
Surrogate Functions for Maximizing Precision at the Top

Purushottam Kar T-PURKAR@MICROSOFT.COM

Microsoft Research, INDIA

Harikrishna Narasimhan∗ HARIKRISHNA@CSA.IISC.ERNET.IN

Indian Institute of Science, Bangalore, INDIA

Prateek Jain PRAJAIN@MICROSOFT.COM

Microsoft Research, INDIA

Abstract
The problem of maximizing precision at top, also
dubbed Precision@k, finds relevance in myriad
learning applications such as ranking, multi-label
classification, and learning with severe label im-
balances. Despite its popularity, Precision@k is
not known to have a surrogate function that upper
bounds it. Similarly, notions of consistency un-
der certain noise/margin conditions are also not
explored.

In this work, we devise two novel convex surro-
gate functions for Precision@k, that upper bound
it and are motivated by certain natural notions
of margin for Precision@k performance mea-
sure. We also provide two novel perceptron al-
gorithms for Precision@k that have interesting
mistake bounds w.r.t. the proposed surrogates.
Moreover, we devise scalable stochastic gradi-
ent descent style methods for our proposed sur-
rogates and prove convergence bounds for the
same. Our convergence bounds rely on a strong
uniform convergence bound for Precsion@k and
crucially exploit the structural simplicity of Pre-
cision@k. We conclude with experimental evi-
dence of superiority of our surrogates when com-
pared to the structural SVM surrogate (Joachims,
2005), a state-of-the-art approach to optimize
Precision@k.

1. Introduction
Ranking a given set of points or labels according to their
relevance forms the core of several real-life learning sys-

Proceedings of the 31 st International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).
∗Part of the work was done while H.N. was an intern at MSR India.

tems. For instance, in rare-class classification problems
like spam/anomaly detection, the goal is to rank the given
emails/events according to their likelihood of being from
the rare-class (spam/anomaly). Similarly, in multi-label
classification problems, the goal is to rank the labels ac-
cording to their likelihood of being present in a data point
(Tsoumakas & Katakis, 2007).

Naturally, the ranking of points/labels at the top is of ut-
most importance to an application. Consequently, several
performance measures have been designed to promote ac-
curacy at top. Popular examples include Precision@k, Av-
erage Precision, NDCG (Tsoumakas & Katakis, 2007) etc.

While Precision@k (prec@k) is used as a key perfor-
mance measure in several domains, there are a very few
approaches to directly optimize Precision@k. In fact, to the
best of our knowledge, there is only one known surrogate
function for prec@k in literature, namely, the struct-SVM
surrogate by (Joachims, 2005). However, as we reveal in
this work, the struct-SVM surrogate is not a proper surro-
gate as it does not upper bound prec@k (see Appendix A
for more details).

In this paper, our goal is to design efficient and consistent
algorithms for optimizing prec@k. Given the intractabil-
ity of even binary classification in the agnostic model (Gu-
ruswami & Raghavendra, 2009), we would instead focus
on natural notions of benign-ness that are frequently satis-
fied by real life data. Indeed, the notion of margin in binary
classification is well-established in several real-world sce-
narios and has led to tremendous progress in the area.

prec@k Margin: Motivated by the success of margin based
frameworks in classification domains, we first develop a
natural notion of margin for prec@k. In particular, we say
that a dataset has a (k, γ) margin w.r.t. prec@k if there ex-
ist at least k positively labeled points that are all separated
(with a margin of γ) from all the negatively labeled points.
This notion of margin is well motivated for prec@k since
we are only interested in making accurate predictions at the

Surrogate Functions for Maximizing Precision at the Top

top-k positions in our ranked list. Moreover, it can be easily
seen that this is a strictly weaker notion of margin than the
margin notion for binary classification which requires ev-
ery positive point to be separated from every negative point
by a certain margin. Consequently, existing methods for
binary classification such as perceptron/SVM do not apply
directly to the prec@k problem, as the positive points (ex-
cept for k privileged points) and the negative points might
be adversarially mixed in an arrangement as proposed by
(Guruswami & Raghavendra, 2009).

Using insights from the above defined margin notion for
prec@k, we design a novel surrogate function (called
ramp-surrogate) that upper bounds prec@k loss and can
also be shown to be consistent w.r.t. prec@k as long as
the dataset satisfies the above mentioned margin condition.
However, the ramp-surrogate has a term that computes
minimum of certain linear functions. Hence, it turns out
to be a non-convex function and is not amenable to con-
vex optimization techniques. To ameliorate this issue, we
provide two successive relaxations of the ramp-surrogate.
We first relax the above mentioned min function to the av-
erage (avg) function, which leads us to a surrogate that we
call avg-surrogate. We then relax the average function to
the max function, leading to the max-surrogate. Naturally,
the obtained surrogates can also be shown to upper bound
the true prec@k loss. Moreover, we can show that both
of our proposed convex surrogates are also consistent w.r.t.
prec@k, albeit under certain stronger margin notions.

Next, we propose two perceptron algorithms for the above
mentioned convex surrogates. We show that under certain
natural but stronger margin conditions, our proposed algo-
rithms exhibit a mistake bound similar to the one obtained
by the standard perceptron algorithm. Our notion of mar-
gin for the avg surrogate requires that the positive points on
an average be separated (by some margin) from all of the
negatives. Note that this margin notion is also significantly
weaker than the standard margin notion for classification.
Our notion of margin for the max surrogate is exactly the
same as the one for binary classification.

We also devise stochastic gradient descent (SGD) based
methods for optimizing the proposed surrogates. Note that
in general, prec@k cannot be written as a sum of loss func-
tions for each individual training points. Hence standard
convergence analyses for SGD do not apply for our meth-
ods (Shalev-Shwartz et al., 2011). Instead, we prove the
the convergence bound by combining a novel uniform con-
vergence bound for our surrogates along with a generic
technique by (Kar et al., 2014). Our uniform convergence
bounds need to crucially exploit the structure of the surro-
gates, as the surrogates are dependent on all the training
points and hence can potentially change significantly by
perturbing one data point. Our key structural lemmas for
these surrogates rule out such a possibility.

Finally, we validate our proposed surrogate functions and
the corresponding methods on benchmark datasets. Em-
pirical validation on several benchmark datasets reveals
that our methods are in general significantly more accurate
than the struct-SVM loss (Joachims, 2005) based meth-
ods, hence matching our theoretical bounds. We also ob-
serve that our SGD based methods scale much better to
large-scale datasets as compared to the existing methods
(Joachims, 2005; Kar et al., 2014) while providing com-
petitive or better accuracy.

Paper Organization: Section 2 presents the problem for-
mulation and sets up the notation. We present our three
novel surrogates for prec@k in Section 3. Next, in Sec-
tion 4 we present two perceptron algorithms for prec@k
and their mistake bounds. Section 5 discussed uniform
convergence and generalization error bounds for our algo-
rithms. We conclude with empirical results in Section 6.

1.1. Related Work

There has been much work in the last decade in designing
algorithms for bipartite ranking problems. While the earlier
methods for this problem, such as RankSVM, focused on
optimizing the pair-wise ranking accuracy (Herbrich et al.,
2000; Joachims, 2002; Freund et al., 2003; Burges et al.,
2005), of late, there has been enormous interest in perfor-
mance measures that promote good ranking performance
in the top portion of the ranked list, and in ranking meth-
ods that directly optimize these measures (Clémençon &
Vayatis, 2007; Rudin, 2009; Agarwal, 2011; Boyd et al.,
2012; Narasimhan & Agarwal, 2013a;b; Li et al., 2014). In
this work, we focus on one such evaluation measure, Preci-
sion@k, used widely in practice. The only prior algorithms
that we are aware of that directly optimizes this evaluation
measure is a structSVM based method due to (Joachims,
2005), and an efficient stochastic implementation of this
method due to (Kar et al., 2014). However, as pointed out
earlier the convex surrogate used in these methods is not
well-suited for Precision@k.

It is also important to note that the bipartite ranking set-
ting considered in this work is different from other pop-
ular forms of ranking such as the subset/list-wise ranking
settings, which arises in several information retrieval ap-
plications, where again there has been much work in opti-
mizing performance measures that emphasize accuracy at
the top (e.g. NDCG) (Valizadegan et al., 2009; Cao et al.,
2007; Yue et al., 2007; Le & Smola, 2007; Chakrabarti
et al., 2008; Yun et al., 2014). There has also been some
recent work on perceptron style ranking methods for this
list-wise ranking settings (Chaudhuri & Tewari, 2014), but
these methods are tailored to optimize the NDCG and MAP
measures, which are different from the Precision@k mea-
sure that we consider here. Other less related work include
online ranking algorithms for optimizing popular ranking

Surrogate Functions for Maximizing Precision at the Top

measures in a certain adversarial setting with limited feed-
back (Chaudhuri & Tewari, 2015).

2. Problem Formulation and Notations
We now set some notation. We are interested in supervised
learning settings where we are presented with a set of la-
beled points (xi, yi), . . . , (xn, yn), where each xi ∈ X and
yi ∈ {0, 1}. We abbreviate this data set using the notation
(X,y) where X ∈ Xn and y ∈ {0, 1}n. z = (x, y) de-
notes a labeled data point, and X+ and X− refer to the set
of positive and negatively labeled points, respectively. Our
results readily extend to multi-label and ranking models,
but for simplicity of exposition, we focus only on binary
classification problems in this paper.

Given n labeled data points z1, . . . , zn and a scoring func-
tion s : X → R, let σs ∈ Sn be the permutation that sorts
points according to the scores given by s i.e. s(xσs(i)) ≥
s(xσs(j)) whenever i > j. Thus, prec@k for for the scor-
ing function s can be expressed as:

prec@k(s; z1, . . . , zn) =

k∑
i=1

(1− yσs(i)). (1)

Note that the above is a “loss” version of the performance
measure which penalizes any top-k ranked data points that
have a null label. For simplicity, we will use the notation
prec@k(s) := prec@k(s; z1, . . . , zn) and suppress men-
tion of the data points if the set of points is clear from con-
text. The same will hold true for any surrogates that we
introduce later. We also use the shorthand si = s(xi). For
any label vectors y′,y′′ ∈ {0, 1}n, define

∆(y′,y′′) =

n∑
i=1

(1− y′i)y
′′
i , K(y′,y′′) =

n∑
i=1

y′iy
′′
i . (2)

Note that ‖y′‖1 = K(y′,y′) denotes the number of posi-
tive points in a label vector y′. Hence, n+(y) = K(y,y)
where y is the true label vector. We also use shorthand n+

when the context is clear. y(s,k) denotes the predicted la-
bel vector for a given scoring function s : X → R. That
is, y(s,k)

i = 1 if if σ−1
s (i) ≤ k and 0 otherwise. It is easy

to verify that for any scoring function s, ∆(y,y(s,k)) =
prec@k(s)

3. A Family of Novel Surrogates for prec@k
As prec@k is a non-convex loss function that is hard to op-
timize, it is natural to seek easy to optimize surrogate func-
tions that act as a good proxy for prec@k. There will be two
properties that we shall desire of such a surrogate: a) the
surrogate should always upper bound prec@k loss, so that
minimizing the surrogate indeed leads to small prec@k,
b) the surrogate should be conditionally consistent w.r.t.
prec@k. This is to say, under some regularity assumptions,

it should be possible to show that optimizing the surrogate
implies an optimal solution for prec@k as well.

Motivated by the above requirements, we provide a family
of surrogates which upper bound the prec@k loss function.
Furthermore, our surrogates are designed so that for certain
natural notions of margin (w.r.t the prec@k loss), i.e. for
appropriate noise conditions, we can prove that our surro-
gates are actually consistent with the prec@k loss function.

Although prec@k is a popularly used performance measure
used by several works to evaluate models in a variety of set-
tings such as multi-label learning (Prabhu & Varma, 2014),
results aimed at directly optimizing this performance mea-
sure are few and far between. In fact, the only known direct
surrogate for prec@k is a structural SVM based surrogate
by (Joachims, 2005), that we refer to as `struct

prec@k(·).

Unfortunately, this surrogate falls short of meeting our
aforementioned requirements since it does not even upper
bound the prec@k loss, let alone be consistent with respect
to it. We direct the reader to Appendix A for more details
and a counter example that proves this claim.

3.1. The Curious Case of `struct
prec@k(·)

To design our surrogate, we first revisit the struct-SVM
surrogate for prec@k to better understand the reason for
its failure. As it turns out, the very reason this surrogate
fails would end up motivating the design of our surrogates.
The `struct

prec@k(·) surrogate is a part of a broad class of surro-
gates called struct-SVM surrogates that are designed for the
structured output prediction problems that can have expo-
nentially large output spaces. Given a set of n labeled data
points, the `struct

prec@k(·) is defined as

`struct
prec@k(s) = max

ŷ∈{0,1}n
‖ŷ‖1=k

(∆(y, ŷ) +

n∑
i=1

(ŷi − yi) si).

The above surrogate tries to penalize a scoring function if
it is possible to label k points as positives with very large
scores (i.e., the second term is large) but which are labeled
as “negatives” by the true label vector y (i.e., the first term
is also large). However, one issue with this setup is that
the candidate labeling ŷ is restricted to predict only k posi-
tives whereas the true label vector y has n+ ≥ k positives.
Hence, a non-optimal labeling can exploit the remaining
n+ − k labels to hide the high scoring negative points thus
confusing the loss function. Consequently a poor scoring
function might have end up having very small `struct

prec@k(s)
loss. See Appendix A for an explicit example.

3.2. The Ramp Surrogate `ramp
prec@k(·)

The goal behind ranking in a bipartite setting is to select
a subset of relevant items and rank them at the top k po-
sitions. Now this can happen iff the top ranked k relevant
items are not outranked by any irrelevant item. Thus, a sur-

Surrogate Functions for Maximizing Precision at the Top

rogate must penalize a scoring function that makes it possi-
ble to assign scores to irrelevant items that are higher than
those of the top ranked relevant items. Our ramp surrogate
`ramp

prec@k(s) implicitly encodes this strategy:

max
‖ŷ‖1=k

{
∆(y, ŷ) +

n∑
i=1

ŷisi

}
− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

︸ ︷︷ ︸
(P)

. (3)

Note that the above loss function is similar to the “ramp”
losses for binary classification, variants of which have been
proposed in (Do et al., 2008). We now show that the above
loss function is indeed a surrogate of prec@k, in the sense
that it upper bounds prec@k.

Claim 1. For any k ≤ n+ and scoring function s, we have:
`ramp

prec@k(s) ≥ prec@k(s). Moreover, if `ramp
prec@k(s) ≤ ξ for a

given scoring function s, then there necessarily exists a set
S ⊂ [n] of size at most k such that for all ‖ŷ‖1 = k, we
have:

∑
i∈S si ≥

∑n
i=1 ŷisi + ∆(y, ŷ)− ξ.

See Appendix B for a detailed proof. We now show that this
surrogate satisfies our second condition, that of conditional
consistency as well. We can show that if a scoring function
s assigns the top k scores to only positive points which are
greater than the score of any negative point by at least one,
then `ramp

prec@k(s) = 0 (see Claim 3). In fact, this “separation”
condition for the scoring function motivates the following
notion of weak (k, γ)-margin.

Definition 2 (Weak (k, γ)-margin). A set of n labeled
data points satisfies the weak (k, γ)-margin condition if for
some scoring function s and some S+ ⊆ X+ of size k,

min
i∈S+

si − max
j:yj=0

sj ≥ γ.

Moreover, we say that the function s realizes this margin.
We abbreviate the weak (k, 1)-margin condition as simply
the weak k-margin condition.

Informally, a dataset has weak (k, γ)-margin if there exists
at least one set of k positive points that are substantially far
away from all the negatives. Note that this margin notion is
strictly weaker than the usual margin condition for binary
classification, as this notion allows many positives to be
completely mingled with the negatives, so long as a small
fraction of positives is separated from the negatives. We be-
lieve that the this notion of margin is one of the most natural
notions of margin for prec@k. The following lemma shows
that `ramp

prec@k is consistent w.r.t. prec@k for any dataset that
exhibits weak k-margin.

Claim 3. For any scoring function s that realizes the weak
k-margin over a dataset we have,

`ramp
prec@k(s) = prec@k(s)

Claims 1 and 3 suggest that `ramp
prec@k is indeed a tight sur-

rogate for prec@k. Unfortunately, `ramp
prec@k is also a non-

convex loss function, mainly due to the second term (P) in
its definition (3). To alleviate this issue, we further relax the
surrogate so as to obtain more tractable convex surrogates.
To this end, we first re-write the term (P):

(P) =

n∑
i=1

yisi − min
ỹ�y

‖ỹ‖1=n+−k

n∑
i=1

ỹisi

︸ ︷︷ ︸
(Q)

, (4)

where ỹ � y implies that yi = 0⇒ ỹi = 0. Thus, to con-
vexify the surrogate `ramp

prec@k(s), we need to design a convex
upper bound on (Q). Notice that the term (Q) contains the
sum of the scores of the n+−k lowest ranked positive data
points. This can be readily upper bounded in several ways
which give us the different surrogate functions.

3.3. The Max Surrogate `max
prec@k(·)

An immediate upper bound on (Q) is to relax the min func-
tion in (Q) with the max function. Since the max function
is convex, this should convexify the surrogate. Noticing the
fact that the “candidate labeling” ŷ in (4) has to predict at
least n+− k false negatives, we obtain the following upper
bound: (Q) ≤ max ỹ�(1−ŷ)·y

‖ỹ‖1=n+−k

∑n
i=1 ỹisi,

which gives us the `max
prec@k(s) surrogate defined below:

max
‖ŷ‖1=k

(∆(y, ŷ) +

n∑
i=1

(ŷi − yi)si + max
ỹ�(1−ŷ)·y
‖ỹ‖1=n+−k

n∑
i=1

ỹisi). (5)

The above surrogate, being a point-wise max over con-
vex functions, is convex, as well as an upper bound on
prec@k(s) since it upper bounds `ramp

prec@k(·) which itself up-
per bounds prec@k(s). The max surrogate (5) also exhibits
consistency w.r.t. prec@k as long as the data satisfies the
strong (k, γ)-margin defined below:
Definition 4 (Strong margin). A set of n labeled data points
satisfies the γ-strong margin condition if for some scoring
function s, we have: mini:yi>0 si −maxj:yj=0 sj ≥ γ.
We abbreviate the 1-strong margin condition the strong
margin condition.

We notice that the strong margin condition is exactly equiv-
alent to the notion of margin used in binary classification
and hence strictly stronger than our weak (k, γ)-margin.
This leads us to believe that there might exist tighter convex
relaxations to the term (Q). Indeed the following relaxation
gives us a tighter surrogate.

3.4. The Avg Surrogate `avg
prec@k(·)

A tighter upper bound on (Q) (than the max) is to replace
Q by the average of the false negatives, which can be re-

Surrogate Functions for Maximizing Precision at the Top

written as:
(Q) ≤ 1

C(ŷ)

n∑
i=1

(1− ŷi)yisi,

where C(ŷ) = n+−K(y,ŷ)
n+−k ≥ 1 whenever k ≤

n+. By combining the above upper bound on (Q)
with (3), we get a new convex relaxation `avg

prec@k(s) =

max‖ŷ‖1=k ∆(y, ŷ; s), where ∆(y, ŷ; s) is given by:

∆(y, ŷ)+

n∑
i=1

si(ŷi−yi)+
1

C(ŷ)

n∑
i=1

(1− ŷi)yisi. (6)

Now, it is easy to see that `avg
prec@k(s) ≥ prec@k because

`avg
prec@k(s) upper bounds `ramp

prec@k (3) and `ramp
prec@k ≥ prec@k

using Claim 1. For completeness, we provide formal claim
and proof in Appendix B.4.

It is notable that for k = n+ (when the performance
measure reduces to the well-known precision-recall break
even point or PRBEP), the surrogate `avg

prec@k(·) reduces to
Joachims’ formulation `struct

prec@k(·).

Also, similar to the ramp-surrogate, we can show that the
avg-surrogate is consistent with the performance measure
prec@k(·) under the following margin assumptions:
Definition 5 ((k, γ)-margin). A set of n labeled data points
satisfies the (k, γ)-margin condition if for some scoring
function s, we have, for all sets S+ ⊆ X+ of size n+−k+1,

1

n+ − k + 1

∑
i∈S+

si − max
j:yj<0

sj ≥ γ.

Moreover, we say that the function s realizes this margin.
We abbreviate the (k, 1)-margin condition as simply the k-
margin condition.

We note that the above margin definition is a strictly weaker
condition that the usual notion of margin for binary classi-
fication since it only requires the existence of a score func-
tion that assigns a higher average score to the bottom most
n+ − k + 1 positive points than the score to the highest
ranked negative point than by a unit which still allows a
non negligible fraction of the positive points to be assigned
a lower score than those assigned to negatives. We also note
that whenever a classifier w realizes the (k, γ)-margin, the
scaled classifier w

γ realizes the k-margin condition.

On the other hand, the above margin condition is strictly
stronger than the weak (k, γ)-margin condition (Defini-
tion 2). The weak-margin condition only requires one set
of k-positives to be separated from the negatives, while the
above margin condition require the average of all positives
to be separated from the negatives.

We now show that under the above defined (k, γ)-margin,
our avg-surrogate (6) is consistent with the prec@k per-
formance measure. That is, our surrogate presents a tight
convex upper bound to the prec@k performance measure.

Claim 6. For any scoring function s that realizes the k-
margin over a dataset we have: `avg

prec@k(s) = prec@k(s).

See Appendix B for a detailed proof. as well as (k, γ)-
margin (see Definition 2, 5)

Hence, our all three surrogates presented above fall in a
nice hierarchy so that for any score function s, we have

prec@k(s) ≤ `ramp
prec@k(s)︸ ︷︷ ︸
non-convex

≤ `avg
prec@k(s) ≤ `max

prec@k(s)︸ ︷︷ ︸
convex

Figure 1. A hierarchy describing the three surrogates for prec@k

In the next section, we formulate two perceptron algorithms
that can be shown to optimize our two convex surrogate
functions: avg-surrogate and max-surrogate. Moreover,
we provide mistake bounds for the two algorithms based
on the (k, γ)-margin as well as the strong (k, γ)-margin,
defined above.

4. Perceptron Algorithms for prec@k
We now present perceptron-style algorithms for maximiz-
ing the prec@k performance measure by using our pro-
posed convex surrogates.

Our first perceptron algorithm PERCEPTRON@K (see Al-
gorithm 1) works with an incoming stream of binary la-
beled points and processes them in mini-batches of a pre-
determined size b. Recently, mini-batch methods have
been popular and also have been used for maximizing the
struct-SVM surrogate (`struct

prec@k) as well (Kar et al., 2014).
Note that, for ranking and multi-label classification set-
tings, mini-batches are not required and the algorithm can
be applied to a single data points.

At a high level, our algorithm receives a batch of b points
and predicts the label vector yt ∈ {0, 1}b using the existing
model wt−1. If prec@k loss is 0 then wt−1 is not updated.
For non-zero prec@k, wt−1 is updated using all the false-
positives as well as the false-negatives in the current mini-
batch (see Line 11, 12 of Algorithm 1). Note that in the
limiting case of n+ = k = 1 (with b = 1), Perc@k-avg
reduces to the standard perceptron algorithm(Rosenblatt,
1958; Minsky & Papert, 1988).

Next, we show that the above algorithm actually enjoys a
mistake bound similar to those known for the traditional
perceptron algorithm (Novikoff, 1962) with the hinge loss
function replaced with our surrogate `avg

prec@k(s).

Theorem 7. Suppose
∥∥xit∥∥ ≤ R for all t, i. Let ∆C

T =∑T
t=1 ∆t be the cumulative observed mistake values when

Algorithm 1 is run. Also, for any predictor w, let

Surrogate Functions for Maximizing Precision at the Top

Algorithm 1 PERCEPTRON@K-AVG

Input: Batch length b
1: w0 ← 0, t← 0
2: while stream not exhausted do
3: t← t+ 1
4: Receive b data points Xt =

[
x1
t , . . . ,x

b
t

]
, yt ∈ {0, 1}b

5: Calculate st = wt−1Xt and let ŷt = y(st,k)

6: ∆t ← ∆(yt, ŷt)
7: if ∆t = 0 then
8: wt ← wt−1

9: else
10: Dt ← ∆t

‖yt‖1−K(yt,ŷt)

11: wt ← wt−1 −
∑
i∈[b](1− yi)ŷi · xit {false pos.}

12: wt ← wt +Dt ·
∑
i∈[b](1− ŷi)yi · xit {false neg.}

13: end if
14: end while
15: return wt

Algorithm 2 PERCEPTRON@K-MAX

10’: St ← FN(s,∆t)
11’: wt ← wt−1 −

∑
i∈[b](1− yi)ŷi · xit {false pos.}

12’: wt ← wt +
∑
i∈St

xit {top ranked false neg.}

L̂avg
T (w) =

∑T
t=1 `

avg
prec@k(w;Xt,yt). Then we have

∆C
T ≤ min

w

(
‖w‖ ·R ·

√
4k +

√
L̂avg
T (w)

)2

.

For “separable settings”, we can trade-off the two terms in
the mistake bound (RHS above) so that it reduces to a form
that is similar to the mistake bound for standard perceptron
(Novikoff, 1962).
Corollary 8. Suppose there exists a unit norm classifier
w∗ such that the scoring function s : x 7→ x>w∗ realizes
the (k, γ)-margin condition for all the batches, then Algo-
rithm 1 guarantees the mistake bound: ∆C

T ≤ 4kR2

γ2 .

Hence as the dataset becomes “easier” in the (k, γ)-margin
sense, Perc@k-avg converges to an optimal hyperplane at a
faster rate. Here we would like to stress that (k, γ)-margin
is strictly weaker than the standard classification margin.
Hence for several datasets, Perc@k-avg might achieve 0
prec@k loss while the standard binary classification meth-
ods might not be able to find any reasonable classifier in
poly-time (Guruswami & Raghavendra, 2009).

Note that Perc@k-avg updates all the false negatives for a
given mini-batch. A natural question here might be that can
we design an algorithm that requires to update wt accord-
ing to much smaller number of points. Such updates are
slightly faster and ensures that wt is more sparse in large
scale settings. Our Perc@k-max algorithm (Algorithm 2)
answers this question in the affirmative.

Perc@k-max differs from Perc@k-avg in that it performs
updates using only a few of the top ranked false negatives.

Algorithm 3 SGD@K-AVG

Input: Batch length b, step lengths ηt, feasible setW
Output: A model w̄ ∈ W

1: w0 ← 0, t← 0
2: while stream not exhausted do
3: t← t+ 1
4: Receive b data points Xt =

[
x1
t , . . . ,x

b
t

]
, yt ∈ {0, 1}b

5: Set gt ∈ ∂w`avg
prec@k(wt−1;Xt,yt) {See Algorithm 4}

6: wt ← ΠW [wt−1 − ηt · gt] {project onto setW}
7: end while
8: return w̄ = 1

t

∑t
τ=1 wt

Algorithm 4 Subgradient calculation for `avg
prec@k(·)

Input: A model win, n data points X,y, parameter k
Output: A subgradient g ∈ ∂w`avg

prec@k(win;X,y)
1: Sort pos. and neg. points separately in dec. order of scores

assigned by win i.e. s+
1 ≥ . . . ≥ s+

n+
and s−1 ≥ . . . ≥ s−n−

2: for k′ = 0→ k do
3: Dk′ ← k−k′

n+−k′

4: ∆k′ ← k − k′ −Dk′
∑n+

i=k′+1 s
+
i +

∑k−k′
i=1 s−i

5: gk′ ←
∑k−k′
i=1 x−i −Dk′

∑n+

i=k′+1 x
+
i

6: end for
7: k∗ ← arg maxk′ ∆k′

8: return gk∗

More specifically, for any scoring function s and m > 0,
define:

FN(s,m) = arg max
S⊂X+

t ,|S|=m

∑
i∈S

(
1− y

(s,k)
i

)
yisi

as the set of top m-ranked false negatives. The algorithm
makes updates for false positives in the set FN(s,∆t) i.e.
the top ∆t ranked false negatives which can significantly
smaller than the number of false negatives. Moreover, as
we show below, Perc@k-max also enjoys a mistake bound
but with respect to the max-surrogate `max

prec@k(·) which of-
fers a weaker upper bound to the prec@k objective.
Theorem 9. Suppose

∥∥xit∥∥ ≤ R for all t, i. Let ∆C
T =∑T

t=1 ∆t be the cumulative observed mistake values when
Algorithm 2 is run. Also, for any predictor w, let
L̂max
T (w) =

∑T
t=1 `

max
prec@k(w;Xt,yt). Then we have

∆C
T ≤ min

w

(
‖w‖ ·R ·

√
4k +

√
L̂max
T (w)

)2

.

Similar to Algorithm 1, we can give a simplified mistake
bound in situations when the separability condition speci-
fied by Definition 4 is satisfied.
Corollary 10. Suppose there exists a unit norm classifier
w∗ such that the scoring function s : x 7→ x>w∗ realizes
the strong (k, γ)-margin condition for all the batches, then
Algorithm 2 guarantees the mistake bound: ∆C

T ≤ 4kR2

γ2 .

As our strong (k, γ)-margin is exactly the same as the stan-
dard margin notion for classification, the above bound is

Surrogate Functions for Maximizing Precision at the Top

equivalent to the standard perceptron mistake bound. How-
ever, we observe that in practice, many times Perc@k-max
outperforms Perc@k-avg algorithm, even though the later
optimizes a tighter surrogate. This hints at a possible loose
analysis that fails to exploit some other structure that might
be present in the dataset.

4.1. Stochastic Gradient Descent for `avg
prec@k

Next, we present a stochastic gradient descent (SGD) al-
gorithm for prec@k loss. SGD methods are known to be
very successful for optimizing empirical risk minimization
(ERM) problems as they require only a few passes over
the data to achieve the optimal statistical accuracy. How-
ever, prec@k loss is a non-convex function that is also non-
additive over the entire training set. Hence, standard SGD
techniques for classification do not apply directly.

By combining our proposed avg-surrogate (`avg
prec@k) with

mini-batches, we can provide a scalable SGD algorithm
for optimizing prec@k (see Algorithm 3). At a high level,
our SGD@k-avg algorithm uses mini-batches to update the
current model vector using standard gradient descent. As
our avg-surrogate is also non-additive over training points,
we need to obtain an estimate of the gradient of `avg

prec@k
using mini-batches. Algorithm 4 details the gradient cal-
culation for the `avg

prec@k and Algorithm 3 uses the obtained
gradient estimates over the current mini-batch to update the
model vector (wt).

Note that the standard analysis of SGD methods (with
point-wise loss functions) crucially exploits the fact that
the loss functions are additive and hence at each step, we
get unbiased estimate of the gradient. Unfortunately, for
general non-decomposable loss function, such an unbiased
estimate is not possible. So, one needs to show that each
mini-batch gives an accurate (but potentially biased) esti-
mate of the gradient. To this end, we need to prove a uni-
form convergence bound for our surrogate functions.

Note that (Kar et al., 2014) also used a similar technique
to devise an SGD algorithm for the struct-SVM surro-
gate (`struct

prec@k) for prec@k. Naturally, such uniform con-
vergence bounds need to exploit the structure of the loss
function, as such bounds are not possible for arbitrary non-
decomposable losses. At a high level, we need to show that
although `avg

prec@k is non-decomposable over the entire mini-
batch, it still is “Lipschitz” in the sense that it does not get
perturbed heavily by changing one training point. In the
next section, we provide uniform convergence bounds for
both of our convex surrogate and use them to provide con-
vergence guarantee for SGD@k-avg.

5. Generalization Bounds
In this section, we provide uniform convergence (UC)
bounds for our proposed convex surrogates (avg and max

surrogates). We use our novel UC bounds along with the
mistake bounds (Theorem 7, 9) to prove two different re-
sults: i) precise online-to-batch conversion bounds for the
Perc@k-avg and Perc@k-max algorithms, ii) convergence
guarantee for the SGD@k-avg algorithm (Algorithm 3).

To present our generalization and convergence bounds, we
use normalized versions of prec@k and our proposed sur-
rogates. More specifically, we set k = κ · n+ as a fraction
of the number of positives. For any scoring function s, its
prec@k loss is now denoted as:

prec@κ(s; z1, . . . , zn) =
1

κn+
∆(y,y(s,κn+)).

For uniformity, we will also normalize the surrogate loss
functions `max

prec@κ(·), `avg
prec@κ(·) by dividing throughout by

k = κ · n+.

Definition 11 (Uniform Convergence). A performance
measure Ψ : W × (X , {0, 1})n 7→ R+ exhibits uniform
convergence with respect to a set of predictors W if for
some α(b, δ) = poly

(
1
b , log 1

δ

)
, for a sample ẑ1, . . . , ẑb of

size b chosen i.i.d. (or uniformly without replacement) from
an arbitrary population z1, . . . , zn, we have w.p. 1− δ,

sup
w∈W

|Ψ(w; z1, . . . , zn)−Ψ(w; ẑ1, . . . , ẑb)| ≤ α(b, δ)

We now provide UC bounds for prec@k as well as all of
our surrogates.

Theorem 12. The performance measure prec@κ(·), as
well as the surrogates `ramp

prec@κ(·), `avg
prec@κ(·) and `max

prec@κ(·),
all exhibit uniform convergence at the rate α(b, δ) =

O
(√

1
b log 1

δ

)
.

Recently, (Kar et al., 2014) also established a similar re-
sult for the `struct

prec@k(·) surrogate. However, a very different
proof technique is required to establish similar results for
`max

prec@κ(·) and `avg
prec@κ(·), partly necessitated by the terms

in these surrogates which depend, in a complicated man-
ner, on the true positives predicted by the candidate label-
ing ŷ. The above results allow us to establish strong online-
to-batch conversion bounds for Perc@k-avg and Perc@k-
max, and convergence rate for SGD@k-avg method. For
the bounds given below, we shall assume that the points re-
ceived in the stream for each of our three algorithms are
chosen i.i.d. from some fixed population Z .

Theorem 13. Suppose an algorithm, when faced with a
random stream of data points, and batch length b, gener-
ates an ensemble of classifiers w1, . . . ,wT which incur a
prec@k mistake bound MT . Then we have, with probabil-
ity at least 1− δ, we have

1

T

T∑
t=1

prec@κ(wt;Z) ≤ MT

T
+O

(√
1

b
log

T

δ

)
.

Surrogate Functions for Maximizing Precision at the Top

10
−2

10
0

10
2

0.2

0.4

0.6

Training time (secs)

A
ve

ra
ge

 P
re

c@
0.

25

(a) PPI

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

Training time (secs)
A

ve
ra

ge
 P

re
c@

0.
25

(b) Letter

10
−2

10
0

0.2

0.4

0.6

0.8

Training time (secs)

A
ve

ra
ge

 P
re

c@
0.

25

(c) a9a

10
−2

10
0

10
2

0.2

0.4

0.6

0.8

1

Training time (secs)

A
ve

ra
ge

 P
re

c@
0.

25

(d) IJCNN1
Figure 2. Comparison of our perceptron and SGD based methods (Perc@k-avg, Perc@k-max, SGD@k-avg) with baseline methods
(SVMPerf, 1PMB) on Prec@0.25 maximization tasks. Clearly, Perc@k-avg, SGD@k-avg (both of which are based on `avg

prec@k loss) are
the most consistent methods while accuracies of Perc@k-max can have large variations.

k=0.05 k=0.5 k=0.75
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 P
re

c@
k

(a) KDD08
k=0.05 k=0.5 k=0.75

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 P
re

c@
k

 SVMPerf
Perceptron@k−max
Perceptron@k−avg
SGD@k−avg

(b) PPI

10
0

10
2

10
4

0.4

0.6

0.8

Epoch length

A
ve

ra
ge

 P
re

c@
0.

25

Perceptron@k−avg

(c) KDD08

10
0

10
2

10
4

0.7

0.75

0.8

0.85

Epoch length

A
ve

ra
ge

 P
re

c@
0.

25

Perceptron@k−max

(d) KDD08

10
0

10
2

10
4

0.75

0.8

0.85

Epoch length

A
ve

ra
ge

 P
re

c@
0.

25

SGD@k−avg

(e) KDD08
Figure 3. (a), (b): Comparison of performance of Prec@k optimization methods for different values of k. (c), (d), (e): Comparison of
performance of proposed methods for different epoch lengths on Prec@0.25 maximization tasks

The proof of this theorem follows from the uniform con-
vergence bound for the prec@k(·) performance measure.
In particular, combining this with the mistake bound from
Theorem 7 and the uniform convergence bound from Theo-
rem 12, ensures the following generalization guarantee for
the ensemble generated by Algorithm 1.

Corollary 14. Suppose we encounter a stream of data
points randomly chosen from the population Z and let
w1, . . . ,wT be the ensemble of classifiers returned by the
PERCEPTRON@K-AVG algorithm. Then we have, with prob-
ability at least 1− δ, for any w∗

1

T

T∑
t=1

prec@κ(wt;Z) ≤
(√

`avg
prec@κ(w∗;Z) + C

)2

,

where C = ‖w∗‖R
√

4κpb
T

+O
(

4

√
1
b

log 1
δ

+ 4

√
1
T

log 1
δ

)
.

A similar statement holds for the PERCEPTRON@K-MAX al-
gorithm with respect to the `max

prec@κ(·) surrogate.

Theorem 15. Suppose we execute Algorithm 3 with batch
length b, then with probability at least 1−δ over the random
ordering of the points, for any w∗ ∈ W , the predictor w̄
returned by the algorithm satisfies

`avg
prec@κ(w̄;Z) ≤ `avg

prec@κ(w∗;Z)+O

(√
1

b
log

n

bδ

)
+O

(√
b

n

)

The proof of this Theorem can be found in Appendix G.

6. Experiments
In this section, we apply our methods to several benchmark
datasets for rare-class binary classification. The goal of our

experimental evaluation is two-fold: a): demonstrate that
our surrogate functions which are well-motivated theoreti-
cally indeed outperforms struct-SVM surrogate (SVMPerf)
in practice as well, b): our SGD based method quickly
learns an accurate (in terms of prec@k) classifier. In ad-
dition to SVMPerf, we also compare our methods to the
1PMB method by (Kar et al., 2014) which also attempts to
optimize prec@k by using the struct-SVM loss. Recall that
while struct-SVM loss is intended to optimize prec@k, it
does not upper bound prec@k loss (see Section 3) and is
not known to be consistent for any interesting margin no-
tion or noise condition.

Implementation Details: For both the baseline methods
(SVMPerf and 1PMB), we use the C code provided by the
respective authors. Our method is also implemented in C.
We randomly split each of the dataset with 70% used for
training (out of which 10% was used for validation) and the
remaining 30% for testing. All of our results are averaged
over 10 random train-test splits.

In the first set of experiments, we evaluated different
our methods (Perc@k-avg, Perc@k-max, SGD@k-avg,
SGD@k-max) on several benchmark UCI datasets. We
use Precision@(0.25) for evaluating the different methods.
Figure 2 plots prec@k achieved by different methods vs
the training time required by each method (see Appendix H
for results on more datasets). Clearly, out of the six meth-
ods that we evaluated, SVMPerf (which is based on cutting
plane method) is computationally most expensive. Percep-
tron and SGD methods frequently updates the classifier us-
ing a few points, hence, they tend to find reasonably accu-
rate solutions much earlier than the cutting plane methods.

We observe that our avg-surrogate (6) based methods

Surrogate Functions for Maximizing Precision at the Top

(Perc@k-avg, SGD@k-avg) are the most consistent meth-
ods and achieve nearly the best accuracy for each of the
dataset. This also matches our theoretical results which
show that avg-surrogate is a tighter convex relaxation of
prec@k as compared to the max-surrogate. Moreover,
on almost all of the dataset Perc@k-avg and SGD@k-avg
are more accurate than SVMPerf and 1PMB. The max-
surrogate seems to be the most inconsistent of all the loss
functions. For the a9a dataset, it is about 10% more ac-
curate than all the other methods, while for PPI dataset its
prec@k is around 10% less than the Perc@k-avg method.

Next, we compare Precision@k obtained by different meth-
ods with varying k. Here again, we observe that Perc@k-
avg, SGD@k-avg consistently outperforms SVMPerf. Fi-
nally, we study the effect of the selected epoch-lengths for
our methods. We observe that the accuracy for Perc@k-avg
increase with larger epochs and then stabilizes at epochs of
length around 10K. SGD@k-avg method seems to be more
or less invariant to the epoch length, while the accuracy of
Perc@k-max method suffers for epochs of length > 1000.

Surrogate Functions for Maximizing Precision at the Top

References
Agarwal, S. The Infinite Push: A new support vector rank-

ing algorithm that directly optimizes accuracy at the ab-
solute top of the list. In Proceedings of the SIAM In-
ternational Conference on Data Mining, pp. 839—850,
2011.

Boucheron, Stphane, Lugosi, Gbor, and Bousquet, Olivier.
Concentration inequalities. In Advanced Lectures in Ma-
chine Learning, pp. 208–240. Springer, 2004.

Boyd, Stephen, Cortes, Corinna, Mohri, Mehryar, and
Radovanovic, Ana. Accuracy at the top. In Advances
in neural information processing systems, pp. 953–961,
2012.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,
Hamilton, N., and Hullender, G. Learning to rank us-
ing gradient descent. In Proceedings of the 22nd Inter-
national Conference on Machine Learning, pp. 89–96,
2005.

Cao, Zhe, Qin, Tao, Liu, Tie-Yan, Tsai, Ming-Feng, and
Li, Hang. Learning to rank: from pairwise approach
to listwise approach. In Proceedings of the 24th inter-
national conference on Machine learning, pp. 129–136.
ACM, 2007.

Chakrabarti, Soumen, Khanna, Rajiv, Sawant, Uma, and
Bhattacharyya, Chiru. Structured Learning for Non-
Smooth Ranking Losses. In 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
mining, 2008.

Chaudhuri, Sougata and Tewari, Ambuj. Perceptron-like
algorithms and generalization bounds for learning to
rank. CoRR, abs/1405.0591, 2014.

Chaudhuri, Sougata and Tewari, Ambuj. Online ranking
with top-1 feedback. 2015.

Clémençon, Stéphan and Vayatis, Nicolas. Ranking the
best instances. The Journal of Machine Learning Re-
search, 8:2671–2699, 2007.

Do, Chuong B., Le, Quoc, Teo, Choon Hui, Chapelle,
Olivier, and Smola, Alex. Tighter Bounds for Structured
Estimation. In Annual Conference on Neural Informa-
tion Processing Systems (NIPS), 2008.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y.
An efficient boosting algorithm for combining prefer-
ences. Journal of Machine Learning Research, 4:933–
969, 2003.

Guruswami, Venkatesan and Raghavendra, Prasad. Hard-
ness of learning halfspaces with noise. SIAM J. Comput.,
39(2):742–765, 2009.

Herbrich, R., Graepel, T., and Obermayer, K. Large mar-
gin rank boundaries for ordinal regression. In Smola,
A., Bartlett, P., Schoelkopf, B., and Schuurmans, D.
(eds.), Advances in Large Margin Classifiers, pp. 115–
132. MIT Press, 2000.

Joachims, T. Optimizing search engines using clickthrough
data. In Proceedings of the 8th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pp. 133–142, 2002.

Joachims, Thorsten. A Support Vector Method for Mul-
tivariate Performance Measures. In 22nd International
Conference on Machine Learning (ICML), 2005.

Kar, Purushottam, Narasimhan, Harikrishna, and Jain, Pra-
teek. Online and stochastic gradient methods for non-
decomposable loss functions. In 28th Annual Confer-
ence on Neural Information Processing Systems (NIPS),
pp. 694–702, 2014.

Le, Quoc and Smola, Alexander. Direct optimization
of ranking measures. arXiv preprint arXiv:0704.3359,
2007.

Li, Nan, Jin, Rong, and Zhou, Zhi-Hua. Top rank optimiza-
tion in linear time. In Advances in Neural Information
Processing Systems, pp. 1502–1510, 2014.

Minsky, Marvin Lee and Papert, Seymour. Perceptrons:
An Introduction to Computational Geometry. MIT Press,
1988. ISBN 0262631113.

Narasimhan, Harikrishna and Agarwal, Shivani. A Struc-
tural SVM Based Approach for Optimizing Partial AUC.
In 30th International Conference on Machine Learning
(ICML), 2013a.

Narasimhan, Harikrishna and Agarwal, Shivani. SVMtight
pAUC:

A New Support Vector Method for Optimizing Par-
tial AUC Based on a Tight Convex Upper Bound. In
ACM SIGKDD Conference on Knowledge, Discovery
and Data Mining (KDD), 2013b.

Novikoff, A.B.J. On convergence proofs on perceptrons.
In Proceedings of the Symposium on the Mathematical
Theory of Automata, volume 12, pp. 615–622, 1962.

Prabhu, Yashoteja and Varma, Manik. Fastxml: a fast, ac-
curate and stable tree-classifier for extreme multi-label
learning. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD, pp. 263–272, 2014.

Rosenblatt, Frank. The perceptron: A probabilistic model
for information storage and organization in the brain.
Psychological Review, 65(6):386–408, 1958.

Surrogate Functions for Maximizing Precision at the Top

Rudin, C. The p-norm push: A simple convex ranking al-
gorithm that concentrates at the top of the list. Journal
of Machine Learning Research, 10:2233–2271, 2009.

Shalev-Shwartz, Shai, Singer, Yoram, Srebro, Nathan, and
Cotter, Andrew. Pegasos: primal estimated sub-gradient
solver for SVM. Math. Program., 127(1):3–30, 2011.

Tsoumakas, Grigorios and Katakis, Ioannis. Multi-label
classification: An overview. IJDWM, 3(3):1–13, 2007.

Valizadegan, Hamed, Jin, Rong, Zhang, Ruofei, and Mao,
Jianchang. Learning to rank by optimizing ndcg mea-
sure. In Advances in neural information processing sys-
tems, pp. 1883–1891, 2009.

Yue, Y., Finley, T., Radlinski, F., and Joachims, T. A sup-
port vector method for optimizing average precision. In
Proceedings of the 30th Annual International ACM SI-
GIR Conference on Research and Development in Infor-
mation Retrieval, pp. 271–278, 2007.

Yun, Hyokun, Raman, Parameswaran, and Vishwanathan,
S. Ranking via robust binary classification. In Advances
in Neural Information Processing Systems, pp. 2582–
2590, 2014.

Zhang, Tong. Covering Number Bounds of Certain Reg-
ularized Linear Function Classes. JMLR, 2:527–550,
2002.

Surrogate Functions for Maximizing Precision at the Top

A. Structural SVM Surrogate for prec@k
The structural SVM surrogate for prec@k for a set of n points {(x1, y1), . . . , (xn, yn)} ∈ (Rd × {0, 1})n and model
w ∈ Rd can be written as `struct

prec@k(w):

max
ŷ∈{0,1}n
|ŷ|=k

{
1 +

n∑
i=1

ŷi

(
1

n
w>xi −

1

k
yi

)
− 1

n

n∑
i=1

yiw
>xi

}
.

We shall now give a simple setting where this surrogate produces a suboptimal model.

Consider a set of 6 points in R × {0, 1}: {(−1, 1), (−1, 1), (−2, 1), (−3, 0), (−3, 0), (−3, 0)}, and suppose we are inter-
ested in Prec@1. Note that the optimum model that maximizes prec@1 on these points has a positive sign. We will now
show that the model w∗ ∈ R that maximizes the above structural SVM surrogate on these points has a negative sign. On
the contrary, let us assume that w∗ has a positive sign, and arrive at a contradiction; we shall consider the following two
cases:

(i) w∗ > 3
2 . It can be verified that

`struct
prec@k(w∗) = 1 +

(
1

6
(−w∗)− 1

)
− 1

6
(−w∗ +−w∗ +−2w∗)

=
1

2
w∗

On the other hand, for the model w′ = −w∗, we have

`struct
prec@k(w′) = 1 +

(
1

6
(−3w′)− 0

)
− 1

6
(−w′ +−w′ +−2w′)

= 1 +

(
1

6
(3w∗)− 0

)
− 1

6
(w∗ + w∗ + 2w∗)

= 1− 1

6
w∗ < `struct

prec@k(w∗),

where the last step follows from w∗ > 3
2 ; clearly, w∗ is not optimal for the structural SVM surrogate, and hence a

contradiction.

(i) w∗ ≤ 3
2 . Here we have

`struct
prec@k(w∗) = 1 +

(
1

6
(−3w∗)− 0

)
− 1

6
(−w∗ +−w∗ +−2w∗)

= 1 +
1

6
w∗.

For w′ = −w∗,

`struct
prec@k(w′) = 1 +

(
1

6
(−3w′)− 0

)
− 1

6
(−w′ +−w′ +−2w′)

= 1 +

(
1

6
(3w∗)− 0

)
− 1

6
(w∗ + w∗ + 2w∗)

= 1− 1

6
w∗ < `struct

prec@k(w∗).

Here again, we have a contradiction.

B. Proofs of Claims from Section 3
B.1. Proof of Claim 1

Claim 1. For any k ≤ n+ and scoring function s, we have

`ramp
prec@k(s) ≥ prec@k(s).

Surrogate Functions for Maximizing Precision at the Top

Moreover, if for some scoring function s, we have `ramp
prec@k(s) ≤ ξ, then there necessarily exists a set S ⊂ [n] of size at most

k such that for all ‖ŷ‖ = k, we have ∑
i∈S

si ≥
n∑
i=1

ŷisi + ∆(y, ŷ)− ξ.

Proof. Let ŷ = y(s,k) so that we have ∆(y, ŷ) = prec@k(s). Then we have

`ramp
prec@k(s) = max

‖ŷ‖1=k

{
∆(y, ŷ) +

n∑
i=1

ŷisi

}
− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

≥ ∆(y, ŷ) +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

= ∆(y, ŷ) + max
‖ỹ‖1=k

n∑
i=1

ỹisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

≥ ∆(y, ŷ),

where the third step follows from the definition of ŷ. This proves the first claim. For the second claim, suppose for some
scoring function s, we have `ramp

prec@k(s) ≤ ξ. Then if we consider S∗ to be the set of k-highest ranked positive points, then
we have ∑

i∈S∗
si = max

‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi ≥ max
‖ŷ‖1=k

{
∆(y, ŷ) +

n∑
i=1

ŷisi

}
− ξ ≥

n∑
i=1

ŷisi + ∆(y, ŷ)− ξ,

which proves the claim.

B.2. Proof of Claim 3

Claim 3. For any scoring function s that realizes the weak k-margin over a dataset we have,

`ramp
prec@k(s) = prec@k(s)

Proof. Consider a scoring function s that satisfies the weak k-margin condition and any ŷ such that ‖ŷ‖1 = k. Based on
the prec@k accuracy of ŷ, we have the following two cases

Case 1 (K(y, ŷ) = k): In this case we have

∆(y, ŷ) +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi = 0 +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi ≤ 0,

where the first step follows since K(y, ŷ) = k and the second step follows since ‖ŷ‖1 = k, as well as K(y, ŷ) = k.

Case 2 (K(y, ŷ) = k′ < k): In this case let S∗ be the set of k top ranked positive points according to the scoring function
s. Also let S∗1 be the set of k′(= K(y, ŷ)) top ranked positives and let S∗2 = S\S∗1 . Then we have

∆(y, ŷ) +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi = ∆(y, ŷ) +

n∑
i=1

ŷiyisi︸ ︷︷ ︸
(A)

+

n∑
i=1

ŷi(1− yi)si − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

≤ ∆(y, ŷ) +
∑
i∈S∗1

si +

n∑
i=1

ŷi(1− yi)si︸ ︷︷ ︸
(B)

− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

Surrogate Functions for Maximizing Precision at the Top

≤ ∆(y, ŷ) +
∑
i∈S∗1

si +
∑
i∈S∗2

si − (k − k′)− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

= k − k′ +
∑
i∈S∗

si − (k − k′)− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

= 0,

where the second step follows since the term (A) consists of k′ true positives the third step follows since the term (B)
contains k − k′ false positives i.e. negatives and the k-margin condition, the fourth step follows since ∆(y, ŷ) = k −
K(y, ŷ) and the fifth step follows since by the definition of the set S∗, we have

∑
i∈S∗

si = max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi.

This finishes the proof.

B.3. Proof of Lemma 16

Lemma 16. Given a set of n real numbers x1 . . . xn and any two integers k ≤ k′ ≤ n, we have

min
|S|=k

1

k

∑
i∈S

xi ≤ min
|S′|=k′

1

k′

∑
j∈S′

xj

Proof. The above is obviously true if k = k′ so we assume that k′ > k. Without loss of generality assume that the set is
ordered in ascending order i.e. x1 ≤ x2 ≤ . . . ≤ xn. Thus, the above statement is equivalent to showing that

1

k

k∑
i=1

xi ≤
1

k′

k′∑
j=1

xj ⇔
(

1

k
− 1

k′

) k∑
i=1

xi ≤
1

k′

k′∑
j=k+1

xj ⇔
1

k

k∑
i=1

xi ≤
1

k′ − k

k′∑
j=k+1

xj ,

where the last inequality is true since k−k′ > 0 and the left hand side is the average of numbers which are all smaller than
the numbers whose average forms the right hand side. This proves the lemma.

B.4. Proof of Claim 17

Claim 17. For any k ≤ n+ and scoring function s, we have

`avg
prec@k(s) ≥ prec@k(s).

Moreover, for linear scoring functions i.e. s(xi) = w>xi for w ∈ W , the surrogate `avg
prec@k(w) is convex in w.

Proof. We use the fact observed before that for any scoring function, we have ∆(y,y(s,k)) = prec@k(s). We start off by
showing the second part of the claim. Recall the definition of the surrogate `avg

prec@k(s)

`avg
prec@k(w) = max

‖ŷ‖1=k

{
∆(y, ŷ) +

n∑
i=1

(ŷi − yi) ·w>xi +
1

C(ŷ)

n∑
i=1

(1− ŷi)yi ·w>xi

}

The convexity of `avg
prec@k(w) follows from the observation that the inner term in the maximization is linear (hence convex)

in w and the max function is convex and increasing. We now move on to prove the first part. For sake of convenience
ỹ = y(s,k). Note that ‖ỹ‖1 = k by definition. This gives us

`avg
prec@k(s) = max

‖ŷ‖1=k
∆(s, ŷ) ≥ ∆(s, ỹ)

= ∆(y, ỹ) +

n∑
i=1

si(ỹi − yi) +
1

C(ỹ)

n∑
i=1

(1− ỹi)yisi

Surrogate Functions for Maximizing Precision at the Top

= ∆(y, ỹ) +

n∑
i=1

si(ỹi(1− yi)− yi(1− ỹi)) +
n+ − k

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yisi

= ∆(y, ỹ) +

n∑
i=1

ỹi(1− yi)si︸ ︷︷ ︸
(A)

− k −K(y, ỹ)

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yisi︸ ︷︷ ︸
(B)

.

Now define m = minỹi=1
yi=0

si and M = maxỹi=0
yi=1

si. This gives us

(A) =

n∑
i=1

ỹi(1− yi)si ≥ m
n∑
i=1

ỹi(1− yi) = ∆(y, ỹ) ·m,

and

(B) =
k −K(y, ỹ)

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yisi ≤
k −K(y, ỹ)

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yiM = (k −K(y, ỹ)) ·M = ∆(y, ỹ) ·M.

However, by definition of ỹ = y(s,k), we have

m ≥ min
ỹ=1

si ≥ max
ỹ=0

si ≥M.

Thus we have

`avg
prec@k(s) ≥ ∆(y, ỹ) + (A)− (B) ≥ ∆(y, ỹ)(1 +m−M) ≥ ∆(y, ỹ) = prec@k(s)

B.5. Proof of Claim 6

Claim 6. For any scoring function s that realizes the k-margin over a dataset we have,

`avg
prec@k(s) = prec@k(s)

Proof. We shall prove that for any ŷ such that ‖ŷ‖1 = k, under the k-margin condition, we have ∆(s, ŷ) = 0. This will
show us that `avg

prec@k(s) = max‖ŷ‖1=k ∆(s, ŷ) = 0. Using Claim 17 and the fact that prec@k(s) ≥ 0 will then prove the
claimed result. We will analyze two cases in order to do this

Case 1 (K(y, ŷ) = k): In this case the labeling ŷ is able to identify k relevant points correctly and thus we have C(ŷ) = 1
and we have

∆(s, ŷ) = ∆(y, ŷ) +

n∑
i=1

si(ŷi − yi) +

n∑
i=1

(1− ŷi)yisi

Now, since K(y, ŷ) = k, we have ∆(y, ŷ) = 0 which means for all i such that ŷi = 1, we also have yi = 1. Thus, we
have ŷi = ŷiyi. Thus,

∆(s, ŷ) = 0 +

n∑
i=1

si(ŷi − yi) +

n∑
i=1

(yi − ŷiyi)si =

n∑
i=1

si(ŷi − yi) +

n∑
i=1

(yi − ŷi)si = 0

Case 2 (K(y, ŷ) = k′ < k): In this case, ŷ contains false positives. Thus we have

∆(s, ŷ) = ∆(y, ŷ) +

n∑
i=1

si(ŷi − yi) +
n+ − k
n+ − k′

n∑
i=1

(1− ŷi)yisi

= ∆(y, ŷ) +

n∑
i=1

ŷi(1− yi)si −
k − k′

n+ − k′
n∑
i=1

yi(1− ŷi)si

Surrogate Functions for Maximizing Precision at the Top

= (k − k′)

 1

k − k′
∆(y, ŷ)︸ ︷︷ ︸

(A)

+
1

k − k′
n∑
i=1

ŷi(1− yi)si︸ ︷︷ ︸
(B)

− 1

n+ − k′
n∑
i=1

yi(1− ŷi)si︸ ︷︷ ︸
(C)

Now we have, by definition, (A) = 1. We also have

(B) =
1

k − k′
n∑
i=1

ŷi(1− yi)si ≤ max
j:yj<0

sj ,

as well as

(C) =
1

n+ − k′
n∑
i=1

yi(1− ŷi)si

≥ min
S+⊆X+

|S+|=n+−k′

1

n+ − k′
∑
i∈S+

yi(1− ŷi)si

≥ min
S+⊆X+

|S+|=n+−k+1

1

n+ − k + 1

∑
i∈S+

yi(1− ŷi)si,

where the last step follows from Lemma 16 and the fact that k′ ≤ k − 1 in this case analysis. Then we have

∆(s, ŷ) = (k − k′)((A) + (B)− (C)) ≤ (k − k′)

1 + max
j:yj<0

sj − min
S+⊆X+

|S+|=n+−k+1

1

n+ − k + 1

∑
i∈S+

yi(1− ŷi)si

 ≤ 0

where the last step follows because s realizes the k-margin. Having exhausted all cases, we establish the claim.

C. Proofs from Section 4
C.1. Proof of Theorem 7

Theorem 7. Suppose
∥∥xit∥∥ ≤ R for all t, i. Let ∆C

T =
∑T
t=1 ∆t be the cumulative observed mistake values when

Algorithm 1 is run. Also, for any predictor w, let L̂T (w) =
∑T
t=1 `

avg
prec@k(w;Xt,yt). Then we have

∆C
T ≤ min

w

(
‖w‖ ·R ·

√
4k +

√
L̂T (w)

)2

.

Proof. We will prove the theorem using two lemmata that we state below.

Lemma 18. For any time step t, we have

‖wt‖2 ≤ ‖wt−1‖2 + 4kR2∆t

Lemma 19. For any fixed w ∈ W , define Pt := 〈wt,w〉. Then we have

Pt ≥ Pt−1 + ∆t − `avg
prec@k(w;Xt,yt).

Using Lemmata 18 and 19, we can establish the mistake bound as follows. A repeated application of Lemma 19 tells us
that

PT ≥
T∑
t=1

∆t −
T∑
t=1

`avg
prec@k(w;Xt,yt) = ∆C

t − L̂T (w).

In case the right hand side is negative, we already have the result with us. In case it is positive, we can now analyze further
using the Cauchy-Schwartz inequality, and a repeated application of Lemma 18. Starting from the above we have

∆C
T ≤ PT + L̂T (w)

Surrogate Functions for Maximizing Precision at the Top

= 〈wT ,w〉+ L̂T (w)

≤ ‖wT ‖ ‖w‖+ L̂T (w)

≤ ‖w‖
√

4kR2 ·∆C
T + L̂T (w),

which gives us the desired result upon solving the quadratic inequality1. We now prove the lemmata below. Note that in
the following discussion, we have, for sake of brevity, used the notation ŷ = ŷt = y(wt−1,k).

Proof of Lemma 18. For time steps where ∆t = 0, the result obviously holds since wt = wt−1. For analyzing other time
steps, let vt = Dt ·

∑
i∈[b](1− ŷi)yi · xit −

∑
i∈[b](1− yi)ŷi · xit so that wt = wt−1 + vt. This gives us

‖wt‖2 = ‖wt−1‖2 + 2 〈wt−1,vt〉+ ‖vt‖2 .

Let si = w>t−1x
i
t. Then we have

〈wt−1,vt〉 = Dt ·
∑
i∈[b]

(1− ŷi)yisi −
∑
i∈[b]

(1− yi)ŷisi

= ∆t

1

‖yt‖1 −K(yt, ŷt)

∑
i∈[b]

(1− ŷi)yisi︸ ︷︷ ︸
(A)

− 1

∆t

∑
i∈[b]

(1− yi)ŷisi︸ ︷︷ ︸
(B)

≤ 0,

where the last step follows since (A) is the average of scores given to the false negatives and (B) is the average of scores
given to the false positives and by the definition of ŷt, since false negatives are assigned scores less than false positives,
we have (A) ≤ (B). We also have

‖vt‖2 = ∆2
t

∥∥∥∥∥∥ 1

‖yt‖1 −K(yt, ŷt)
·
∑
i∈[b]

(1− ŷi)yi · xit −
1

∆t

∑
i∈[b]

(1− yi)ŷi · xit

∥∥∥∥∥∥
2

≤ 4∆2
tR

2 ≤ 4kR2∆t,

since ∆t ≤ k. Combining the two gives us the desired result.

Proof of Lemma 19. We prove the result using two cases. For sake of convenience, we will refer to yt and ŷt as y and ŷ
respectively.

Case 1 (∆t = 0): In this case Pt = Pt−1 since the model is not updated. However, since `avg
prec@k(w) ≥ prec@k(w) ≥ 0

for all w ∈ W (by Claim 17), we still get

Pt ≥ Pt−1 − `avg
prec@k(w;Xt,yt),

as required.

Case 2 (∆t > 0): In this case we use the update to wt−1 to evaluate the update to Pt−1. For sake of convenience, let us
use the notation si = w>xit. Also note that in Algorithm 1, Dt = 1− 1

C(ŷ) .

Pt = Pt−1 −
∑
i∈[b]

(1− yi)ŷisi +Dt ·
∑
i∈[b]

(1− ŷi)yisi

= Pt−1 −
∑
i∈[b]

(1− yi)ŷisi +

(
1− 1

C(ŷ)

)∑
i∈[b]

(1− ŷi)yisi

1More specifically, we use the fact that the inequality (x− l)2 ≤ cx has a solution x ≤ (
√
l+
√
c)2 whenever x, l, c ≥ 0 and x ≥ l.

Surrogate Functions for Maximizing Precision at the Top

= Pt−1 −

∑
i∈[b]

(ŷi − yi)si +
1

C(ŷ)

∑
i∈[b]

(1− ŷi)yisi

︸ ︷︷ ︸

(Q)

≥ Pt−1 + ∆t − `avg
prec@k(w;Xt,yt),

where the last step follows from the definition of `avg
prec@k(·) which gives us

∆t + (Q) = ∆(y, ŷ) +
∑
i∈[b]

(ŷi − yi)si +
1

C(ŷ)

∑
i∈[b]

(1− ŷi)yisi

≤ max
‖ŷ‖1=k

∆(y, ŷ) +
∑
i∈[b]

si(ŷi − yi) +
1

C(ŷ)

∑
i∈[b]

(1− ŷi)yisi

= `avg

prec@k(s) = `avg
prec@k(w;Xt,yt)

This concludes the proof of the mistake bound.

C.2. Proof of Theorem 9

Theorem 9. Suppose
∥∥xit∥∥ ≤ R for all t, i. Let ∆C

T =
∑T
t=1 ∆t be the cumulative observed mistake values when

Algorithm 2 is run. Also, for any predictor w, let L̂max
T (w) =

∑T
t=1 `

max
prec@k(w;Xt,yt). Then we have

∆C
T ≤ min

w

(
‖w‖ ·R ·

√
4k +

√
L̂max
T (w)

)2

.

Proof. As before, we will prove this theorem in two parts. Lemma 18 will continue to hold in this case as well. However,
we will need a modified form of Lemma 19 that we prove below. As before, we will use the notation ŷ = ŷt = y(wt−1,k).

Lemma 20. For any fixed w ∈ W , define Pt := 〈wt,w〉. Then we have

Pt ≥ Pt−1 + ∆t − `max
prec@k(w;Xt,yt).

Using Lemmata 18 and 20, the theorem follows as before. All that remains now is to prove Lemma 20.

Proof of Lemma 20. We prove the result using two cases as before. For sake of convenience, we will refer to yt and ŷt as
y and ŷ respectively.

Case 1 (∆t = 0): In this case Pt = Pt−1 since the model is not updated. However, since `max
prec@k(w) ≥ prec@k(w) ≥ 0

for all w ∈ W (by Claim 1), we still get

Pt ≥ Pt−1 − `max
prec@k(w;Xt,yt),

as required.

Case 2 (∆t > 0): In this case we use the update to wt−1 to evaluate the update to Pt−1. For sake of convenience, let us use
the notation si = w>xit. Also note that the set St := FN(wt−1,∆t) contains the false negatives in the top ∆t positions as
ranked by wt−1.

Pt = Pt−1 −
∑
i∈[b]

(1− yi)ŷisi +
∑
i∈St

(1− ŷi)yisi

= Pt−1 −
∑
i∈[b]

(1− yi)ŷisi −
∑
i∈[b]

yiŷisi +
∑
i∈[b]

yiŷisi +
∑
i∈St

(1− ŷi)yisi

= Pt−1 −
∑
i∈[b]

ŷisi +
∑
i∈[b]

yiŷisi +
∑
i∈St

(1− ŷi)yisi

Surrogate Functions for Maximizing Precision at the Top

= Pt−1 −

∑
i∈[b]

(ŷi − yi)si +
∑
i∈[b]

(1− ŷi)yisi −
∑
i∈St

(1− ŷi)yisi

≥ Pt−1 −

∑
i∈[b]

(ŷi − yi)si + max
ỹ�(1−ŷ)·y
‖ỹ‖1=n+−k

n∑
i=1

ỹisi

︸ ︷︷ ︸

(Q)

≥ Pt−1 + ∆t − `max
prec@k(w;Xt,yt),

where the last step follows from the definition of `avg
prec@k(·) which gives us

∆t + (Q) = ∆t +
∑
i∈[b]

(ŷi − yi)si + max
ỹ�(1−ŷ)·y
‖ỹ‖1=n+−k

n∑
i=1

ỹisi

≤ max
‖ŷ‖1=k

∆t +
∑
i∈[b]

(ŷi − yi)si + max
ỹ�(1−ŷ)·y
‖ỹ‖1=n+−k

n∑
i=1

ỹisi

= `max

prec@k(s) = `max
prec@k(w;Xt,yt)

This concludes the proof of the theorem.

D. Proof of Lemma 22
Lemma 22. Let f1, . . . , fm be m real valued functions fi : Rn → R such that every fi is 1-Lipschitz with respect to the
‖·‖∞ norm. Then the function

g(v) = max
i∈[m]

fi(v)

is 1-Lipschitz with respect to the ‖·‖∞ norm too.

Proof. Fix v,v′ ∈ Rn. The premise guarantees us that for any i ∈ [m], we have

|fi(v)− fi(v′)| ≤ ‖v − v′‖∞ .

Now let g(v) = fi(v) and g(v′) = fj(v
′). Then we have

g(v)− g(v′) = fi(v)− fj(v′) ≤ fi(v)− fi(v′) ≤ ‖v − v′‖∞ ,

since fj(v′) ≥ fi(v′). Similarly we have g(v′)− g(v) ≤ ‖v − v′‖∞. This completes the proof.

The following corollary would be most useful in our subsequent analyses.

Corollary 21. Let Ψ :W → R be a function defined as follows

Ψ(w) = max
ŷ∈{0,1}n
‖ŷ‖1=k

1

k

∑
ŷi(w

>xi − ci),

where ci are constants independent of w and we assume without loss of generality that ‖xi‖2 ≤ 1 for all i. Then Ψ(·) is
1- Lipschitz with respect to the L2 norm i.e. for all w,w′ ∈ W

|Ψ(w)−Ψ(w′)| ≤ ‖w −w′‖2 .

Proof. Note that for any ŷ such that ‖ŷ‖1 = k, the function fŷ(v) = 1
k

∑
ŷi(vi − ci) is 1-Lipschitz with respect to the

‖·‖∞ norm. Thus if we define
Φ(v) = max

‖ŷ‖1=k
fŷ(v),

Surrogate Functions for Maximizing Precision at the Top

then an application of Lemma 22 tells us that Φ(·) is 1-Lipschitz with respect to the ‖·‖∞ norm as well. Also note that if
we define

v(w) =
(
w>x1 − c1, . . . ,w>xn − cn

)
,

then we have
Ψ(w) = Φ(v(w))

We now note that by an application of Cauchy-Schwartz inequality, and the fact that ‖xi‖2 ≤ 1 for all i, we have

‖v(w)− v(w′)‖∞ ≤ ‖w −w′‖2

Thus we have
|Ψ(w)−Ψ(w′)| = |Φ(v(w))− Φ(v(w′))| ≤ ‖v(w)− v(w′)‖∞ ≤ ‖w −w′‖2

which gives us the desired result.

E. Proof of Lemma 23
Lemma 23. Let V be a universe with a total order � established on it and let v1, . . . ,vn be a population of n items
arranged in decreasing order. Let v̂1, . . . , v̂b be a sample chosen i.i.d. (or without replacement) from the population and
arranged in decreasing order as well. Then for any fixed h : V → [−1, 1] and κ ∈ (0, 1], we have, with probability at least
1− δ over the choice of the samples,∣∣∣∣∣∣ 1

dκne

dκne∑
i=1

h(vi)−
1

dκbe

dκbe∑
i=1

h(v̂i)

∣∣∣∣∣∣ ≤ 4

√
log 2

δ

κb

Proof. We will assume, for sake of simplicity, that κn and κb are both integers so that there are no rounding off issues. Let
v∗n := vκn and v∗b := v̂κb denote the elements at the bottom of the κ-th fraction of the top in the sorted population and
sample lists (recall that the population and the sample lists are sorted in descending order). Also let T(v) := I [v � v∗n]

and T̂(v) := I [v � v∗b] (note that I [E] is the indicator variable for the event E) so that we have∣∣∣∣∣ 1

κn

κn∑
i=1

h(vi)−
1

κb

κb∑
i=1

h(v̂i)

∣∣∣∣∣ =

∣∣∣∣∣ 1

κn

n∑
i=1

T(vi) · h(vi)−
1

κb

b∑
i=1

T̂(v̂i) · h(v̂i)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

κn

n∑
i=1

T(vi) · h(vi)−
1

κb

b∑
i=1

T(v̂i) · h(v̂i)

∣∣∣∣∣+

∣∣∣∣∣ 1

κb

b∑
i=1

(
T(v̂i)− T̂(v̂i)

)
· h(v̂i)

∣∣∣∣∣
≤ 2

√
log 2

δ

κb
+

∣∣∣∣∣ 1

κb

b∑
i=1

(
T(v̂i)− T̂(v̂i)

)
· h(v̂i)

∣∣∣∣∣︸ ︷︷ ︸
(A)

,

where the third step follows from Bernstein’s inequality (which holds in situations with sampling without replacement as
well (Boucheron et al., 2004)) since |T(v) · h(v)| ≤ 1 for all v and we have assumed b ≥ 1

κ log 2
δ . Now if v∗n � v∗b , then

we have T̂(v) ≥ T(v) for all v. On the other hand if v∗b � v∗n, then we have T̂(v) ≤ T(v) for all v. This means that since
|h(v)| ≤ 1 for all v, we have

(A) ≤

∣∣∣∣∣ 1

κb

b∑
i=1

(
T(v̂i)− T̂(v̂i)

)∣∣∣∣∣ =

∣∣∣∣∣ 1

κb

b∑
i=1

T(v̂i)− 1

∣∣∣∣∣ ≤ 2

√
log 2

δ

κb
,

where the second step follows since 1
κb

∑b
i=1 T̂(v̂i) = 1 by definition and the last step follows from another application of

Bernstein’s inequality. This completes the proof.

Surrogate Functions for Maximizing Precision at the Top

F. Proof of Theorem 12
Our proof of Theorem 12 crucially utilize the following two lemmas that helps in exploiting the structure in our surrogate
functions. The first basic lemma states that the pointwise supremum of a set of Lipschitz functions is also Lipschitz.
Lemma 22. Let f1, . . . , fm be m real valued functions fi : Rn → R such that every fi is 1-Lipschitz with respect to the
‖·‖∞ norm. Then the function

g(v) = max
i∈[m]

fi(v)

is 1-Lipschitz with respect to the ‖·‖∞ norm too.

The second lemma establishes the convergence of additive estimates over the top of ranked lists. The abstract nature of the
result would allow us to apply it to a wide variety of situations and would be crucial to our analyses.
Lemma 23. Let V be a universe with a total order � established on it and let v1, . . . ,vn be a population of n items
arranged in decreasing order. Let v̂1, . . . , v̂b be a sample chosen i.i.d. (or without replacement) from the population and
arranged in decreasing order as well. Then for any fixed h : V → [−1, 1] and κ ∈ (0, 1], we have, with probability at least
1− δ over the choice of the samples,∣∣∣∣∣∣ 1

dκne

dκne∑
i=1

h(vi)−
1

dκbe

dκbe∑
i=1

h(v̂i)

∣∣∣∣∣∣ ≤ 4

√
log 2

δ

κb

Theorem 12. The performance measure prec@κ(·), as well as the surrogates `ramp
prec@κ(·), `avg

prec@κ(·) and `max
prec@κ(·), all

exhibit uniform convergence at the rate α(b, δ) = O
(√

1
b log 1

δ

)
.

We will prove the four parts of the theorem in three separate subsections below. We shall consider a population z1, . . . , zn
and a sample of size b ẑ1, . . . , ẑb chosen uniformly at random with (i.e. i.i.d.) or without replacement. We shall let p
and p̂ denote the fraction of positives in the population and the sample respectively. In the following, we shall reserve the
notation ŷ for the label vector in the sample and shall use the notation ỹ to denote candidate labellings in the definition of
the surrogate.

F.1. A Uniform Convergence Bound for the prec@κ(·) Performance Measure

We note that a point-wise convergence result for prec@κ(·) follows simply from Lemma 23. To see this, given a population
z1, . . . , z)n and a fixed model w ∈ W , construct a parallel population using the transformation vi ← (w>xi,yi) ∈ R2.
We order these tuples according to their first component, i.e. along the scores and use h(vi) = 1− yi. Let the population
be arranged such that v1 � v2 � Then this gives us

k∑
i=1

h(vi) =

k∑
i=1

(1− yi) = prec@k(y,y(w,k)) = prec@k(w).

Thus, the application of Lemma 23 gives us the following result
Lemma 24. For any fixed model w ∈ W , with probability at least 1− δ over the choice of b samples, we have

|prec@κ(w; z1, . . . , zn)− prec@κ(w; ẑ1, . . . , ẑb)| ≤ O

(√
1

b
log

1

δ

)
.

To prove the uniform convergence result, we will, in some sense, require a uniform version of Lemma 23. To do so we fix
some notation. For any fixed κ > 0, and for any w ∈ W , we will define vw as the largest real number v such that

n∑
i=1

I
[
w>xi ≥ v

]
= κpn

Similarly, we will define v̂w as the largest real number v such that

b∑
i=1

I
[
w>x̂i ≥ v

]
= κp̂b

Surrogate Functions for Maximizing Precision at the Top

Using this notation we can redefine prec@κ(·) on the population, as well as the sample, as

prec@κ(w; z1, . . . , zn) :=
1

κpn

n∑
i=1

I
[
w>x ≥ vw

]
· I [yi = 0]

prec@κ(w; ẑ1, . . . , ẑb) :=
1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

We can now write

sup
w∈W

|prec@κ(w; z1, . . . , zn)− prec@κ(w; ẑ1, . . . , ẑb)|

= sup
w∈W

∣∣∣∣∣ 1

κpn

n∑
i=1

I
[
w>x ≥ vw

]
· I [yi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

∣∣∣∣∣
≤ sup

w∈W

∣∣∣∣∣ 1

κpn

n∑
i=1

I
[
w>x ≥ vw

]
· I [yi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
· I [ŷi = 0]

∣∣∣∣∣
+ sup

w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
· I [ŷi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

∣∣∣∣∣
≤ sup

w∈W,t∈R

∣∣∣∣∣ 1

κpn

n∑
i=1

I
[
w>x ≥ t

]
· I [yi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ t

]
· I [ŷi = 0]

∣∣∣∣∣︸ ︷︷ ︸
(A)

+ sup
w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
· I [ŷi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

∣∣∣∣∣︸ ︷︷ ︸
(B)

Now, using a standard VC-dimension based uniform convergence argument over the class of thresholded classifiers, we
get the following result: with probability at least 1− δ

(A) ≤ O

(√
1

b

(
log

1

δ
+ dVC(W) · log b

))
= Õ

(√
1

b
log

1

δ

)
,

where dVC(W) is the VC-dimension of the set of classifiers W . Moving on to bound the second term, we can use an
argument similar to the one used to prove Lemma 23 to show that

(B) ≤ sup
w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]∣∣∣∣∣
≤ sup

w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
− κ

∣∣∣∣∣
≤ sup

w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
− 1

κpn

n∑
i=1

I
[
w>x ≥ vw

]∣∣∣∣∣
≤ Õ

(√
1

b
log

1

δ

)
,

where the last step follows from a standard VC-dimension based uniform convergence argument as before. This establishes
the following uniform convergence result for the prec@k(·) performance measure

Surrogate Functions for Maximizing Precision at the Top

Theorem 25. We have, with probability at least 1− δ over the choice of b samples,

sup
w∈W

|prec@κ(w; z1, . . . , zn)− prec@κ(w; ẑ1, . . . , ẑb)| ≤ Õ

(√
1

b
log

1

δ

)
.

F.2. A Uniform Convergence Bound for the `ramp
prec@κ(·) Surrogate

We first recall the form of the (normalized) surrogate below - note that this is a non-convex surrogate. Also recall that
k = κ · n+(y).

`ramp
prec@κ(w; z1, . . . , zn) = max

‖ỹ‖1=k

{
∆(y, ỹ)

k
+

1

k

n∑
i=1

ỹiw
>xi

}
︸ ︷︷ ︸

Ψ1(w; z1,...,zn)

− max
‖ỹ‖1=k
K(y,ỹ)=k

1

k

n∑
i=1

ỹiw
>xi

︸ ︷︷ ︸
Ψ2(w; z1,...,zn)

We will now show that both the functions Ψ1(·), as well as Ψ2(·), exhibit uniform convergence. This shall suffice to prove
that `ramp

prec@κ(·) exhibits uniform convergence. To do so we shall show that the two functions exhibit pointwise convergence
and that they are Lipschitz. This will allow a standard L∞ covering number argument (Zhang, 2002) to give us the required
uniform convergence results.

F.2.1. A UNIFORM CONVERGENCE RESULT FOR Ψ1(·)

We have

Ψ1(w; z1, . . . , zn) = max
‖ỹ‖1=κpn

{
1

κpn

n∑
i=1

ỹi(w
>xi − yi)

}
+ 1

Ψ1(w; ẑ1, . . . , ẑb) = max
‖ỹ‖1=κp̂b

{
1

κp̂b

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
+ 1

An application of Corollary 21 indicates that Ψ1(·) is Lipschitz i.e.

|Ψ1(w; z1, . . . , zn)−Ψ1(w′; z1, . . . , zn)| ≤ O (‖w −w′‖2) .

Thus, all that remains is to prove pointwise convergence. We decompose the error as follows

|Ψ1(w; z1, . . . , zn)−Ψ1(w; ẑ1, . . . , ẑb)| ≤

∣∣∣∣∣Ψ1(w; z1, . . . , zn)− max
‖ỹ‖1=κpb

{
1

κpb

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
+ 1

∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣ max
‖ỹ‖1=κpb

{
1

κpb

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
+ 1−Ψ1(w; ẑ1, . . . , ẑb)

∣∣∣∣∣︸ ︷︷ ︸
(B)

An application of Lemma 23 using vi = w>x̂i − ŷi and h(·) as the identity function shows us that

(A) ≤ O

(
1

κp

√
1

b
log

1

δ

)
.

To bound the residual term (B), notice that an application of the Hoeffding’s inequality tells us that with probability at
least 1− δ

|p− p̂| ≤
√

1

2b
log

2

δ
,

Surrogate Functions for Maximizing Precision at the Top

which lets us bound the residual as follows. Assume, for sake of simplicity, that the sample data points have been ordered
in decreasing order of the quantity w>x̂i − yi as well as that

∣∣w>x∣∣ ≤ 1 for all x.

(B) =

∣∣∣∣∣ max
‖ỹ‖1=κpb

{
1

κpb

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
− max
‖ỹ‖1=κp̂b

{
1

κp̂b

b∑
i=1

ỹi(w
>x̂i − ŷi)

}∣∣∣∣∣
=

∣∣∣∣∣ 1

κpb

κpb∑
i=1

(w>x̂i − ŷi)−
1

κp̂b

κp̂b∑
i=1

(w>x̂i − ŷi)

∣∣∣∣∣
≤

∣∣∣∣∣∣
κmin{p,p̂}b∑

i=1

(
1

κpb
− 1

κp̂b

)
(w>x̂i − ŷi)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

κmax {p, p̂} b

κmax{p,p̂}b∑
i=κmin{p,p̂}b+1

(w>x̂i − ŷi)

∣∣∣∣∣∣
≤ 2

κb

∣∣∣∣p− p̂pp̂

∣∣∣∣ · κmin {p, p̂} b+
2

κmax {p, p̂} b
· κ |p− p̂| b

= 2 |p− p̂| ·
(

min {p, p̂}
pp̂

+
1

max {p, p̂}

)
≤
√

1

2b
log

2

δ
· 2

max {p, p̂}
≤ 2

p

√
1

2b
log

2

δ

This establishes that for any fixed w ∈ W , with probability at least 1− δ, we have

|Ψ1(w; z1, . . . , zn)−Ψ1(w; ẑ1, . . . , ẑb)| ≤ O

(√
1

b
log

1

δ

)

which concludes the uniform convergence proof.

F.2.2. A UNIFORM CONVERGENCE RESULT FOR Ψ2(·)

The proof follows similarly here with a direct application of Corollary 21 showing us that Ψ2(·) is Lipschitz and an appli-

cation of Lemma 23 along with the observation that |p− p̂| ≤
√

1
2b log 2

δ similar to the discussion used above concluding
the point-wise convergence proof.

The above two part argument establishes the following uniform convergence result for the `ramp
prec@κ(·) performance measure

Theorem 26. We have, with probability at least 1− δ over the choice of b samples,

sup
w∈W

∣∣∣`ramp
prec@κ(w; z1, . . . , zn)− `ramp

prec@κ(w; ẑ1, . . . , ẑb)
∣∣∣ ≤ O(√1

b
log

1

δ

)
.

F.3. A Uniform Convergence Bound for the `avg
prec@κ(·) Surrogate

This will be the most involved of the four bounds, given the intricate nature of the surrogate. We will prove this result
using a series of partial results which we state below. As before, for any w ∈ W and any ỹ, we define

∆(w, ỹ) :=
1

κpn

(
∆(y, ỹ) +

n∑
i=1

(ỹi − yi)w
>xi +

1

C(ỹ)

n∑
i=1

(1− ỹi)yiw
>xi

)

∆̂(w, ỹ) :=
1

κp̂b

(
∆(ŷ, ỹ) +

n∑
i=1

(ỹi − ŷi)w
>x̂i +

1

C(ỹ)

n∑
i=1

(1− ỹi)ŷiw
>x̂i

)

Recall that we are using ŷ to denote the true labels of the sample points and ỹ to denote the candidate labellings while
defining the surrogates. We also define, for any β ∈ [0, 1], the following quantities

∆(w, β) := max
‖ỹ‖1=κpn
K(y,ỹ)=βpn

{∆(w, ỹ)}

Surrogate Functions for Maximizing Precision at the Top

∆̂(w, β) := max
‖ỹ‖1=κp̂b
K(ŷ,ỹ)=βp̂b

{
∆̂(w, ỹ)

}

Note that β denotes a target true positive rate and consequently, can only take values between 0 and κ. Given the above,
we claim the following lemmata

Lemma 27. For every w and any β, β′ ∈ [0, κ], we have

|∆(w, β)−∆(w, β′)| ≤ O (|β − β′|) .

Lemma 28. For any fixed β, we have, with probability at least 1− δ over the choice of the sample

sup
w∈W

∣∣∣∆(w, β)− ∆̂(w, β)
∣∣∣ ≤ O(√1

b
log

1

δ

)
.

Using the above two lemmata as given, we can now prove the desired uniform convergence result for the `avg
prec@κ(·) surro-

gate:

Theorem 29. With probability at least 1− δ over the choice of the samples, we have

sup
w∈W

∣∣∣`avg
prec@κ(w; z1, . . . , zn)− `avg

prec@κ(w; ẑ1, . . . , ẑb)
∣∣∣ ≤ Õ(√1

b
log

1

δ

)
.

Proof. We note that given the definitions of ∆(w, β) and ∆̂(w, β), we can redefine the performance measure as follows

`avg
prec@κ(w; z1, . . . , zn) = max

β∈[0,κ]
∆(w, β)

We now note that for the population, the set of achievable values of true positive rates i.e. β is

B =

{
0,

1

κpn
,

2

κpn
, . . . ,

κpn− 1

κpn
, 1

}
,

which correspond, respectively, to classifiers for which the number of true positives equals {0, 1, 2 . . . κpn− 1, κpn}.
Similarly, the set of achievable values of true positive rates i.e. β for the sample is

B̂ =

{
0,

1

κp̂b
,

2

κp̂b
, . . . ,

κp̂b− 1

κp̂b
, 1

}
.

Clearly, for any β ∈ B, there exists a πB̂(β) ∈ B̂ such that

∣∣πB̂(β)− β
∣∣ ≤ 1

κp̂b
.

Given this, let us define

β∗(w) = arg max
β∈[0,κ]

∆(w, β)

β̂∗(w) = arg max
β̂∈[0,κ]

∆̂(w, β̂)

We shall assume, for the sake of simplicity, that s|n so that B̂ ⊂ B. This gives us the following set of inequalities for any
w ∈ W:

∆(w, β∗(w)) ≤ ∆(w, πB̂(β∗(w))) +
∣∣β∗(w)− πB̂(β∗(w))

∣∣
≤ ∆̂(w, πB̂(β∗(w))) + sup

w∈W

∣∣∣∆(w, πB̂(β∗(w)))− ∆̂(w, πB̂(β∗(w)))
∣∣∣+

1

κp̂b

Surrogate Functions for Maximizing Precision at the Top

≤ ∆̂(w, πB̂(β∗(w))) + sup
w∈W,β̂∈B̂

∣∣∣∆(w, β̂)− ∆̂(w, β̂)
∣∣∣+

1

κp̂b

≤ ∆̂(w, πB̂(β∗(w))) +O

(√
1

b
log

b

δ

)
+

1

κp̂b

≤ ∆̂(w, β̂∗(w)) +O

(√
1

b
log

b

δ

)
+

1

κp̂b
,

where the first step follows from Lemma 27, the third step follows since πB̂(β∗(w)) ∈ B̂, the fourth step follows from

an application of the union bound with Lemma 28 over the set of elements in B̂ and noting
∣∣∣B̂∣∣∣ ≤ O (b), and the last step

follows from the optimality of β̂∗(w). Similarly we can write, for any w ∈ W ,

∆̂(w, β̂∗(w)) ≤ ∆(w, β̂∗(w)) +O

(√
1

b
log

b

δ

)

≤ ∆(w, β∗(w)) +O

(√
1

b
log

b

δ

)
,

where the first step uses Lemma 28 with a union bound over elements in B̂ and the fact that β̂∗(w) ∈ B̂ ⊂ B (note that
this assumption is not crucial to the argument – indeed, even if β̂∗(w) /∈ B, we would only incur an extra O

(
1
n

)
error by

an application of Lemma 27 since given the granularity of B, we would always be able to find a value in B that is no more
than O

(
1
n

)
far from β̂∗(w)), and the last step uses the optimality of β∗(w). Thus, we can write

sup
w∈W

∣∣∣`avg
prec@κ(w; z1, . . . , zn)− `avg

prec@κ(w; ẑ1, . . . , ẑb)
∣∣∣ = sup

w∈W

∣∣∣∆(w, β∗(w))− ∆̂(w, β̂∗(w))
∣∣∣

≤ O

(√
1

b
log

b

δ

)
+

1

κp̂b

≤ Õ

(√
1

b
log

1

δ

)
,

since p̂ ≥ Ω (1) with probability at least 1 − δ. Thus, all we are left is to prove Lemmata 27 and 28 which we do below.
To proceed with the proofs, we first write the form of ∆(w, β) for a fixed w and β and simplify the expression for ease of
further analysis. We shall assume, for sake of simplicity, that βpn, κpn, βp̂b, and κp̂b are all integers.

∆(w, β) = max
‖ỹ‖1=κpn
K(y,ỹ)=βpn

{
1

κpn

(
∆(y, ỹ) +

n∑
i=1

(ỹi − yi)w
>xi +

1

C(ỹ)

n∑
i=1

(1− ỹi)yiw
>xi

)}

= 1− β

κ
− 1

κpn

(
κ− β
1− β

) n∑
i=1

yiw
>xi︸ ︷︷ ︸

A(w,β)

+ max
‖ỹ‖1=κpn
K(y,ỹ)=βpn

{
1

κpn

n∑
i=1

ỹi

(
1− 1− κ

1− β
· yi
)
w>xi

}
︸ ︷︷ ︸

B(w,β)

We can similarly define Â(w, β) and B̂(w, β) for the samples.

Proof of Lemma 27. We have, by the above simplification,

|∆(w, β)−∆(w, β′)| = 1

κ
|β − β′|+ |A(w, β)−A(w, β′)|+ |B(w, β)−B(w, β′)| ,

as well as, assuming without loss of generality, that
∣∣w>x∣∣ ≤ 1 for all w and x,

|A(w, β)−A(w, β′)| ≤
∣∣∣∣κ− β1− β

− κ− β′

1− β′

∣∣∣∣ ·
∣∣∣∣∣ 1

κpn

n∑
i=1

yiw
>xi

∣∣∣∣∣

Surrogate Functions for Maximizing Precision at the Top

≤ (1− κ) |β − β′|
κ(1− β)(1− β′)

≤ 1

κ(1− κ)
|β − β′| ,

where the last step follows since β, β′ ≤ κ. To analyze the third term i.e. |B(w, β)−B(w, β′)|, we analyze the nature of
the assignment ỹ which defines B(w, β). Clearly ỹ must assign βpn positives and (κ − β)pn negatives a label of 1 and
the rest, a label of 0. Since it is supposed to maximize the scores thus obtained, it clearly assigns the top ranked (κ− β)pn

negatives a label of 1. As far as positives are concerned, β < κ, we have
(

1− 1−κ
1−β

)
≥ 0 which means that the βpn top

ranked positives will get assigned a label of 1.

To formalize this, let us set some notation. Let s+
1 ≥ s+

2 ≥ . . . ≥ s+
pn denote the scores of the positive points arranged in

descending order. Similarly, let s−1 ≥ s
−
2 ≥ . . . ≥ s

−
(1−p)n denote the scores of the negative points arranged in descending

order. Given this notation, we can rewrite B(w, β) as follows:

B(w, β) =
1

κpn

(κ− β
1− β

) βpn∑
i=1

s+
i +

(κ−β)pn∑
i=1

s−i

 .

Thus, assuming without loss of generality that
∣∣s+
i

∣∣ , ∣∣s−i ∣∣ ≤ 1, we have,

|B(w, β)−B(w, β′)| = 1

κpn

∣∣∣∣∣∣
(
κ− β
1− β

) βpn∑
i=1

s+
i +

(κ−β)pn∑
i=1

s−i −
(
κ− β′

1− β′

) β′pn∑
i=1

s+
i −

(κ−β′)pn∑
i=1

s−i

∣∣∣∣∣∣
≤ 1

κpn

∣∣∣∣∣∣
(
κ− β
1− β

) βpn∑
i=1

s+
i −

(
κ− β′

1− β′

) β′pn∑
i=1

s+
i

∣∣∣∣∣∣+
1

κpn

∣∣∣∣∣∣
(κ−β)pn∑
i=1

s−i −
(κ−β′)pn∑
i=1

s−i

∣∣∣∣∣∣
≤
∣∣∣∣κ− β1− β

− κ− β′

1− β′

∣∣∣∣ ·
∣∣∣∣∣∣∣

1

κpn

min{β,β′}pn∑
i=1

s+
i

∣∣∣∣∣∣∣+
1

κpn

κ−max {β, β′}
1−max {β, β′}

|β − β′| pn+
|β − β′| pn

κpn

≤ 1

κ(1− κ)
|β − β′| min {β, β′} pn

κpn
+

1

κ

κ−max {β, β′}
1−max {β, β′}

|β − β′|+ |β − β
′|

κ

≤ 2

κ(1− κ)
|β − β′| ,

where the last step uses the fact that 0 ≤ β, β′ ≤ κ. This tells us that

|∆(w, β)−∆(w, β′)| ≤ 4− κ
κ(1− κ)

|β − β′| ,

which finishes the proof.

Proof of Lemma 28. We will prove the theorem by showing that the terms A(w, β) and B(w, β) exhibit uniform conver-
gence.

It is easy to see that A(w, β) exhibits uniform convergence since it is a simple average of population scores. The only
thing to be taken care of is that A(w, β) contains p in the normalization whereas Â(w, β) contains p̂. However, since p
and p̂ are very close with high probability, an argument similar to the one used in the proof of Theorem 26 can be used to
conclude that with probability at least 1− δ, we have

sup
w∈W

∣∣∣A(w, β)− Â(w, β)
∣∣∣ ≤ O(√1

b
log

1

δ

)
.

To prove uniform convergence for B(w, β) we will use our earlier method of showing that this function exhibits pointwise
convergence and that this function is Lipschitz with respect to w. The Lipschitz property of B(w, β) is evident from an
application of Corollary 21. To analyze its pointwise convergence property

Surrogate Functions for Maximizing Precision at the Top

Thus the function B(w, β), as analyzed in the proof of Lemma 27, is composed by sorting the positives and negatives
separately and taking the top few positions in each list and adding the scores present therein. This allows an application
of Lemma 23, as used in the proof of Theorem 26, separately to the positive and negative lists, to conclude the pointwise
convergence bound for B(w, β).

This concludes the proof of the uniform convergence bound for `avg
prec@κ(·).

F.4. A Uniform Convergence Bound for the `max
prec@κ(·) Surrogate

Having proved a generalization bound for the `avg
prec@κ(·) surrogate, we note that similar techniques, that involve partitioning

the candidate label space into labels that have a fixed true positive rate β, and arguing uniform convergence for each
partition, can be used to prove a generalization bound for the `max

prec@κ(·) surrogate as well. We postpone the details of the
argument to a later version of the paper.

G. Proof of Theorem 15
Theorem 15. Suppose we execute Algorithm 3 with batch length b, then with probability at least 1 − δ over the random
ordering of the points, for any w∗ ∈ W , the predictor w̄ returned by the algorithm satisfies

`avg
prec@κ(w̄;Z) ≤ `avg

prec@κ(w∗;Z) +O

(√
1

b
log

n

bδ

)
+O

(√
b

n

)

Proof. The proof of this theorem closely follows that of Theorems 7 and 8 in (Kar et al., 2014). More specifically, Theorem
6 from (Kar et al., 2014) ensures that any convex loss function demonstrating uniform convergence would ensure a result
of the kind we are trying to prove. Since Theorem 12 confirms that `avg

prec@κ(·) exhibits uniform convergence, the proof
follows.

H. Additional Empirical Results

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

Training time (secs)

A
ve

ra
ge

 P
re

c@
0.

25

(a) KDD08

10
−2

10
0

10
2

0.1

0.2

0.3

0.4

0.5

0.6

Training time (secs)

A
ve

ra
ge

 P
re

c@
0.

25

(b) Covtype

10
−2

10
0

10
2

0.2

0.4

0.6

0.8

1

Training time (secs)

A
ve

ra
ge

 P
re

c@
0.

25

(c) Cod-RNA

Figure 4. Comparison of proposed methods with baselines on Prec@0.25 maximization tasks.

	Introduction
	Related Work

	Problem Formulation and Notations
	A Family of Novel Surrogates for prec@k
	The Curious Case of structprec@k ()
	The Ramp Surrogate rampprec@k ()
	The Max Surrogate maxprec@k ()
	The Avg Surrogate avgprec@k ()

	Perceptron Algorithms for prec@k
	Stochastic Gradient Descent for avgprec@k

	Generalization Bounds
	Experiments
	Structural SVM Surrogate for prec@k
	Proofs of Claims from Section 3
	Proof of Claim 1
	Proof of Claim 3
	Proof of Lemma 16
	Proof of Claim 17
	Proof of Claim 6

	Proofs from Section 4
	Proof of Theorem 7
	Proof of Theorem 9

	Proof of Lemma 22
	Proof of Lemma 23
	Proof of Theorem 12
	A Uniform Convergence Bound for the prec@ () Performance Measure
	A Uniform Convergence Bound for the rampprec@ () Surrogate
	A Uniform Convergence Result for 1()
	A Uniform Convergence Result for 2()

	A Uniform Convergence Bound for the avgprec@ () Surrogate
	A Uniform Convergence Bound for the maxprec@ () Surrogate

	Proof of Theorem 15
	Additional Empirical Results

