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Abstract
We provide the first provably joint differentially
private algorithm with formal utility guarantees
for the problem of user-level privacy-preserving
collaborative filtering. Our algorithm is based on
the Frank-Wolfe method, and it consistently es-
timates the underlying preference matrix as long
as the number of users m is ω(n5/4), where n
is the number of items, and each user provides
her preference for at least

√
n randomly selected

items. Along the way, we provide an optimal
differentially private algorithm for singular vec-
tor computation, based on the celebrated Oja’s
method, that provides significant savings in terms
of space and time while operating on sparse ma-
trices. We also empirically evaluate our algo-
rithm on a suite of datasets, and show that it con-
sistently outperforms the state-of-the-art private
algorithms.

1. Introduction
Collaborative filtering (or matrix completion) is a popular
approach for modeling the recommendation system prob-
lem, where the goal is to provide personalized recommen-
dations about certain items to a user (Koren & Bell, 2015).
In other words, the objective of a personalized recommen-
dation system is to learn the entire users-items preference
matrix Y ∗ ∈ <m×n using a small number of user-item
preferences Y ∗ij , (i, j) ∈ [m] × [n], where m is the num-
ber of users and n is the number of items. Naturally, in
absence of any structure in Y ∗, the problem is ill-defined
as the unknown entries of Y ∗ can be arbitrary. Hence, a
popular modeling hypothesis is that the underlying pref-
erence matrix Y ∗ is low-rank, and thus, the collaborative
filtering problem reduces to that of low-rank matrix com-
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pletion (Recht, 2011; Candes & Recht, 2012). One can also
enhance this formulation using side-information like user-
features or item-features (Yu et al., 2014).

Naturally, personalization problems require collecting and
analyzing sensitive customer data like their preferences for
various items, which can lead to serious privacy breaches
(Korolova, 2010; Narayanan & Shmatikov, 2010; Calan-
drino et al., 2011). In this work, we attempt to address this
problem of privacy-preserving recommendations using col-
laborative filtering (McSherry & Mironov, 2009; Liu et al.,
2015). We answer the following question in the affirma-
tive: Can we design a matrix completion algorithm which
keeps all the ratings of a user private, i.e., guarantees user-
level privacy while still providing accurate recommenda-
tions? In particular, we provide the first differentially pri-
vate (Dwork et al., 2006b) matrix completion algorithms
with provable accuracy guarantees. Differential privacy
(DP) is a rigorous privacy notion which formally protects
the privacy of any user participating in a statistical compu-
tation by controlling her influence to the final output.

Most of the prior works on DP matrix completion (and low-
rank approximation) (Blum et al., 2005; Chan et al., 2011;
Hardt & Roth, 2012; 2013; Kapralov & Talwar, 2013;
Dwork et al., 2014b) have provided guarantees which are
non-trivial only in the entry-level privacy setting, i.e., they
preserve privacy of only a single rating of a user. Hence,
they are not suitable for preserving a user’s privacy in prac-
tical recommendation systems. In fact, their trivial exten-
sion to user-level privacy leads to vacuous bounds (see Ta-
ble 1). Some works (McSherry & Mironov, 2009; Liu et al.,
2015) do serve as an exception, and directly address the
user-level privacy problem. However, they only show em-
pirical evidences of their effectiveness; they do not provide
formal error bounds.1 In contrast, we provide an efficient
algorithm based on the classic Frank-Wolfe (FW) proce-
dure (Frank & Wolfe, 1956), and show that it gives strong
utility guarantees while preserving user-level privacy. Fur-
thermore, we empirically demonstrate its effectiveness on
various benchmark datasets.

Our private FW procedure needs to compute the top right
singular vector of a sparse user preference matrix, while

1In case of (Liu et al., 2015), the DP guarantee itself might
require an exponential amount of computation.
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preserving DP. For practical recommendation systems with
a large number of items, this step turns out to be a sig-
nificant bottleneck both in terms of space as well as time
complexity. To alleviate this issue, we provide a method,
based on the celebrated Oja’s algorithm (Jain et al., 2016),
which is nearly optimal in terms of the accuracy of the
computed singular vector while still providing significant
improvement in terms of space and computation. In fact,
our method can be used to speed-up even the vanilla differ-
entially private PCA computation (Dwork et al., 2013). To
the best of our knowledge, this is the first algorithm for DP
singular value computation with optimal utility guarantee,
that also exploits the sparsity of the underlying matrix.

Notion of privacy: To measure privacy, we select differen-
tial privacy, which is a de-facto privacy notion for large-
scale learning systems, and has been widely adopted by
the academic community as well as big corporations like
Google (Erlingsson et al., 2014), Apple (McMillan, 2016),
etc. The underlying principle of standard DP is that the
output of the algorithm should not change significantly due
to presence or absence of any user. In the context of matrix
completion, where the goal is to release the entire prefer-
ence matrix while preserving privacy, this implies that the
computed ratings/preferences for any particular user can-
not depend strongly on her own personal preferences. Nat-
urally, the resulting preference computation is going to be
trivial and inaccurate (which also follows from the recon-
struction attacks of (Dinur & Nissim, 2003) and (Hardt &
Roth, 2012)).

To alleviate this concern, we consider a relaxed but natural
DP notion (for recommendation systems) called joint dif-
ferential privacy (Kearns et al., 2014). Consider an algo-
rithm A that produces individual outputs Yi for each user
i, i.e., the i-th row of preference matrix Y . Joint DP en-
sures that for each user i, the output ofA for all other users
(denoted by Y−i) does not reveal “much” about the prefer-
ences of user i. That is, the recommendations made to all
the users except the i-th user do not depend significantly
upon the i-th user’s preferences. Although not mentioned
explicitly, previous works on DP matrix completion (Mc-
Sherry & Mironov, 2009; Liu et al., 2015) strive to ensure
Joint DP. Formal definitions are provided in Section 2.

Granularity of privacy: DP protects the information about
a user in the context of presence or absence of her data
record. Prior works on DP matrix completion (McSherry
& Mironov, 2009; Liu et al., 2015), and its close analogue,
low-rank approximation (Blum et al., 2005; Chan et al.,
2011; Hardt & Roth, 2012; Dwork et al., 2013; Hardt &
Roth, 2013), have considered different variants of the no-
tion of a data record. Some have considered a single entry
in the matrix Y ∗ as a data record (resulting in entry-level
privacy), whereas others have considered a more practical

setting where the complete row is a data record (resulting in
user-level privacy). In this work, we present all our results
in the strictly harder user-level privacy setting. To ensure
a fair comparison, we present the results of prior works in
the same setting.

1.1. Problem definition: Matrix completion

The goal of a low-rank matrix completion problem is to
estimate a low-rank (or a convex relaxation of bounded nu-
clear norm) matrix Y ∗ ∈ <m×n, having seen only a small
number of entries from it. Here, m is the number of users,
and n is the number of items. Let Ω = {(i, j) ⊆ [m]× [n]}
be the index set of the observed entries from Y ∗, and let
PΩ : <m×n → <m×n be a matrix operator s.t. PΩ(Y )ij =
Yij if (i, j) ∈ Ω, and 0 otherwise. Given, PΩ(Y ∗), the
objective is to output a matrix Y such that the following
generalization error, i.e., the error in approximating a uni-
formly random entry from the matrix Y ∗, is minimized:

F (Y ) = E(i,j)∼unif [m]×[n]

[(
Yij − Y ∗ij

)2]
. (1)

Generalization error captures the ability of an algorithm to
predict unseen samples from Y ∗. We would want the gen-
eralization error to be o(1) in terms of the problem param-
eters when Ω = o(mn). Throughout the paper, we will
assume that m > n.

1.1.1. OUR CONTRIBUTIONS

In this work, we provide the first joint DP algorithm for
low-rank matrix completion with formal non-trivial error
bounds, which are summarized in Tables 1 and 2. At a high
level, our key result can be summarized as follows:

Informal Theorem 1.1 (Corresponds to Corollary 3.1).
Assume that each entry of a hidden matrix Y ∗ ∈ <m×n
is in [−1, 1], and there are

√
n observed entries per user.

Also, assume that the nuclear norm of Y ∗ is bounded by
O(
√
mn), i.e., Y ∗ has nearly constant rank. Then, there

exist (ε, δ)-joint differentially private algorithms that have
o(1) generalization error as long as m = ω(n5/4).

In other words, even with
√
n observed ratings per user, we

obtain asymptotically the correct estimation of each entry
of Y ∗ on average, as long asm is large enough. The sample
complexity bound dependence on m can be strengthened
by making additional assumptions, such as incoherence, on
Y ∗. See the supplementary material for details.

Our algorithm is based on two important ideas: a) using
local and global computation, b) using the Frank-Wolfe
method as a base optimization technique.

Local and global computation: The key idea that defines
our algorithm, and allows us to get strong error bounds un-
der joint DP is splitting the algorithm into two components:
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global and local. Recall that each row of the hidden matrix
Y ∗ belongs to an individual user. The global component
of our algorithm computes statistics that are aggregate in
nature (e.g., computing the correlation across columns of
the revealed matrix PΩ(Y ∗)). On the other hand, the lo-
cal component independently fine-tunes the statistics com-
puted by the global component to generate accurate predic-
tions for each user. Since the global component depends on
the data of all users, adding noise to it (for privacy) does not
significantly affect the accuracy of the predictions. (McSh-
erry & Mironov, 2009; Liu et al., 2015) also exploit a sim-
ilar idea of segregating the computation, but they do not
utilize it formally to provide non-trivial error bounds.

Frank-Wolfe based method: We use the standard nu-
clear norm formulation (Recht, 2011; Shalev-shwartz et al.,
2011; Tewari et al., 2011; Candes & Recht, 2012) for the
matrix completion problem:

min
‖Y ‖nuc≤k

F̂ (Y ), (2)

where F̂ (Y ) = 1
2|Ω|‖PΩ(Y − Y ∗)‖2F , ‖Y ‖nuc is the sum

of singular values of Y , and the underlying hidden matrix
Y ∗ is assumed to have nuclear norm of at most k. Note
that we denote the empirical risk of a solution Y by F̂ (Y )
throughout the paper. We use the popular Frank-Wolfe al-
gorithm (Frank & Wolfe, 1956; Jaggi & Sulovsky, 2010) as
our algorithmic building block. At a high-level, FW com-
putes the solution to (2) as a convex combination of rank-
one matrices, each with nuclear norm at most k. These
matrices are added iteratively to the solution.

Our main contribution is to design a version of the FW
method that preserves Joint DP. That is, if the standard FW
algorithm decides to add matrix u · vT during an iteration,
our private FW computes a noisy version of v ∈ <n via its
global component. Then, each user computes the respec-
tive element of u ∈ <m to obtain her update. The noisy
version of v suffices for the Joint DP guarantee, and allows
us to provide the strong error bound in Theorem 1.1 above.

We want to emphasize that the choice of FW as the underly-
ing matrix completion algorithm is critical for our system.
FW updates via rank-one matrices in each step. Hence,
the error due to noise addition in each step is small (i.e.,
proportional to the rank), and allows for an easy decom-
position into the local-global computation model. Other
standard techniques like proximal gradient descent based
techniques (Cai et al., 2010b; Lin et al., 2010) can involve
nearly full-rank updates in an iteration, and hence might
incur large error, leading to arbitrary inaccurate solutions.
Note that though a prior work (Talwar et al., 2015) has pro-
posed a DP Frank-Wolfe algorithm for high-dimensional
regression, it was for a completely different problem in a
different setting where the segregation of computation into
global and local components was not necessary.

Private singular vector of sparse matrices using Oja’s
method: Our private FW requires computing a noisy co-
variance matrix which implies Ω(n2) space/time complex-
ity for n items. Naturally, such an algorithm does not
scale to practical recommendation systems. In fact, this
drawback exists even for standard private PCA techniques
(Dwork et al., 2013). Using insights from the popular Oja’s
method, we provide a technique (see Algorithm 2) that has
a linear dependency on n as long as the number of ratings
per user is small. Moreover, the performance of our private
FW method isn’t affected by using this technique.

SVD-based method: In the supplementary material, we
also extend our technique to a singular value decomposition
(SVD) based method for matrix completion/factorization.
Our utility analysis shows that there are settings where this
method outperforms our FW-based method, but in general
it can provide a significantly worse solution. The main goal
is to study the power of the simple SVD-based method,
which is still a popular method for collaborative filtering.

Empirical results: Finally, we show that along with pro-
viding strong analytical guarantees, our private FW also
performs well empirically. In particular, we show its ef-
ficacy on benchmark collaborative filtering datasets like
Jester (Goldberg et al., 2001), MovieLens (Harper &
Konstan, 2015), the Netflix prize dataset (Bennett et al.,
2007), and the Yahoo! Music recommender dataset (Ya-
hoo, 2011). Our algorithm consistently outperforms (in
terms of accuracy) the existing state-of-the-art DP matrix
completion methods (SVD-based method by (McSherry &
Mironov, 2009), and a variant of projected gradient descent
(Cai et al., 2010c; Bassily et al., 2014b; Abadi et al., 2016)).

1.2. Comparison to prior work

As discussed earlier, our results are the first to provide non-
trivial error bounds for DP matrix completion. For compar-
ing different results, we consider the following setting of
the hidden matrix Y ∗ ∈ <m×n and the set of released en-
tries Ω: i) |Ω| ≈ m

√
n, ii) each row of Y ∗ has an `2 norm

of
√
n, and iii) each row of PΩ(Y ∗) has `2-norm at most

n1/4, i.e., ≈
√
n random entries are revealed for each row.

Furthermore, we assume the spectral norm of Y ∗ is at most
O(
√
mn), and Y ∗ is rank-one. Note that these conditions

are satisfied by a matrix Y ∗ = u·vT where ui, vj ∈ [−1, 1]
∀i, j, and

√
n random entries are observed per user.

In Table 1, we provide a comparison based on the sample
complexity, i.e., the number of usersm and the number ob-
served samples |Ω| needed to attain a generalization error
of o(1). We compare our results with the best non-private
algorithm for matrix completion based on nuclear norm
minimization (Shalev-shwartz et al., 2011), and the prior
work on DP matrix completion (McSherry & Mironov,
2009; Liu et al., 2015). We see that for the same |Ω|, the
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sample complexity on m increases from ω(n) to ω(n5/4)
for our FW-based algorithm. While (McSherry & Mironov,
2009; Liu et al., 2015) work under the notion of Joint DP as
well, they do not provide any formal accuracy guarantees.

Algorithm Bound Bound
on m on |Ω|

Nuclear norm min. (non-private)∗ ω(n) ω(m
√
n)

Noisy SVD + kNN† – –
Noisy SGLD (Liu et al., 2015) – –

Private FW (This work) ω(n5/4) ω(m
√
n)

Table 1. Sample complexity bounds for matrix completion. m =
no. of users, n = no. of items. The bounds hide privacy param-
eters ε and log(1/δ), and polylog factors in m, n. References: ∗

(Shalev-shwartz et al., 2011), † (McSherry & Mironov, 2009)

Interlude: Low-rank approximation. We also compare our
results with the prior work on a related problem of DP low-
rank approximation. Given a matrix Y ∗ ∈ <m×n, the goal
is to compute a DP low-rank approximation Ypriv, s.t. Ypriv
is close to Y ∗ either in the spectral or Frobenius norm. No-
tice that this is similar to matrix completion if the set of
revealed entries Ω is the complete matrix. Hence, our meth-
ods can be applied directly. To be consistent with the exist-
ing literature, we assume that Y ∗ is rank-one matrix, and
each row of Y ∗ has `2-norm at most one . Table 2 compares
the various results. While all the prior works provide triv-
ial error bounds (in both Frobenius and spectral norm, as
‖Y ∗‖2 = ‖Y ∗‖F ≤

√
m), our methods provide non-trivial

bounds. The key difference is that we ensure Joint DP (Def-
inition 2.2), while existing methods ensure the stricter stan-
dard DP (Definition 2.1), with the exponential mechanism
(Kapralov & Talwar, 2013) ensuring (ε, 0)-standard DP.

Algorithm Error
Randomized response‡ O(

√
m+ n)

Gaussian measurementS O
(√

m+
√
µn/m

)
Noisy power method¶ O(

√
µ)

Exponential mechanism£ O(m+ n)

Private FW (This work) O
(
m3/10n1/10

)
Private SVD (This work) O

(√
µ
(
n2

m + m
n

))

Table 2. Error bounds (‖Y −Y ∗‖F ) for low-rank approximation.
m = number of users, n = number of items. µ ∈ [0,m] is
the incoherence parameter. The bounds hide privacy parameters ε
and log(1/δ), and polylog factors in m an n. Rank of the output

matrix Ypriv isO
(
m2/5/n1/5

)
for Private FW, whereas it isO(1)

for the others. References: ‡(Blum et al., 2005; Chan et al., 2011;
Dwork et al., 2014b), S(Hardt & Roth, 2012), ¶(Hardt & Roth,
2013),£(Kapralov & Talwar, 2013)

2. Background: Notions of privacy
Let D = {d1, · · · , dm} be a dataset of m entries. Each en-
try di lies in a fixed domain T , and belongs to an individual
i, whom we refer to as an agent in this paper. Furthermore,
di encodes potentially sensitive information about agent i.
Let A be an algorithm that operates on dataset D, and pro-
duces a vector of m outputs, one for each agent i and from
a set of possible outputs S. Formally, let A : T m → Sm.
Let D−i denote the dataset D without the entry of the i-th
agent, and similarly A−i(D) be the set of outputs without
the output for the i-th agent. Also, let (di;D−i) denote
the dataset obtained by adding data entry di to the dataset
D−i. In the following, we define both standard differential
privacy and joint differential privacy , and contrast them.

Definition 2.1 (Standard differential privacy (Dwork et al.,
2006a;b)). An algorithm A satisfies (ε, δ)-differential pri-
vacy if for any agent i, any two possible values of data entry
di, d

′
i ∈ T for agent i, any tuple of data entries for all other

agents, D−i ∈ T m−1, and any output S ∈ Sm, we have
Pr
A

[A (di;D−i) ∈ S] ≤ eε Pr
A

[A (d′i;D−i) ∈ S] + δ.

At a high-level, an algorithm A is (ε, δ)-standard DP if for
any agent i and dataset D, the output A(D) and D−i do
not reveal “much” about her data entry di. For reasons
mentioned in Section 1, our matrix completion algorithms
provide privacy guarantee based on a relaxed notion of DP,
called joint differential privacy , which was initially pro-
posed in (Kearns et al., 2014). At a high-level, an algorithm
A preserves (ε, δ)-joint DP if for any agent i and datasetD,
the output of A for the other (m − 1) agents (denoted by
A−i(D)) and D−i do not reveal “much” about her data en-
try di. Such a relaxation is necessary for matrix completion
because an accurate completion of the row of an agent can
reveal a lot of information about her data entry. However, it
is still a very strong privacy guarantee for an agent even if
every other agent colludes against her, as long as she does
not make the predictions made to her public.

Definition 2.2 (Joint differential privacy (Kearns et al.,
2014)). An algorithm A satisfies (ε, δ)-joint differential
privacy if for any agent i, any two possible values of data
entry di, d′i ∈ T for agent i, any tuple of data entries for
all other agents,D−i ∈ T m−1, and any output S ∈ Sm−1,

Pr
A

[A−i (di;D−i) ∈ S] ≤ eε Pr
A

[A−i (d′i;D−i) ∈ S] + δ.

In this paper, we consider the privacy parameter ε to be a
small constant (≈ 0.1), and δ < 1/m. There are semantic
reasons for such choice of parameters (Kasiviswanathan &
Smith, 2008), but that is beyond the scope of this work.
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3. Private matrix completion via Frank-Wolfe
Recall that the objective is to solve the matrix completion
problem (defined in Section 1.1) under Joint DP. A standard
modeling assumption is that Y ∗ is nearly low-rank, lead-
ing to the following empirical risk minimization problem
(Keshavan et al., 2010; Jain et al., 2013; Jin et al., 2016):

min
rank(Y )≤k

1

2|Ω|
‖PΩ(Y − Y ∗)‖2F︸ ︷︷ ︸

F̂ (Y )

, where k � min(m,n).

As this is a challenging non-convex optimization prob-
lem, a popular approach is to relax the rank constraint to
a nuclear-norm constraint, i.e., min

‖Y ‖nuc≤k
F̂ (Y ).

To this end, we use the FW algorithm (see the supplemen-
tary material for more details) as our building block. FW
is a popular conditional gradient algorithm in which the
current iterate is updated as: Y (t) ← (1 − η)Y (t−1) +
η · G, where η is the step size, and G is given by:
argmin
‖G‖nuc≤k

〈
G,∇Y (t−1) F̂ (Y )

〉
. Note that the optimal solu-

tion to the above problem is G = −kuv>, where (λ, u, v)
are the top singular components of A(t−1) = PΩ(Y (t−1)−
Y ∗). Also, the optimal G is a rank-one matrix.

Figure 1. Block schematic describing the two functionsAlocal and
Aglobal of Algorithm 1. The solid boxes and arrows represent com-
putations that are privileged and without external access, and the
dotted boxes and arrows represent the unprivileged computations.

Algorithmic ideas: In order ensure Joint DP and still have
strong error guarantees, we develop the following ideas.
These ideas have been formally compiled into Algorithm
1. Notice that both the functionsAglobal andAlocal in Algo-
rithm 1 are parts of the Private FW technique, whereAglobal

consists of the global component, and each user runsAlocal

at her end to carry out a local update. Throughout this dis-
cussion, we assume that max

i∈[m]
‖PΩ(Y ∗i )‖2 ≤ L.

Splitting the update into global and local components: One
can equivalently write the Frank-Wolfe update as follows:

Y (t) ← (1−η)Y (t−1)−η · kλA
(t−1)vv>, whereA(t−1),v,

and λ are defined as above. Note that v and λ2 can also
be obtained as the top right eigenvector and eigenvalue of

A(t−1)>A(t−1) =
m∑
i=1

Ai
(t−1)>Ai

(t−1), where Ai(t−1) =

PΩ(Yi
(t−1) − Y ∗i ) is the i-th row of A(t−1). We will use

the global component Aglobal in Algorithm 1 to compute v
and λ. Using the output of Aglobal, each user (row) i ∈ [m]
can compute her local update (using Alocal) as follows:

Yi
(t) = (1− η)Yi

(t−1)− ηk

λ
PΩ(Y (t−1)− Y ∗)ivv>. (3)

A block schematic of this idea is presented in Figure 1.

Algorithm 1 Private Frank-Wolfe algorithm
function Global Component Aglobal (Input- privacy pa-
rameters: (ε, δ) s.t. ε ≤ 2 log (1/δ), total number of iter-
ations: T , bound on ‖PΩ(Y ∗i )‖2: L, failure probability:
β, number of users: m, number of items: n)
σ ← L2

√
64 · T log(1/δ)/ε, v̂← {0}n, λ̂← 0

for t ∈ [T ] do
W (t) ← {0}n×n, λ̂′ ← λ̂+

√
σ log(n/β)n1/4

for i ∈ [m] do W (t) ←W (t) +Alocal(i, v̂, λ̂
′, T, t, L)

Ŵ (t) ← W (t) + N (t), where N (t) ∈ <n×n is a
matrix with i.i.d. entries from N (0, σ2)

(v̂, λ̂2)← Top eigenvector and eigenvalue of Ŵ (t)

end for
end function
function Local Update Alocal (Input- user number: i,
top right singular vector: v̂, top singular value: λ̂′, total
number of iterations: T , current iteration: t, bound on
‖PΩ(Y ∗i )‖2: L, private true matrix row: PΩ(Y ∗i ))
Yi

(0) ← {0}n, Ai(t−1) ← PΩ(Yi
(t−1) − Y ∗i )

ûi ← (Ai
(t−1) · v̂)/λ̂′

Define ΠL,Ω (M)i,j = min
{

L
‖PΩ(Mi)‖2

, 1
}
·Mi,j

Yi
(t) ← ΠL,Ω

((
1− 1

T

)
Yi

(t−1) − k
T ûi(v̂)T

)
Ai

(t) ← PΩ

(
Yi

(t) − Y ∗i
)

if t = T , Output Yi(T ) as prediction to user i and stop
else Return Ai(t)

>
Ai

(t) to Aglobal

end function

Noisy rank-one update: Observe that v and λ, the statistics
computed in each iteration of Aglobal, are aggregate statis-
tics that use information from all rows of Y ∗. This ensures
that they are noise tolerant. Hence, adding sufficient noise
can ensure standard DP (Definition 2.1) forAglobal. 2 Since

2The second term in computing λ̂′ in Algorithm 1 is due to a
bound on the spectral norm of the Gaussian noise matrix. We use
this bound to control the error introduced in the computation of λ̂.
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the final objective is to satisfy Joint DP (Definition 2.2), the
local component Alocal can compute the update for each
user (corresponding to (3)) without adding any noise.

Controlling norm via projection: In order to control the
amount of noise needed to ensure DP, any individual data
entry (here, any row of Y ∗) should have a bounded ef-
fect on the aggregate statistic computed by Aglobal. How-
ever, each intermediate computation Yi(t) in (3) can have
high `2-norm even if ‖PΩ(Y ∗i )‖2 ≤ L. We address this
by applying a projection operator ΠL,Ω (defined below) to

Yi
(t), and compute the local update as ΠL,Ω

(
Yi

(t)
)

in
place of (3). ΠL,Ω is defined as follows: For any matrix
M , ΠL,Ω ensures that any row of the “zeroed out” matrix
PΩ(M) does not have `2-norm higher than L. Formally,
ΠL,Ω (M)i,j = min

{
L

‖PΩ(Mi)‖2
, 1
}
·Mi,j for all entries

(i, j) of M . In our analysis, we show that this projection
operation does not increase the error.

3.1. Privacy and utility analysis

Theorem 3.1. Algorithm 1 satisfies (ε, δ)-joint DP.

We defer the proof to the supplementary material. The
proof uses standard DP properties of Gaussian noise ad-
dition from (Bun & Steinke, 2016). The requirement ε ≤
2 log (1/δ) in the input of Algorithm 1 is due to a reduction
of a Concentrated DP guarantee to a standard DP guaran-
tee. We now show that the empirical risk of our algorithm
is close to the optimal as long as the number of users m is
“large”.
Theorem 3.2 (Excess empirical risk guarantee). Let Y ∗ be
a matrix with ‖Y ∗‖nuc ≤ k, and max

i∈[m]
‖PΩ(Y ∗)i‖2 ≤ L.

Let Y (T ) be a matrix, with its rows being Yi(T ) for all i ∈
[m], computed by function Alocal in Algorithm 1 after T
iterations. If ε ≤ 2 log

(
1
δ

)
, then with probability at least

2/3 over the outcomes of Algorithm 1, the following is true:

F̂
(
Y (T )

)
= O

 k2

|Ω|T +
kT 1/4L

√
n1/2 log1/2(1/δ) logn

|Ω|
√
ε

 .

Furthermore, if T = Õ
(
k4/5ε2/5

n1/5L4/5

)
, then F̂

(
Y (T )

)
=

Õ
(
k6/5n1/5L4/5

|Ω|ε2/5

)
after hiding poly-logarithmic terms.

We defer the proof to the supplementary material. At a
high-level, our proof combines the noisy eigenvector esti-
mation error for Algorithm 1 with a noisy-gradient analysis
of the FW algorithm. Also, note that the first term in the
bound corresponds to the standard FW convergence error,
while the second term can be attributed to the noise added
for DP which directly depends on T . We also compute the
optimal number of iterations required to minimize the em-
pirical risk. Finally, the rank of Y (T ) is at most T , but its

nuclear-norm is bounded by k. As a result, Y (T ) has low
generalization error (see Section 3.1.1).
Remark 1. We further illustrate our empirical risk bound by
considering a simple setting: let Y ∗ be a rank-one matrix
with Y ∗ij ∈ [−1, 1] and |Ω| = m

√
n. Then k = O(

√
mn),

and L = O(n1/4), implying an error of Õ
(√
nm−2/5

)
hiding the privacy parameter ε; in contrast, a trivial solu-
tion like Y = 0 leads to O(1) error. Naturally, the error
increases with n as there is more information to be pro-
tected. However, it decreases with a larger number of users
m as the presence/absence of a user has lesser effect on the
solution with increasing m. We leave further investigation
into the dependency of the error on m for future work.
Remark 2. Our analysis does not require an upper
bound on the nuclear norm of Y ∗ (as stated in Theo-
rem 3.2); we would instead incur an additional error of

min
‖Y ‖nuc≤k

1
|Ω| ‖PΩ (Y ∗ − Y )‖2F . Moreover, consider a sim-

ilar scenario as in Remark 1, but |Ω| = mn, i.e., all the
entries of Y ∗ are revealed. In such a case, L = O(

√
n),

and the problem reduces to that of standard low-rank matrix
approximation of Y ∗. Note that our result here leads to an
error bound of Õ

(
n1/5m−2/5

)
, while the state-of-the-art

result by (Hardt & Roth, 2013) leads to an error bound of
O(1) due to being in the much stricter standard DP model.

3.1.1. GENERALIZATION ERROR GUARANTEE

We now present a generalization error (defined in Equa-
tion 1) bound which shows that our approach provides
accurate prediction over unknown entries. For obtaining
our bound, we use Theorem 1 from (Srebro & Shraibman,
2005) (provided in the supplementary material for refer-
ence). Also, the output of Private FW (Algorithm 1) has
rank at most T , where T is the number of iterations. Thus,
replacing T from Theorem 3.2, we get the following:
Corollary 3.1 (Generalization Error). Let ‖Y ∗‖nuc ≤ k for
a hidden matrix Y ∗, and ‖PΩ(Y ∗i )‖2 ≤ L for every row i of
Y ∗. If we choose the number of rounds in Algorithm 1 to be
O
(

k4/3

(|Ω|(m+n))1/3

)
, the data samples in Ω are drawn u.a.r.

from [m]× [n], and ε ≤ 2 log
(

1
δ

)
, then with probability at

least 2/3 over the outcomes of the algorithm and choosing
Ω, the following is true for the final completed matrix Y :

F (Y ) = Õ

(
k4/3Ln1/4√

ε|Ω|13/6(m+ n)1/6
+

(
k
√
m+ n

|Ω|

)2/3
)
.

The Õ (·) hides poly-logarithmic terms in m,n, |Ω| and δ.
Remark 3. We further illustrate our bound using a set-
ting similar to the one considered in Remark 1. Let Y ∗

be a rank-one matrix with Y ∗ij ∈ [−1, 1] for all i, j; let
|Ω| ≥ m

√
n · polylog(n), i.e., the fraction of movies rated

by each user is arbitrarily small for larger n. For this set-
ting, our generalization error is o(1) for m = ω(n5/4).



Differentially Private Matrix Completion Revisited

This is slightly higher than the bound in the non-private set-
ting by (Shalev-shwartz et al., 2011), where m = ω(n) is
sufficient to get generalization error o(1). Also, as the first
term in the error bound pertains to DP, it decreases with a
larger number of users m, and increases with n as it has to
preserve privacy of a larger number of items. In contrast,
the second term is the matrix completion error decreases
with n. This is intuitive, as a larger number of movies
enables more sharing of information between users, thus
allowing a better estimation of preferences Y ∗. However,
just increasing m may not always lead to a more accurate
solution (for example, consider the case of n = 1).
Remark 4. The guarantee in Corollary 3.1 is for uniformly
random Ω, but using the results of (Shamir & Shalev-
Shwartz, 2011), it is straightforward to extend our results
to any i.i.d. distribution over Ω. Moreover, we can extend
our results to handle strongly convex and smooth loss func-
tions instead of the squared loss considered in this paper.

3.2. Efficient PCA via Oja’s Algorithm

Algorithm 1 requires computing the top eigenvector of

Ŵ (t) = W (t) + N (t), where W (t) =
∑
i

(
Ai

(t)
)>

Ai
(t)

and N (t) is a random noise matrix. However, this can
be a bottleneck for computation as N (t) itself is a dense
n×nmatrix, implying a space complexity of Ω(n2 +mk),
where k is the maximum number of ratings provided by
a user. Similarly, standard eigenvector computation algo-
rithms will require O(mk2 + n2) time (ignoring factors
relating to rate of convergence), which can be prohibitive
for practical recommendation systems with large n. We
would like to stress that this issue plagues even standard DP
PCA algorithms (Dwork et al., 2013), which have quadratic
space-time complexity in the number of dimensions.

We tackle this by using a stochastic algorithm for the
top eigenvector computation that significantly reduces both
space and time complexity while preserving privacy. In
particular, we use Oja’s algorithm (Jain et al., 2016), which
computes top eigenvectors of a matrix with a stochastic ac-
cess to the matrix itself. That is, if we want to compute the
top eigenvector of W (t), we can use the following updates:

v̂τ = (I + ηXτ )v̂τ−1, v̂τ = v̂τ/‖v̂τ‖2 (4)

where E[Xτ ] = W (t). For example, we can update v̂τ us-
ingXτ = W (t)+N

(t)
τ where each entry ofN (t)

τ is sampled
i.i.d. from a Gaussian distribution calibrated to ensure DP.
Even this algorithm in its current form does not decrease
the space or time complexity as we need to generate a dense
matrix Nτ (t) in each iteration. However, by observing that
Nτ

(t)v = gτ ∼ N (0, σ21n) where v is independent of
Nτ

(t), we can now replace the generation of Nτ (t) by the
generation of a vector gτ , thus reducing both the space and
time complexity of our algorithm. The computation of each

Algorithm 2 Private Oja’s algorithm
Input: Anm×nmatrixA s.t. each row ‖Ai‖2 ≤ L, pri-
vacy parameters: (ε, δ) s.t. ε ≤ 2 log(1/δ), total number
of iterations: Γ
σ ← L2

√
256 · Γ log(2/δ)/ε, v̂0 ∼ N (0, σ2I)

for τ ∈ [Γ] do
η = 1

Γσ
√
n
, gτ ∼ N (0, σ21n)

v̂τ ← v̂τ−1 + η
(
ATAv̂τ−1 + gτ

)
, v̂τ ← v̂τ/‖v̂τ‖2

end for
Return v̂Γ,

(
λ̂2

Γ ← ||A · v̂Γ||22 +N (0, σ2)
)

update is significantly cheaper as long as mk � n2, which
is the case for practical recommendation systems as k tends
to be fairly small there (typically on the order of

√
n).

Algorithm 2 provides a pseudocode of the eigenvector
computation method. The computation of the approxi-
mate eigenvector v̂Γ and the eigenvalue λ̂2

Γ in it is DP (di-
rectly follows via the proof of Theorem 3.1). The next
natural question is how well can v̂Γ approximate the be-
havior of the top eigenvector of the non-private covari-
ance matrix W (t)? To this end, we provide Theorem 3.3
below that analyzes Oja’s algorithm, and shows that the
Rayleigh quotient of the approximate eigenvector is close
to the top eigenvalue of W (t). In particular, using Theo-
rem 3.3 along with the fact that in our case, V = σ2n,
we have

∥∥A(t)
∥∥2

2
≤ ‖A(t)v̂Γ‖22 +O (σ

√
n log(η/β)) with

high probability (w.p. ≥ 1−β2)), where v̂Γ is the output of

Algorithm 2, Γ = Ω
(

min
{

1
β ,
‖A(t)‖2
σ
√
n

})
, and η = 1

Γ·σ
√
n

.

Note that the above given bound is exactly the bound re-
quired in the proof of Theorem 3.2. Hence, computing
the top eigenvector privately using Algorithm 2 does not
change the utility bound of Theorem 3.2.

Theorem 3.3 (Based on Theorem 3 (Allen-Zhu &
Li, 2017)). Let X1, X2, . . . XΓ be sampled i.i.d.
such that EXi = W = ATA. Moreover, let V =

max{‖E(Xi −W )T (Xi −W )‖, ‖E(Xi −W )(Xi −W )T ‖},
and η = 1√

VΓ
. Then, the Γ-th iterate of Oja’s Algorithm

(Update (4)) , i.e., v̂Γ, satisfies (w.p. ≥ 1 − 1/poly(Γ)):

v̂TΓW v̂Γ ≥ ‖W‖2 −O
(√

V
Γ + ‖W‖2

Γ

)
.

Comparison with Private Power Iteration (PPI) method
(Hardt & Roth, 2013): Private PCA via PPI provides util-
ity guarantees dependent on the gap between the top and
the kth eigenvalue of the input matrix A for some k > 1,
whereas private Oja’s utility guarantee is gap-independent.

4. Experimental evaluation
We now present empirical results for Private FW (Algo-
rithm 1) on several benchmark datasets, and compare its
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performance to state-of-the-art methods like (McSherry &
Mironov, 2009), and private as well as non-private vari-
ant of the Projected Gradient Descent (PGD) method (Cai
et al., 2010c; Bassily et al., 2014a; Abadi et al., 2016). In all
our experiments, we see that private FW provides accuracy
very close to that of the non-private baseline, and almost al-
ways significantly outperforms both the private baselines.

Datasets: As we want to preserve privacy of every user,
and the output for each user is n-dimensional, we can ex-
pect the private recommendations to be accurate only when
m� n (see Theorem 3.1). Due to this constraint, we con-
duct experiments on the following datasets: 1) Synthetic:
We generate a random rank-one matrix Y ∗ = uvT with
unit `∞-norm, m = 500K, and n = 400, 2) Jester: This
dataset contains n = 100 jokes, and m ≈ 73K users, 3)
MovieLens10M (Top 400): We pick the n = 400 most
rated movies from the Movielens10M dataset, resulting in
m ≈ 70K users, 4) Netflix (Top 400): We pick the n = 400
most rated movies from the Netflix prize dataset, resulting
in m ≈ 474K users, and 5) Yahoo! Music (Top 400): We
pick the n = 400 most rated songs from the Yahoo! mu-
sic dataset, resulting in m ≈ 995K users.3 We rescale the
ratings to be from 0 to 5 for Jester and Yahoo! Music.

Procedure: For all datasets, we randomly sample 1% of
the given ratings for measuring the test error. For exper-
iments with privacy, for all datasets except Jester, we ran-
domly select at most ξ = 80 ratings per user to get PΩ(Y ∗).
We vary the privacy parameter ε ∈ [0.1, 5] 4, but keep
δ = 10−6, thus ensuring that δ < 1

m for all datasets. More-
over, we report results averaged over 10 independent runs.

Note that the privacy guarantee is user-level, which effec-
tively translates to an entry-level guarantee of εentry =
εuser

ξ , i.e., εentry ∈ [0.00125, 0.0625] as εuser ∈ [0.1, 5].

Non-private baseline: We find that non-private FW and
non-private PGD converge to the same accuracy after tun-
ing, and hence, we use this as our baseline.

Private baselines: To the best of our knowledge, only (Mc-
Sherry & Mironov, 2009) and (Liu et al., 2015) address
the user-level DP matrix completion problem. While we
present an empirical evaluation of the ‘SVD after cleansing
method’ from the former, we refrain from comparing to the
latter 5. We also provide a comparison with private PGD

3For n = 900 with all the considered datasets (except Jester),
we see that private PGD takes too long to complete; we present an
evaluation for the other algorithms in the supplementary material.

4The requirement in Algorithm 1 that ε ≤ 2 log (1/δ) is satis-
fied by all the values of ε considered for the experiments.

5The exact privacy parameters (ε and δ) for the Stochas-
tic Gradient Langevin Dynamics based algorithm in (Liu et al.,
2015) (correspondigly, in (Wang et al., 2015)) are unclear. They
use a Markov chain based sampling method; to obtain quantifi-
able (ε, δ), the sampled distribution is required to converge (non-

(pseudocode provided in the supplementary material).

We elaborate on the data normalization and the parameter
choices for all algorithms in the supplementary material.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Root mean squared error (RMSE) vs. ε, on (a) synthetic,
(b) Jester, (c) MovieLens10M, (d) Netflix, and (e) Yahoo! Music
datasets, for δ = 10−6. A legend for all the plots is given in (f).

Results: Figure 2 shows the results of our experiments6.
Even though all the considered private algorithms satisfy
Joint DP, our private FW method almost always incurs a
significantly lower test RMSE than the two private base-
lines. Note that although non-private PGD provides sim-
ilar empirical accuracy as non-private FW, the difference
in performance for their private versions can be attributed
to the noise being calibrated to a rank-one update for our
private Frank-Wolfe.

asymptotically) to a DP preserving distribution in `1 distance, for
which we are not aware of any analysis.

6In all our experiments, the implementation of private FW
with Oja’s method (Algorithm 2) did not suffer any perceivable
loss of accuracy as compared to the variant in Algorithm 1; all the
plots in Figure 2 remain identical.
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