · · · , zT } be sam-
pled uniformly at random from Q. If T =

O
(

(‖C‖2nελ)/(LRφ
√

log(1/δ))
)

and w∗ ∈ C in Al-

gorithm 2, then w.p. 1− β,

1

|Q|

|Q|∑
i=1

`(〈ŵ, φ(qi)〉 ; yqi) ≤
1

|Q|

|Q|∑
i=1

`(〈w∗, φ(qi)〉 ; yqi)

+O

 (LRφ)3/2
√
‖C‖2 log1/2(1/δ) log(T/β)
√
nελ

 .

Here yqi refers to the label for the test point qi.

We can also easily generalize our result from finite
set Q to the general distribution P from which Z =
{z1, z2, . . . , zT } is sampled. See Theorem 13 (Ap-
pendix B.3) for an exact statement.

Next, we provide a generalization error bound for our
privacy preserving algorithm when both training and
test points are sampled from the same distribution.

Corollary 6 (Generalization Error Bound). Let both
training and test samples be i.i.d. samples from P. Let
C = {w : ‖w‖2 ≤ 2LRφ/λ}, where Rφ and λ are as

defined in Algorithm 2, T = O
(

(nε)/(
√

log(1/δ))
)

,

and let n = Ω∗
(
L4R3

φ log2 1
β

log1/2 1
δ

ε2gε

)
. Then, for ŵ ob-

tained using Algorithm 2, we have (w.p. 1− β):
Ez∼P [`(〈ŵ, φ(qi)〉 ; yqi)] ≤ εg.

Note that the above sample complexity of our Algo-
rithm 2 is independent of the dimensionality. In con-
trast, existing privacy preserving learning methods like
(Chaudhuri et al., 2011) has polynomial dependence
on the dimensionality. Naturally, key difference is that
we have an additional requirement of a small test data

set sample. Another way to understand this difference
is that our method guarantees that |`(ŵ; z)− `(w∗; z)|
is small only if z is sampled from P. However, these
algorithms can guarantee that |`(ŵ; z) − `(w∗; z)| is
small for all z ∈ Rd.

6.2. Test Data Independent Learner
(Non-interactive model)

In the previous section, we proposed a model where the
user needs to send a random sample of its test data
to obtain a differentially private ŵ that is expected to
perform well on all of the test set. However, this model
is not applicable in scenarios where the user cannot or
does not want to share his test data with a trusted
third party, i.e., with the learner.

In this section, we analyze the later setting where the
user does not have access to unlabeled samples. Fig-
ure 1 (c) shows our model. The model is same as
traditional differentially private ERM model (Chaud-
huri et al., 2011), where a learner sends a differentially
private version of the optimum w∗ (i.e., ŵ) to the user.

For this model, our approach is similar to that in Sec-
tion 6.1 except that the algorithm itself generates a se-
quence of test samples Z = {z1, · · · , zT }. The goal is
that the generated samples z′ts should be able to distin-

guish the current iterate wt =
∑t
i=1 αiφ(zi) from the

underlying parameter vector w∗. That is, zt’s force Al-
gorithm 1 to make updates to its differentially private
model parameters wt. Furthermore, we require to find
zt’s, in a differentially private manner. To this end, we
use the exponential mechanism, a well-studied tech-
nique in the privacy literature (McSherry & Talwar,
2007). Broadly speaking, we sample zt from a dis-

tribution s.t. P (z) ∝ exp
(
ε0nλ
8LR2

φ
| 〈φ(z),wt −w∗〉 |

)
.

That is, probability of sampling a z is higher if
| 〈φ(z),wt −w∗〉 | is large, i.e., if z can “distinguish”
wt and w∗. Also, to ensure differential privacy, the
distribution introduces appropriate randomness. See
Algorithm 3 for a pseudo-code of our approach. Note
that, we assume that the input space is restricted to
be a vector space, i.e., each zt ∈ Rd, ‖zt‖2 ≤ 1.

Now, we provide the privacy and utility guarantees.

Theorem 7. Algorithm 3 is (ε, δ)-differentially pri-
vate.

Broadly, our proof follows by combining the analysis
of exponential mechanism (McSherry & Talwar, 2007)
and the privacy proof of Algorithm 1 (Theorem 2). See
supplementary material for a proof sketch. Next we
show that the predictions obtained using ŵ given by
Algorithm 3 is “similar” to the ones obtained using w∗

for all points z ∈ X , where X = {z ∈ Rd s.t. ‖z‖2 ≤ 1}
is the input space.
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Algorithm 3 Test Data-independent Learner (TDIL)

Require: Optimal solution to (2): w∗ =∑n
i=1 µiφ(xi), Privacy parameters: (ε, δ);

Rφ = maxz∈Z ‖φ(z)‖2; β: failure probability,
L: Lipschitz bound on the loss function `; λ:
regularization parameter (in (2)).

1: Bound on number of updates: B ← nε
100LRφ log(4/δ) ,

ε0 ← nελ
10LR2

φ

√
B log(4/δ)

, σ ← 4
ε0

log(2B/β),

step size: η ← σ
4R2

φ
, net size: ν =

dRφ
ε0nLφ

2: Set α0 ← 0, · · · , αB ← 0, w0 ← 0
3: Let S be ν-net on the ball {z : ‖z‖2 ≤ rφ}.
4: for t = {1, · · · , B} do
5: Sample z ∈ S w.p. exp( ε0nλ

8LR2
φ
| 〈φ(z),wt −w∗〉 |)

6: d̂t = 〈w∗, φ(z)〉−
∑t
i=0 αtφ(z)Tφ(zt)+Lap( 1

2ε0
)

7: if |d̂t| > σ then

8: αt ← ηsign(d̂t). Output: ât ← 〈w∗, φ(zt)〉 +
Lap( 1

2ε0
).

9: else
10: αi ← 0. Output :

∑t
i=0 αiφ(zi)

Tφ(zt).
11: end if
12: zt ← z and wt+1 ←

∑t
i=1 αiφ(zi).

13: end for
14: Output: ŵ = wB .

Theorem 8 (Error bound). Let Lφ be the Lips-
chitz constant for the feature map φ, X = {z ∈
Rd s.t. ‖z‖2 ≤ 1} and w∗ be the optimal solution to
(2). Then, with probability at least 1 − β, the output
of Algorithm 3 (ŵ) satisfies:

`(〈φ(z), ŵ〉 ; yz) ≤ `(〈φ(z),w∗〉+
C1Rφd

1/3L8/3 lnLφ log 1
β

(λ2n)2/3
√
ε(1/ log2 1

δ
)
,

for all z ∈ Rd and ‖z‖2 ≤ 1. C1 > 0 is a global
constant.

See supplementary material for a proof. We note that
although the dependence of the generalization error is
worse with respect to the size of the training set (i.e.,
n2/3 as compared to n in (Chaudhuri et al., 2011)), the
error in our case depends only on the dimensionality
(d) of the low-dimensional space (X ) instead of the di-
mensionality (dφ) of the kernel space as in (Chaudhuri
et al., 2011).

We would like to stress that Algorithm 3 may not be
always computationally efficient. However, for the spe-
cial case of linear kernels, an efficient version can be
constructed via sampling from a uniform mixture of
two log-concave distributions.

7. Experiments

In this section, we present experimental evaluation of
our TDDL method for the semi-interactive model (Al-
gorithm 2). The goal of these experiments is to demon-
strate that our TDDL method, while guaranteeing pri-

(a) (b)
Figure 2. Results for our TDDL algorithm (Algorithm 2).
a): Classification accuracy achieved by TDDL (with poly-
nomial kernel) as the privacy parameter ε varies. Baseline
accuracy of the non-private learner is 72.3% b): Regres-
sion error achieved by different methods on the KDD Cup
2010 (algebra) dataset. Clearly, our TDDL method signifi-
cantly outperforms the Objective Perturbation method by
(Chaudhuri et al., 2011) and is able to get accuracies close
to baseline (ε ≥ 0.5.)

vacy, is practical and do not deteriorate accuracy sig-
nificantly for reasonable privacy requirements. Addi-
tionally, we demonstrate that our algorithm is signif-
icantly more accurate than (Chaudhuri et al., 2011)
for high-dimensional datasets in the traditional linear
kernel setting.

For our first experiment, we applied our method to the
CoverType dataset (see supplementary material for re-
sults on the URL Reputation dataset). We used non-
linear SVM as our classifier and trained them using
500K training examples. We selected a third-degree
polynomial kernel as our kernel function, K(x,y) =
(〈x,y〉 + 1)3. Note that, this kernel is not transla-
tion invariant and hence the method of (Chaudhuri
et al., 2011) does not apply for this problem. We used
LibSVM (Chang & Lin, 2011) for training SVMs and
report results averaged over 5 runs. The penalty pa-
rameter for SVM training was set to be C = 0.001.

Figure 2 (a) plots our methods results for the Cover-
Type dataset. Baseline accuracy of the non-private
learner is 72.3%. Note that for ε ≥ 0.1, our method
performed similarly to the baseline method.

Next, we study our algorithms in the linear but high-
dimensional model. For this, we selected the KDD
Cup 2010 dataset that contains data points embedded
in around 2M dimensions. We selected 20000 train-
ing points randomly and learned a linear regression
function. Figure 2 (b) compares `2 regression error
(‖Xw− y‖2) incurred by our method with the Objec-
tive Perturbation method of (Chaudhuri et al., 2011)
and the non-private least squares method. Clearly, our
method achieves significantly smaller error when com-
pared to the method of (Chaudhuri et al., 2011). The
reason is that our method adds noise whose magni-
tude is independent of the dimensionality d, while for
(Chaudhuri et al., 2011) the norm of the noise varies
linearly with d. We also stress that our method as-
sumes semi-interactive model where it has access to a
small subset of the test set; in contrast, (Chaudhuri
et al., 2011) doesn’t exploit such a subset and hence
as such is at a disadvanatage.
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A. Interactive Model

A.1. Privacy Guarantee

We restate a version of the privacy theorem by (Gupta
et al., 2011) in the context of this paper.

Theorem 9 (Theorem 4.1 from Gupta et al. (2011)).
Let T be the total number of queries and B be the
number of updates allowed in Algorithm 1, let ε0 =

ε
200
√
BS log(4/δ)

and σ = 4
ε0

log(2T/β), where S is the

maximum change in the output of a query (using w∗)
when any one entry in the underlying data set is ar-
bitrarily modified. Let (ε, δ) be the privacy parameters
and β be the failure probability in Algorithm 1. Under
this setting, Algorithm 1 is (ε, δ)-differentially private.

We now provide privacy proof of our PINP algorithm
(Algorithm 1).

Proof of Theorem 2. The proof proceeds in two
stages. In the first stage, we show that prediction func-
tion is relatively insensitive to change in the dataset.
Specifically, we bound |

〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
|,

where z ∈ X and G,G′ are two datasets differing in
exactly one data point. Here w∗G and w∗G′ represent
optimal solution to regularized ERM (2) when the un-
derlying datasets are G and G′, respectively. In the sec-
ond stage, we invoke Theorem 9 with sensitive bound
|
〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
| to complete the proof.

W.l.o.g. we can assume that the datasets G and G′
differ in the n-th data point, i.e., (xn, yn) ∈ G and
(x′n, y

′
n) ∈ G′. Now, using optimality of w∗G and w∗G′

for (2) (with dataset G and G′ respectively) and strong
convexity of the ERM (2):

1

n

n−1∑
i=1

`(
〈
w∗G′ , φ(xi)

〉
; yi) +

1

n
`(
〈
w∗G′ , φ(xn)

〉
; yn)

+
λ

2
‖w∗G′‖22

≥ 1

n

n−1∑
i=1

`(
〈
w∗G , φ(xi)

〉
; yi) +

1

n
`(
〈
w∗G , φ(xn)

〉
; yn)

+
λ

2
‖w∗G‖22 +

λ

2
‖w∗G −w∗G′‖22.

Hence,

1

n

n−1∑
i=1

`(
〈
w∗G , φ(xi)

〉
; yi) +

1

n
`(
〈
w∗G , φ(x′n)

〉
; y′n)

+
λ

2
‖w∗G‖22

≥ 1

n

n−1∑
i=1

`(
〈
w∗G′ , φ(xi)

〉
; yi) +

1

n
`(
〈
w∗G′ , φ(x′n)

〉
; y′n)

+
λ

2
‖w∗G′‖22 +

λ

2
‖w∗G −w∗G′‖22.

Adding the above two equations and using Lipschitz
continuity of `:

‖w∗G −w∗G′‖2 ≤
2LRφ
λn

. (3)

Finally, using Cauchy-Schwarz inequality and the
above inequality, we have,

|
〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
| ≤

2LR2
φ

λn
.

With this bound in hand, we invoke Theorem 9 (The-
orem 4.1 by (Gupta et al., 2011)) to complete the
proof.

A.2. Utility Guarantee

In the following we restate a version of Theorem 5.2
from (Gupta et al., 2011) in the context of this paper.
Setting the parameters as in Theorem 3 gives us the
desired utility guarantee.

Theorem 10 (Theorem 5.2 from Gupta et al. (2011)).
Let T be the total number of queries and B be the
number of updates allowed in Algorithm 1, let ε0 =

ε
200
√
BS log(4/δ)

and σ = 4
ε0

log(2T/β), where S is the

maximum change in the output of a query (using w∗)
when any one entry in the underlying data set is ar-
bitrarily modified. Let (ε, δ) be the privacy parameters
and β be the failure probability in Algorithm 1. As long
as the variable counter in Algorithm 1 is less than B,
for each query zt, with probability at least 1 − β, the
following is true.

|v̂t − 〈φ(zt),w
∗〉 | = O

(
S
√
B log(1/δ) log(T/β)

ε

)

B. Test Data Dependent Learner
(Semi-interactive model)

B.1. Privacy Guarantee of Test Data
Dependent Learner

Proof of Theorem 4. From (3), we know that for any
two training data sets G and G′ differing in exactly one
entry, the following is true:

‖w∗G −w∗G′‖2 ≤
2LRφ
λn

.

Therefore by Cauchy-Schwarz inequality, for any z ∈
X we have

|
〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
| ≤

2LR2
φ

λn
.

Theorem now follows by using the above given bound
with the following composition theorem.
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Theorem 11 (Composition Theorem from (Dwork
et al., 2010)). Let ε′, δ′ > 0. The class of
ε-differentially private mechanisms satisfy (ε′, δ′)-
differential privacy under k-fold adaptive composition
for:

ε′ =
√

2k log(1/δ′)ε+ kε(eε − 1).

B.2. Utility Guarantee of Test Data
Dependent Learner

Proof of Theorem 5. Let,

J(w) =
1

T

T∑
t=1

(〈w, φ(zt)〉 − 〈w∗, φ(zt)〉 − bt)2
.

Since ŵ = arg min
w∈C

J(w) and by assumption w∗ ∈ C,
the following holds:

T∑
t=1

(〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉)2 ≤ 2

T∑
t=1

〈ŵ −w∗, φ(zt)〉 bt.

Let b = 〈b1, · · · , bT 〉. Using Cauchy-Schwarz inequal-

ity and the fact that ‖v‖1 ≤
√
T‖v‖2, we get:

T∑
t=1

| 〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉 | ≤ 2
√
T‖b‖2.

Since ν is the scaling parameter for the Laplace dis-
tribution from which each bt are drawn, therefore by
the tail property of Laplace distribution it follows that
w.p. ≥ 1− β,

T∑
t=1

| 〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉 | ≤ 2
√

2Tν log(T/β)

Plugging in the value of ν = O

(
LRφ

2
√
T log(1/δ)

λnε

)
, we

have

T∑
t=1

| 〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉 | =

O

(
T 3/2LR2

φ log(T/β)
√

log(1/δ)

nελ

)
. (4)

Now, define g(w; zt) = | 〈w −w∗, φ(zt)〉 |; note that
g(w; zt) is a convex cost functions in w. Now, using
Theorem 1 from (Shalev-Shwartz et al., 2009) (stated
below) we obtain the following:.

Ez∼P [g(ŵ; z)] ≤ 1

T

T∑
t=1

|g(ŵ; zt)|+O

(
‖C‖2Rφ

√
log(1/β)√
T

)
.

(5)

Therefore, using (4) and (5), we get (w.p. ≥ 1− β):

Ez∼P [g(ŵ; z)] ≤
C1

√
TLR2

φ log(T/β)
√

log(1/δ)

nελ
+

C2‖C‖2Rφ
√

log(1/β)√
T

,

where C1, C2 > 0 are global constants.

Theorem now follows by setting T as mentioned in the
theorem along with using Lipschitz property of `.

Theorem 12 (Theorem 1 from (Shalev-Shwartz et al.,
2009)). Let C = {w : ‖w‖2 ≤ B} be a convex set, let
φ : X → Rdφ be a feature map with the image of φ
has L2-norm of at most Rφ, and let f : R × X → R
be a Lf -Lipschitz continuous convex cost function in
its first parameter. Then for any P over the domain
X , and for Z = {z1, · · · , zT } drawn i.i.d. from P, the
following is true with probability at least 1− β.

sup
w∈C

∣∣∣∣∣Ez∼P [f(〈w, φ(z)〉 ; z)]− 1

T

T∑
t=1

[f(〈w, φ(zt)〉 ; zt)]

∣∣∣∣∣
≤ O

(√
B2(RφLf )2 log(1/β)

T

)

B.3. Generalization Bound for Test Data
Dependent Learner

Theorem 13 (Error Bound over Test Distribution).
Let P be a fixed test distribution and let Z =
{z1, · · · , zT } be sampled uniformly from P. If T =

O

(
‖C‖2nελ

LRφ
√

log(1/δ)

)
and w∗ ∈ C in Algorithm 2, then

w.p. 1− β,

Ez∼P [`(〈ŵ, φ(qi)〉 ; yqi)] = Ez∼P [`(〈w∗, φ(qi)〉 ; yqi)]

+O

 (LRφ)3/2
√
‖C‖2 log1/2(1/δ) log(T/β)
√
nελ

 .

C. Test Data Independent Learner
(Non-interactive model)

Proof sketch of Theorem 7. For a given dataset G, let

f(G) =
(
ε0nλ
8LR2

φ
| 〈φ(z),wt −w∗(G)〉 |

)
. Using the fact

that ‖w∗(G)−w∗(G′))‖2 ≤ 2LRφ
nλ for any two datasets

G and G′ differing in exactly one entry (see Theorem 2
from Section 5), it directly follows that |f(G)−f(G′)| ≤
ε0
4 . Hence, it follows that each iteration of Line 3 in

Algorithm 3 is ε0/2-differentially private. Now from
the analysis of Theorem 2 (from Section 5), it follows
that Algorithm 3 is (ε, δ)-differentially private.
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Proof of Theorem 8. Intuition: The proof of this
theorem goes via the following key insight: if we can
make almost every round of Algorithm 3 an update
round, then the iterates wt will become representative
of w∗ as time t progresses. This can be formalized via
a simple potential argument. (See (Gupta et al., 2011)
for the exact formalization.) The way we ensure that
each iteration is an update round is by finding a z (via
exponential mechanism) such that it can distinguish
between ŵt and w∗ with high probability, (i.e., the
value of 〈φ(z), ŵ −w∗〉 is greater than σ

4 ).

Main Proof: We apply exponential mechanism to a
finite set S = {z : z is the center of the ν-net}, where
ν is as given in the Theorem. That is, we divide the
entire space into (overlapping) L2 balls of radius ν and
S is the collection of centers of all such balls. Also, it

is known that |S| =
(

4
ν

)d
.

Now, using the exponential distribution specified in
Step 3 of Algorithm 3, we get:

Pr[ z s.t. | 〈φ(z),wt −w∗〉 | ≤ OPTν − γ] ≤ |S|e−Λγ ,

where OPTν = maxz∈S | 〈φ(z),wt −w∗〉 | and Λ =
ε0nλ
8LR2

φ
. Hence, w.p. at least 1− β, a z is sampled s.t.,

| 〈φ(z),wt −w∗〉 | ≥ OPTν −
ln(|S|/β)

Λ
.

Now, let OPT ∗ be the maximum value of
| 〈φ(z),wt −w∗〉 | over the input space X , i.e.,
OPT ∗ = maxz∈X | 〈φ(z),wt −w∗〉 |. Also, ‖z∗ −
zν‖2 ≤ 2ν where zν = arg maxz∈S | 〈φ(z),wt −w∗〉 |
is the optimal over S. Hence, using Lipschitz continu-
ity of the mapping φ, we obtain a sample z w.p. at
least 1− β s.t.:

| 〈φ(z),wt −w∗〉 | ≥ OPT ∗ − ln(|S|/β)

Λ
− 2νLφRφL

λ
.

Hence, selecting ν =
dRφ
ε0nLφ

, we get

| 〈φ(z),wt −w∗〉 | ≥ OPT ∗ − Ω
(
dLR2

φ ln(Lφ) ln(1/β)

λε0n

)
.

Now, using Theorem 7.3 of (Gupta et al., 2011) (see
Theorem 14), we get,

| 〈φ(z),wt −w∗〉 | ≤ σ

= max

(
‖w∗‖Rφ

2σε
,
dL2R6

φ ln(Lφ) ln 1
β ‖w

∗‖2

σ2λ2n2ε

)
,

for all z ∈ Rd and ‖z‖2 ≤ 1. Hence, minimizing over
σ, we get

| 〈φ(z),wt −w∗〉 |

= O

(
‖w∗‖R2

φd
1/3L2/3 lnLφ log2 1/δ ln(1/β)

(λn)2/3
√
ε

)
,

for all z ∈ Rd and ‖z‖2 ≤ 1. The theorem now follows
using Lipschitz continuity of the loss function ` and
using the bound ‖w∗‖2 ≤ 2LRφ/λ.

Theorem 14 (Modified Theorem 7.3 from (Gupta
et al., 2011)). If the distinguisher in Line 3 of
Algorithm 3 outputs a z (with ‖z‖2 ≤ 1) at
each step t ∈ {1, · · · , B} such that with prob-
ability at least 1 − β (over all the B-steps),
| 〈w∗ −wt, φ(z)〉 | = max

z1∈X ,‖z1‖2≤1
| 〈w∗ −wt, φ(z1)〉 |−

Ω
(
dLR2

φ ln(Lφ) ln(1/β)

λε0n

)
, then for all z ∈ Rd with

‖z‖2 ≤ 1, with probability at least 1 − β (over all
the B-steps), | 〈φ(z),wt −w∗〉 | ≤ µ, where µ =

max

(
‖w∗‖Rφ

2σε ,
dL2R6

φ ln(Lφ) ln 1
β ‖w

∗‖2

σ2λ2n2ε

)
.


