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Abstract

We provide the first global model recovery results for the IRLS (iteratively reweighted least squares)
heuristic for robust regression problems. IRLS is known to offer excellent performance, despite bad
initializations and data corruption, for several parameter estimation problems. Existing analyses of IRLS
frequently require careful initialization, thus offering only local convergence guarantees. We remedy this
by proposing augmentations to the basic IRLS routine that not only offer guaranteed global recovery,
but in practice also outperform state-of-the-art algorithms for robust regression. Our routines are more
immune to hyperparameter misspecification in basic regression tasks, as well as applied tasks such as
linear-armed bandit problems. Our theoretical analyses rely on a novel extension of the notions of
strong convexity and smoothness to weighted strong convexity and smoothness, and establishing that sub-
Gaussian designs offer bounded weighted condition numbers. These notions may be useful in analyzing
other algorithms as well.

1 Introduction

Suppose there exists an unknown gold model w∗ and we are given n data points (xi, yi)
n
i=1 with d-dimensional

covariates xi ∈ Rd and the real-valued responses yi generated as yi = x>i w∗. However, for an unknown set
of k < n data points i1, . . . ik, the responses get corrupted i.e. we instead receive yij = x>ijw

∗ + bij where

bij ∈ R is the corruption. Given the complete set of clean and corrupted data points (xi, yi)
n
i=1, can we

recover the gold model w∗?
This is the classical robust regression problem that has become increasingly relevant to machine learning

and statistical estimation techniques which frequently encounter situations where data is not trustworthy.
Works exist in settings where test data is corrupted in order to fool a model that was learnt on clean data
[17], as well as the more challenging setting, on which we focus, where the training data presented to the
algorithm is itself corrupted [9, 11, 16].

We will seek to offer reliable model recovery despite the presence of (possibly maliciously) corrupted data
in the training set. Settings which present corrupted data to learning algorithms include relatively innocuous
instances of erasures and missing data, improperly or mistakenly attributed data, transient or temporary
changes in user-behavior patterns, as well as deliberate and malicious attempts to derail recommendation
systems and other decision-making systems using malware, click-bots and other fraudulent techniques.

Despite being a well established field, given the early seminal contributions of Huber [18] and Tukey [27],
robust statistics and algorithms have received renewed interest given the threat to modern machine learning

∗Work done as a master’s student at IIT Kanpur
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Table 1: Algorithms for the Robust Regression problem (corrupted responses). †Please see §4 for details. Algorithms
able to tolerate adaptive (as opposed to oblivious) adversaries are more resilient. A more robust algorithm can handle
larger α. Sub-Gaussian covariates offer a much more flexible model than (isotropic) Gaussian covariates.

Paper Adversary Model† Breakdown point† Covariate Model Technique
Bhatia et. al. 2015 [6] Adaptive α ≥ Ω (1) sub-Gaussian Hard Thresholding (fast)

Chen & Dalalyan 2010 [10] Adaptive α ≥ Ω (1) sub-Gaussian SOCP (slow)
Wright & Ma 2010 [29] Oblivious α→ 1 Isotropic Gaussian L1 regularization (slow)

This Paper Adaptive α ≥ Ω (1) sub-Gaussian Reweighting (fast)

techniques. Of the several techniques that have been proposed for robust learning problems, one heuristic,
namely the iteratively reweighted least squares (IRLS), remains a practitioner’s favorite owing to its ease
of use and excellent performance. The IRLS technique has been effectively adapted to several problems,
including sparse recovery, and robust regression. The work of [26] shows that certain biological dynamical
systems can be modeled upon the IRLS principle as well.

1.1 Our Contributions

We offer several advances in the understanding and application of the IRLS method. In particular, we provide
the first global model recovery guarantee for IRLS for robust regression - our contributions are distinguished
in the context of existing analyses for IRLS in §2. We also propose algorithmic augmentations, in particular a
fast gradient-based variant, to the basic IRLS heuristic which offer superior performance compared to existing
state-of-the-art robust algorithms in terms of speed, as well as resilience to misspecified hyperparameters. We
demonstrate this in the standard linear regression setting, as well as an applied setting, namely linear-armed
bandits.

2 Related Work

Two lines of work directly relate to our contributions: 1) robust algorithms for regression and other learning
problems, and 2) works that analyze (variants of) the IRLS heuristic in various settings. We review both, as
well as distinguish our contributions, below.

Robust Learning Algorithms: Work on robust statistics dates back several decades [18, 27] and is too vast
to be reviewed in detail. Recent years have seen interest in scalable algorithms for classification [16], principal
component analysis [9], and moment estimation [14]. Within the specific problem of robust regression, two
broad lines of work exist:

Covariate (feature) corruption: Results in this setting usually either give only weak guarantees, or else

severely constrain data. e.g., [11, 24] allow only a O
(

1/
√
d
)

fraction of data to be corrupted, d being the

ambient dimensionality, whereas [15, 21] only admit covariates drawn from a Gaussian distribution.

Response (label) corruption: Variants within this setting arise based on the power of the adversary introduc-
ing the corruptions, the fraction of data points that can be corrupted, restrictions on the choice of covariates,
and scalability of the algorithms. Table 1 summarizes these traits for a selection of algorithms. We refer the
reader to [6, 15] for other references.

IRLS Variants and Analyses: The IRLS heuristic has been successfully applied to several problems in-
cluding sparse recovery [4, 13], facility location problems [8] (via the Weiszfeld procedure), and optimizing
various robust cost functions, such as the Lq and Huber loss functions [2, 7, 12, 25].

Some of these works are not directly relevant to robust regression as they either operate with uncor-
rupted data [8], or else assume that the noise is Gaussian [4, 13]. Convergence guarantees for IRLS are
common in these benign settings. To handle adversarial corruptions, it is common to use IRLS to optimize
a robust cost function F such as Lq or Huber loss, in the anticipation that the model so obtained, say
ŵ = arg minF (w; {(xi, yi)}), will ensure ŵ ≈ w∗.
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However, none of these works actually ensure such a result i.e. ŵ ≈ w∗. Some works [7, 12, 25] operate
with cost functions that are convex (e.g. Lq for q ∈ [1, 2]) and simply show that IRLS approaches small
cost function values. Other approaches [2] do work with non-convex cost functions, but then offer only
monotonicity guarantees and no global convergence guarantees.

We bridge this gap by presenting a much stronger analysis of IRLS that guarantees global recovery of the
gold model w∗ under mild conditions. Key to our proof technique is a novel concept that extends the basic
notions of strong convexity and strong smoothness to weighted versions of the same, as well as a guarantee
that Gaussian and sub-Gaussian designs have bounded weighted condition numbers. These results may be
of independent interest in analyzing other algorithms.

3 Notation

Bold lower-case Latin letters x,y denote vectors. xi denotes the ith coordinate of the vector x. Upper
case Latin letters A,X denote matrices. For a vector v ∈ Rn and set S ⊂ [n], vS denotes the vector with
(vS)i = vi for i ∈ S and (vS)j = 0 for j /∈ S. Similarly, for any matrix A ∈ Rd×n and any set S ⊂ [n], AS
denotes the matrix in which columns i ∈ S in AS are identical to those in A and columns j /∈ S are filled
with zeros.

λmin(X) and λmax(X) denote, respectively, the smallest and largest eigenvalues of a square symmetric
matrix X. B2(v, r) :=

{
x ∈ Rd : ‖x− v‖2 ≤ r

}
denotes the ball of radius r centered at v. Sd−1 denotes the

surface of the unit sphere in d dimensions. We use the shorthand B2(r) := B2(0, r).

4 Problem Formulation

Given n data points (xi, yi) ∈ Rd × R, let RX := maxi∈[n] ‖xi‖2 be the maximum Euclidean length of any

covariate, X = [x1, . . . ,xn] ∈ Rd×n be the covariate matrix, and y = [y1, . . . , yn]> ∈ Rn the response vector.
Assume that the covariates are generated as x1, . . . ,xn ∼ D from an unknown distribution D with mean
µ ∈ Rd and sub-Gaussian norm [28] ‖D‖Ψ2

≤ R. w∗ ∈ Rd will be the gold model with RW := ‖w∗‖2.

Noise Model: Given the data covariates and the gold model, the responses are generated as y = X>w∗+b
where b = [b1, . . . , bn] is the vector of corruptions. We make the standard assumption that ‖b‖0 ≤ α ·n. Let
B := supp(b) denote the “bad” points which suffer corruption i.e. bj 6= 0 for j ∈ B (note that |B| ≤ α · n)
and G = [n] \ B denote the “good” points where bi = 0 and thus yi = x>i w∗ for i ∈ G. To avoid clutter,
we abuse notation to denote G := |G| and B := |B|. The largest value of the corruption fraction α that an
algorithm can tolerate is known as its breakdown point.
Adversary Model: We will work with a partially adaptive adversary which is compelled to choose locations
of the corruptions supp(b) = B before any data covariates have been generated or w∗ is revealed. However,
the adversary may fill in the corruption values at those locations with knowledge of w∗ and X. Our results
can be extended to a fully adaptive adversary that choose supp(b) after looking at w∗ and X as well, but
at a cost of a smaller breakdown point α.

Key to our analyses are the notions of weighted strong convexity and smoothness which we define below.
These definitions reflect the fact that IRLS solves weighted regression problems iteratively.

Definition 1 (WSC/WSS). We say that a covariate matrix X ∈ Rd×n offers weighted strong convexity
(WSC) at level λS (resp. weighted strong smoothness (WSS) at level ΛS), with respect to a diagonal weight
matrix S = diag(s) ∈ Rn×n where si ≥ 0, i ∈ [n], if

λS ≤ λmin(XSX>) ≤ λmax(XSX>) ≤ ΛS

5 Proposed Methods

IRLS solves the robust regression problem by repeatedly alternating between the following two steps

3



1. Reweighing: Given a model ŵ, assign every data point a weight si inversely proportional to its
residual w.r.t. ŵ i.e. set si = 1

|x>i ŵ−yi| .

2. Weighted Least Squares: Solve a weighted least squares problem minw

∑n
i=1 si(yi − x>i w)2 with

above weights to obtain a new model w+ = (XSX>)−1XSy where S = diag(s).

The intuition behind this procedure is that corrupted points are likely to suffer large residuals and hence
get downweighted. Given that this procedure runs the risk of divide-by-zero errors and numerical precision
issues, it is common to truncate weights by employing a truncation parameter M while assigning weights1

to the points i.e. si = min

{
1

|x>i ŵ−yi| ,M
}

. However, it is suboptimal to rely on any single truncation value

M . To see why, take a hypothetical example where the adversary introduces corruptions using a fake model
w̃ as bi = x>i (w̃ −w∗) (i.e. yi = x>i w̃) for all i ∈ B.

Situation 1 : If we set M to a small value (aggressive truncation), then no data point can ever hope
to get a large weight. However, convergence to w∗ is assured only when points in G receive really large
weights in comparison to points in B. Setting a small value of M thus prevents IRLS from recovering w∗

accurately.
Situation 2 : If we always use a large value of M (lax truncation) and are unlucky enough to

initialize IRLS close to w̃, then points in the set B will initially have very small residuals, hence receive
large weights (which the large value of M will allow) whereas points in the set G will receive comparatively
smaller weights. This will cause IRLS to gravitate towards w̃. This example precludes any hope of a global
convergence guarantee and forces us to do careful initialization.

The above limitations of IRLS are well corroborated by experiments (see §8). To remedy this, we propose
the STIR algorithm in Algorithm 1. STIR executes IRLS, but in stages, with initial stages employing aggressive
truncation with a small value of M and later stages successively relaxing the truncation.

The advantage of the above augmentation is that even if we have an unfortunate initialization, e.g. we
start at w̃ itself, the (initially) aggressive truncation will prevent bad points from getting large weights
whereas good points, being in majority, even though receiving relatively smaller weights, will still prevent
STIR from latching onto w̃ and hopefully attract the procedure towards the gold model w∗. Subsequent
stages, where truncation is relaxed, will allow good points to be given large weights, thus differentiating
them from bad points. This would force STIR towards w∗.

Algorithm 2 presents STIR-GD, a gradient version of STIR, that replaces weighted least squares by a
much cheaper gradient step. This benefits large datasets, where solving weighted least squares repeatedly
may be prohibitive. We note that although stagewise IRLS procedures have been proposed in literature [7],
previous works neither give model recovery guarantees, nor offer scalable gradient versions of IRLS.

6 IRLS is Majorization-minimization on a Scaled Huber Loss

Before presenting a convergence analysis for STIR, we point out a curious link between IRLS, STIR and the
Huber loss function. We note that our observation may be folklore. The Huber loss is widely used in robust
regression applications [2, 7, 12, 25], particularly those used in situations with heavy tailed noise.

hε(x) =

{
1
2x

2 |x| ≤ ε
ε |x| − 1

2ε
2 |x| > ε

The function smoothly transitions from quadratic behavior close to the origin, to linear far from the origin.
Now consider the following loss function

fε(x) =

{
1
2

(
x2

ε + ε
)
|x| ≤ ε

|x| |x| > ε

1Literature often cites a regularization procedure that sets si = 1
max{|x>i ŵ−yi|,δ} given a parameter δ. Setting δ = 1

M
shows

truncation to be equivalent to regularization.
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Algorithm 1 STIR- Stagewise-Truncated IRLS

Input: Data X,y, initial truncation M1, increment η > 1
Output: A model w

1: w1 ← 0
2: for T = 1, 2, . . . ,K − 1 do
3: wT,1 ← wT

4: t← 1
5: while

∥∥wT,t+1 −wT,t
∥∥
2
> 2

ηMT
do

6: rt ← X>wt,1 − y

7: St ← diag(st), sti ← min

{
1

|rti|
,MT

}
8: wT,t+1 ← (XStX>)−1XSty
9: t← t+ 1

10: end while
11: wT+1 ← wT,t+1

12: MT+1 ← η ·MT

13: end for

14: return wK

Algorithm 2 STIR-GD: STIR-Gradient Descent

Input: Data X,y, initial truncation M1, increment η > 1, step length C
Output: A model w

8: wT,t+1 ← wT,t − 2C
MTn

·XStrt

//Rest of steps 1-14 remain same as in STIR

It is easily seen that fε(x) = hε(x)
ε + ε

2 and thus, fε() is simply a scaled (and translated) version of the Huber
loss function, as well as that |x| ≤ fε(x) ≤ |x|+ ε

2 . Now, for any a ∈ R, ε > 0, consider the function

gε(x; a) :=
1

2

(
x2

max {|a| , ε}
+ max {|a| , ε}

)
Given a model w0 and data (xi, yi)

n
i=1, denote

`ε(w) :=
1

n

n∑
i=1

fε (〈w,xi〉 − yi)

℘ε(w; w0) :=

n∑
i=1

gε
(
〈w,xi〉 − yi;

〈
w0,xi

〉
− yi

)
The following observations are key (see Appendix A).

1. ℘ε(·; w0) is a majorizer for `ε(·) at w0,∀ε > 0 i.e. ℘ε(w; w0) ≥ `ε(w),∀w but ℘ε(w
0; w0) = `ε(w

0)

2. If the current model is w0 then M -truncated IRLS minimizes ℘ 1
M

(w; w0) to obtain the next model.

3. ∇℘ε(w0; w0) = ∇`ε(w0).

Thus, IRLS can be seen as performing majorization-minimization [23] on the scaled Huber loss `ε(·). The
reweighing step effectively constructs the majorizer function ℘ε(·,w0) over which the least squares step then
performs minimization. Point 3 above shows that STIR-GD can be effectively seen as performing gradient
descent with respect to `ε(w

0).
This also allows us to interpret the stages of STIR as using scaled Huber losses with successively smaller

values of ε (point 2 above shows that STIR sets ε = 1
M ). Note that in the limit ε → 0, `ε(·) approaches the

absolute error function, and thus, in the limit M →∞, STIR ends up optimizing the absolute error function.
STIR-GD can be seen as simply replacing the minimization steps with a gradient descent step.
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Figure 1: A depiction of Huber hε(), scaled Huber fε() loss functions, and its majorizer gε() for various ε.

7 Convergence Analysis

In this section, we establish that both STIR and STIR-GD enjoy a linear rate of convergence, as well as a
breakdown point α ≥ Ω (1). Theorem 1 summarizes the results. It is notable that STIR and STIR-GD offer a
breakdown point of greater than 1

5.25 (for Gaussian covariates – see below for details), which is far superior
to those offered by recent works such as [6, 5] which offer breakdown points of ≈ 1

60 and 1
10000 respectively

(again for Gaussian covariates).

Theorem 1. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. If STIR (or STIR-GD) is initialized at an (arbitrary)
point w0, with an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1

such that we have α ≤ c
2.88η+c , where c > 0 is a constant that depends only on D, then for any ε > 0,

with probability at least 1 − exp(−Ω̃ (n)), after K = O
(

log 1
M1ε

)
stages, we must have

∥∥wK −w∗
∥∥

2
≤ ε.

Moreover, each stage consists of only O (1) iterations.

Global Convergence Note that the above result allows initialization at any location w0, so long as the
accompanying value M1 is small enough i.e. M1 ≤ 1

‖w0−w∗‖2
which can be ensured using a simple binary

search (see §8 for details on parameter setting). In particular, if an estimated upper-bound ‖w∗‖2 ≤ W is
available, then we can set w0 = 0 and set M1 = 1

W .
Given this parameter convergence result, we can also establish that STIR and STIR-GD offer linear

convergence guarantees with respect to the Huber and absolute loss functions as well. We refer the reader
to Appendix C.2 for details.
Breakdown Point Both STIR and STIR-GD enjoy a breakdown point of α ≤ c

2.88η+c where η is chosen by
us and c is a distribution dependent constant. Bounds on this constant are established for several interesting
distributions in Appendix D.1. In particular, for the Gaussian distribution N (0, Id), we have c ≥ 0.68 which,
for values of η → 1, endow STIR and STIR-GD with a breakdown point of greater than 1

5.25 .

7.1 Proof Outline - the Peeling Strategy

Given the stage-wise nature of our algorithms STIR and STIR-GD, we employ a peeling-based proof strategy
that is a departure from the techniques used by previous results such as [6, 10, 29].

Our proof partitions the model space into annular peels centered at the gold model w∗ (see Figure 2).
The outermost peel has a radius of 1

M1
, and successive inner peels have radii that are an η factor smaller

i.e. the subsequent peels have radii 1
ηM1

, 1
η2M1

, 1
η3M1

, . . .. Note that by setting M1 ≤ 1
‖w0−w∗‖2

, STIR is

guaranteed to reside inside the outermost peel in the beginning.
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w*
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100

101

102

103

Figure 2: A depiction of the peeling process. The STIR procedure starts off far away from w∗ and using a
small value of M . In successive stages, it enters closer peels around w∗ and also begins using larger values
of M .

We then inductively show (see Lemmata 8 and 9) that once we are inside a certain peel, say ‖w −w∗‖2 ≤
1

ηKM
, and if the WSC/WSS properties hold with appropriate constants (see Appendix D), then if we execute

(ηKM)-truncated IRLS for a constant number of iterations, we are guaranteed to obtain a model, say w+,
that ensures ‖w+ −w∗‖2 ≤

1
ηK+1M

.

This implies that we have entered the next inner peel. We can now set the truncation level to ηK+1M
and continue the process. Note that this is exactly the algorithmic step performed by STIR/STIR-GD (see
Algorithm 1, line 12) to start a new stage. Due to lack of space, all complete proofs are given in the
appendices.

7.2 Establishing WSC/WSS

A central result required for the peeling strategy to work, is ensuring that our covariates satisfy the
WSC/WSS properties (that we introduced in §4) with respect to the weights assigned to data points by
the STIR and STIR-GD algorithms. We show that for covariates drawn from sub-Gaussian distributions, this
is indeed true (see Appendix D).

The use of such design properties is quite common in literature e.g., restricted strong convexity/smoothness
(RSC/RSS) [13] in sparse recovery, and subset strong convexity/smoothness (SSC/SSS) [6] in robust regres-
sion. It is also common to use results on extremal singular values of random matrices [28], to show that
sub-Gaussian covariates satisfy RSC/RSS [3] and SSC/SSS [6], with high probability.

However, doing so in our case is not as straightforward. The reason for this is that whereas the RSC/RSS
and SSC/SSS properties are defined purely in terms of the data covariates, the WSC/WSS properties also
incorporate data weights. Moreover, these weights are neither constant, nor independent of the data, but
rather are assigned and repeatedly updated in a stage-wise manner by an algorithm such as IRLS or STIR.

Since our proofs will require the WSC/WSS properties to hold with respect to all weight assignments
made during the entire execution of the algorithms, a direct application of classical techniques [28] fails.
Such techniques could have succeeded only if the data weights were to be constant or else independent of
the data.

To overcome this challenge, we establish WSC/WSS properties for sub-Gaussian covariates in a peel-wise
manner using a careful uniform convergence bound. The number of peels is no more than O

(
log 1

ε

)
since

each peel corresponds to a stage of the algorithm and O
(
log 1

ε

)
is the number of stages required to achieve

7



an ε-accurate solution (see Theorem 1), which then allows us to take a union bound over all peels.
Within each peel, a careful uniform convergence bound is employed over all models within that peel

in order to establish WSC/WSS. Note that our results present a novel extension of the existing notions of
SSC/SSS since we can recover SSC/SSS as a special case of WSC/WSS where the weights are simply zero
or unity.

7.3 Corruptions and Dense Noise

So far we have looked at an idealized setting where the responses are either completely clean yi = x>i w∗

for i ∈ G or else corrupted yj = x>j w∗ + bj for j ∈ B. We now look at a more realistic setting where
even the “good” points experience sub-Gaussian noise. We will now assume that our data is generated
as y = X>w∗ + b + ε where, as before ‖b‖0 ≤ α · n, but we additionally have ε ∼ Dε where Dε is a
σ-sub-Gaussian distribution with zero mean and real support 2.

We will denote B := supp(b) and G := [n] \ B, as before. Our covariates will continue to be sampled
from an R-sub-Gaussian distribution D with support over Rd. Even in this setting, we can ensure a model
recovery result with a linear rate of convergence.

Theorem 2. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted with the rest subjected to sub-Gaussian noise sampled
from a distribution Dε with sub-Gaussian norm σ. If STIR (or STIR-GD) is initialized at an (arbitrary) point
w0, with an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1 such that

we have α ≤ cε
5.85η+cε

, where cε > 0 is a constant that depends only on the distributions D and Dε, then with

probability at least 1− exp(−Ω̃ (n)), after K = O
(

log 1
M1σ

)
stages, each of which has only O (1) iterations,

we must have
∥∥wK −w∗

∥∥
2
≤ O (σ).

We refer the reader to Appendix E for the full proof.
Global Convergence This result also allows arbitrary initialization so long as we set M1 ≤ 1

‖w0−w∗‖2
.

However, note that this result only guarantees a convergence to
∥∥wK,1 −w∗

∥∥
2
≤ O (σ) and thus, does not

ensure a consistent solution. We refer the reader to the proof of Theorem 2 in Appendix E for a discussion
on this result. We also note that our results or our algorithms, do not require the knowledge of the noise
parameter σ.
Breakdown Point For Gaussian covariates i.e. xi ∼ N (0, Id), Gaussian noise i.e. εi ∼ N (0, σ2), we have
c ≥ 0.52 (see Appendix E), and for η → 1 this gives STIR and STIR-GD with a breakdown point of 1

12.25 .

8 Experiments

In this section, we report results of a variety of experiments comparing STIR and STIR-GD to other robust
learning algorithms. These experiments were performed over two learning settings, namely robust linear
regression and robust linear-armed bandit problems.
Parameter and Adversary Setting Algorithms considered in this section require only scalar parameters
to be specified (α for TORRENT, step length for TORRENT-GD, η and M1 for STIR, and step length C
for STIR-GD), all which were tuned via a fine grid search using a held-out validation set. In particular, a
binary search was found to suffice for setting M1. For all experiments, the adversary was made to introduce
corruptions using a fake model as described in §5. All algorithms were initialized at the fake model itself to
test their behavior under adversarial initialization.

8.1 Robust Regression Experiments

We executed STIR and STIR-GD on linear regression problems with response corruption as described in §4.

2We can tolerate noise with non-zero mean as well, by using a simple pairing trick which has a side effect of at most doubling
the corruption rate α
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Figure 3: All y-axes are in log-scale. Figs (a) and (c) use different data dimensionalities and number of data
points and compare STIR to when IRLS is executed with various fixed values of the truncation parameter
M . It is clear that no fixed value performs well. For small fixed values M ≈ 100, IRLS converges rapidly
but to poor models. For large fixed values M ≈ 1012, IRLS gets stuck at the fake model and takes long to
converge. On the other hand, although STIR was initialized with M1 = 0 for this experiment, it adaptively
increases its truncation parameter to offer far better convergence than IRLS with any fixed value of M . Figs
(b) and (d) compare STIR and STIR-GD with TORRENT and TORRENT-GD. In all cases, STIR-GD offers
the fastest convergence.
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(d) Variation with white noise

Figure 4: The figures compare STIR, TORRENT, IRLS, and OLS for convergence behavior. OLS exceeds
the figure boundaries and hence not visible in Figs (a) and (b). Fig (a) examines the effect of varying the
training set size. Note that the x-axis is in log-scale. IRLS performs poorly with very few data points but
STIR and TORRENT continue to offer good convergence. Fig (b) shows that IRLS worsens with increasing
dimensionality whereas STIR and TORRENT remain stable. Fig (c) explores the affect of increasing the
fraction of corrupted points. Both OLS and IRLS show considerable worsening with increasing fraction of
corruptions. Finally, Fig (d) explores the hybrid noise model discussed in Section 7.3 (Figs (a)-(c) had no
white noise). Here, IRLS performs the worst of all. However, once the noise variance goes beyond a point,
TORRENT and STIR start losing the distinction between good and bad points and the naive OLS starts
outperforming them.
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(c) Exact α to TORRENT

0 25 50 75 100 125 150 175 200
Number of Iterations

0

200

400

600

800

Re
gr

et
alpha=0.1 n_arms=50 d=10 T=200

LINUCB
RUCB-Lin
WUCB-Lin

(d) Overreporting α as 0.15

Figure 5: The figures compare STIR and TORRENT with respect to hyperparameter misspecification. STIR
was initialized at w0 = 0 in these experiments. For Fig (a), 25% data was corrupted but TORRENT was
given various values of its hyperparameter α (denoting the fraction of corrupted points) as indicated. STIR
was also given various values of its own hyperparameter η in a wide range. TORRENT is very susceptible to
hyperparameter misspecification and degrades heavily when not given a proper value whereas STIR is much
more stable with respect to its hyperparameter. For Figs (b), (c), (d), respectively 20%, 15% and 10% of the
data was corrupted and linear-armed bandit algorithms that use OLS (LINUCB), TORRENT (RUCB-Lin)
and STIR (WUCB-Lin) were executed. For Figs (b), (c), (d), TORRENT was always given a hyperparameter
value α = 0.15. Note that this is appropriate for Fig (c) where actually 15% data was corrupted but not for
Figs (b) and (d). TORRENT performs comparably to STIR if provided the true value of α, as in Fig (c) but
its performance degrades if we give a value smaller than true value, such as in Fig (b) or a larger value, such
as in Fig (d).
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Algorithm 3 WUCB-Lin: Weighted UCB for Linear Contextual Bandits

Input: Upper bounds σ0 (on sub-Gaussian norm of noise distribution), B (on magnitude of corruption), α0 (on
fraction of corrupted points), initial truncation M1, increment rate η

1: for t = 1, 2, . . . , T do
2: Receive set of arms At
3: Play arm x̂t = arg max

x∈At,w∈Ct−1

〈x,w〉

4: Receive reward rt
5: (ŵt, St)← STIR

(
{x̂τ , rτ}tτ=1 ,M1, η

)
//Denote St = diag(st1, s

t
2, . . . , s

t
t)

6: V t ←
∑
τ≤t s

t
τ x̂

τ (x̂τ )>, Xt ←
[
x̂1, x̂2, . . . , x̂t

]
7: w̄t ← (V t)−1XtSty
8: Ct ← {w :

∥∥w − w̄t
∥∥
V t
≤ σ0

√
d log T + α0BT}

9: end for

Algorithms: We compared STIR and STIR-GD with the TORRENT algorithm [6], its faster gradient version
TORRENT-GD, the classical IRLS algorithm with various fixed values of the truncation parameter, and
the standard OLS (Ordinary Least Squares) algorithm. We do not compare to some other state-of-the-art
algorithms for robust regression, such as L1 minimization techniques and extended Lasso since [6] establishes
that TORRENT outperforms all of them.
Data: The covariate dimensionality and the number of data points are mentioned with each plot. All covari-
ates were generated from a normal distribution. The gold and fake models were chosen as two independently
sampled unit vectors. The set of “bad” data points was chosen randomly and the fake model was used to
introduce corruptions, as in Section 5.

8.2 Robust Linear Bandit Experiments

As linear-armed bandit algorithms [1] utilize regression routines internally, recent works have explored the
possibility of using robust regression algorithms to target cases when arm-pulls are corrupted, for example
[19] that uses TORRENT itself to develop corruption-tolerant bandit learning algorithms.

Algorithm 3 presents WUCB-Lin, an adaptation of STIR to linear bandit settings. We refer the reader
to Appendix F for details of the algorithm. WUCB-Lin roughly follows the popular Optimism-in-the-face-of-
uncertainty (OFUL) principle while selecting arms to pull at various time instants.

However, since we know some of the arm pulls generated corrupted rewards, instead of applying the
OFUL principle blindly, WUCB-Lin invokes STIR and obtains not only an estimate of the reward generating
model, but also a set of weights on previous arm pulls which indicate which pulls were corrupted and which
pulls were clean. WUCB-Lin then uses these weights to form a weighted confidence set (Algorithm 3, line 6)
that is further utilized in applying the OFUL principle to decide future arm pulls (Algorithm 3, line 3).
Algorithms and Data: We compare WUCB-Lin with LINUCB that uses the simple OLS estimator, as well
as the RUCB-Lin algorithm from [19]. We refer the reader to Appendix F for details of the problem setting.

8.3 Discussion on Experiments

Figures 3, 4 and 5 present graphs with the outcomes of the experiments. Although the respective captions in
the figures detail the observed behaviours of various algorithms considered therein, here we point out some
broad inferences.

1. STIR-GD offers much faster convergence as compared to TORRENT or TORRENT-GD.

2. No single value of the truncation parameter M ensures a good performance with IRLS. A stage-wise
implementation with continuously updated truncation parameters, as STIR offers, is necessary for rapid
and assuredly global convergence.
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3. TORRENT requires an estimate of the fraction of corrupted points as a hyperparameter and is extremely
susceptible to misspecification in this value. STIR and STIR-GD on the other hand are much more
resilient to misspecifications of their own hyperparameters.

9 Conclusion and Future Work

In this work we presented STIR, a stage-wise algorithm that makes simple and efficient modifications, includ-
ing a gradient-based implementation STIR-GD, to the well-known IRLS heuristic to obtain the first global
convergence results for robust regression. These algorithms offer not only theoretically superior results to
state-of-the-art algorithms such as TORRENT but are empirically faster and more immune to hyperparameter
mis-specification.

Our theoretical results are superior to those of previous works in terms of offering a better breakdown
point, and are based on a novel notion of weighted strong convexity. Working with this new notion of strong
convexity required us to develop the peeling proof technique which is novel in robust regression literature
and may be of independent interest in analyzing other iterative algorithms.

Several avenues of future work exist. It would be interesting to examine other weighing functions (IRLS
and STIR use the inverse of the residual) for robust regression. It is likely that any reasonable decreasing
function of residuals should suffice. It would also be interesting to derive formal regret bounds for the
WUCB-Lin algorithm and see how they compare to the regret bounds of the RUCB-Lin algorithm from [19].
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A IRLS and the Scaled Huber Loss - Supplementary Details

We recapitulate below the definitions of the Huber loss, the scaled (and translated) Huber loss and, given a
model w0 and data (xi, yi)

n
i=1, other allied functions.

hε(x) =

{
1
2x

2 |x| ≤ ε
ε |x| − 1

2ε
2 |x| > ε

fε(x) =

{
1
2

(
x2

ε + ε
)
|x| ≤ ε

|x| |x| > ε

gε(x; a) :=
1

2

(
x2

max {|a| , ε}
+ max {|a| , ε}

)
`ε(w) :=

1

n

n∑
i=1

fε (〈w,xi〉 − yi)

℘ε(w; w0) :=

n∑
i=1

gε
(
〈w,xi〉 − yi;

〈
w0,xi

〉
− yi

)
The claim that M -truncated IRLS minimizes ℘ 1

M
(w; w0) to obtain the next model can be easily verified

using the equivalence between the truncation and regularization techniques explained in Footnote 1 (see §5
for the footnote). In the following, we establish that gε(·; ·) is a valid majorizer for fε for any ε > 0.

Claim 3. For any a, x ∈ R, ε > 0, we have gε(a; a) = fε(a) as well as gε(x; a) ≥ fε(x).

Proof. We have, for the first claim,

gε(a; a) =
1

2

(
a2

max {|a| , ε}
+ max {|a| , ε}

)
=

{
1
2

(
a2

ε + ε
)
|a| ≤ ε

|a| |a| > ε
= fε(a).

For the second claim, we consider two simple cases

Case 1 |x| > ε : In this case we have fε(x) = |x| and we always have 1
2

(
x2

max{|a|,ε} + max {|a| , ε}
)
≥ |x|.

Case 2 |x| ≤ ε : In this case denote b = max {|a| , ε}. Then we have b ≥ ε ≥ |x| which gives us x2 ≤ bε.

Thus, we have gε(x; a)− fε(x) = 1
2

(
x2

b + b
)
− 1

2

(
x2

ε + ε
)

= (b−ε)(bε−x2)
2bε ≥ 0.

The following claim shows that we have f ′ε(x)|x=a = g′ε(x; a)|x=a for any ε, a. This immediately estab-
lishes that ∇℘ε(w0; w0) = ∇`ε(w0) for any model w0.
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Claim 4. For any a, x ∈ R, ε > 0, we have f ′ε(x)|x=a = g′ε(x; a)|x=a.

Proof. We have g′ε(x; a) = x
max{|a|,ε} which gives us

g′ε(x; a)|x=a =

{
a
ε |a| ≤ ε
sign(a) |a| > ε,

whereas we have

f ′ε(x) =

{
x
ε |x| ≤ ε
sign(x) |x| > ε

,

which establishes the claim.

B Supporting Results

In this section we prove a few results used in the convergence analysis of STIR.

Lemma 5. Suppose we have data covariates X = [x1, . . . ,xn] generated from an isotropic but otherwise
arbitrary sub-Gaussian distribution. Then for any fixed set S ⊂ [n] and n = Ω

(
d+ log 1

δ

)
, with probability

at least 1− δ,
0.99 |S| ≤ λmin(XSX

>
S ) ≤ λmax(XSX

>
S ) ≤ 1.01 |S| ,

where the constant inside Ω (·) depends only on the sub-Gaussian distribution and universal constants.

Proof. This is a special case of [6, Lemma 16] for isotropic distributions. Note that since our adversary is
partially adaptive, the sets of good and bad points G,B are fixed and this lemma applies to both G and
B.

Lemma 6. Suppose our data covariates x1, . . . ,xn are generated from a sub-Gaussian distribution with
sub-Gaussian norm R. Then with probability at least 1 − δ, we have RX := maxi∈[n] ‖xi‖2 ≤ ‖µ‖2 +

O
(
R
√
d+ log n

δ

)
.

Proof. If x is R-sub-Gaussian with mean µ, then for any unit vector v ∈ Sd−1, 〈v,x− µ〉 is centered as well
as 2R-sub-Gaussian which gives us

P [|〈v,x− µ〉| ≥ t] ≤ 2 exp
[
−t2/2R2

]
If v1,v2 ∈ Sd−1, such that

∥∥v1 − v2
∥∥

2
≤ 1

2 , then we have
∣∣〈v1 − v2,x− µ

〉∣∣ ≤ 1
2 · ‖x− µ‖2. Thus, taking

a union bound over a 1/2-net over Sd−1 gives us

P
[

max
v∈Sd−1

|〈v,x− µ〉| ≥ 1

2
· ‖x− µ‖2 + t

]
= P [‖x‖2 ≥ ‖µ‖2 + 2t] ≤ 2 · 5d exp

[
−t2/2R2

]
Taking t2 = 2R2(d log 5 + log n

δ + log 2) proves the result.

P
[
max
i∈[n]

‖xi‖2 > ‖µ‖2 +R

√
2
(
d log 5 + log

n

δ
+ log 2

)]
≤ δ

In the following, we establish that the scaled Huber loss is Lipschitz. This will be helpful in transferring
our convergence guarantees to those with respect to the Huber and absolute loss functions.

Lemma 7. For any ε > 0, we have |`ε(w)− `ε(w′)| ≤ ‖w −w′‖2 ·
√

1.01.
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Proof. The function fε(·) is clearly 1-Lipschitz for any ε > 0. This means that we have

|`ε(w)− `ε(w′)| ≤
1

n

n∑
i=1

|〈w,xi〉 − 〈w′,xi〉| =
1

n

∥∥X>(w −w′)
∥∥

1
≤ 1√

n

∥∥X>(w −w′)
∥∥

2

≤ 1√
n
‖X‖2 ‖w −w′‖2 ≤ ‖w −w′‖2 ·

√
1.01,

where the last step follows due to Lemma 5.

C Convergence Analysis - Supplementary Details

We begin by restating Theorem 1, the main result that we will prove in this section.

Theorem 1. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. If STIR (or STIR-GD) is initialized at an (arbitrary)
point w0, with an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1

such that we have α ≤ c
2.88η+c , where c > 0 is a constant that depends only on D, then for any ε > 0, with

probability at least 1− exp
(
−Ω

(
n− d log(d+ n) + log 1

M1ε

))
, after K = O

(
log 1

M1ε

)
stages, we must have∥∥wK −w∗

∥∥
2
≤ ε. Moreover, each stage consists of only O (1) iterations.

Proof. As mentioned before, notice that this is indeed a global convergence guarantee since it places no
restrictions on the initial model w0. The only requirement is that the accompanying initial truncation
parameter M1 complement the model initialization by satisfying M1 ≤ 1

‖w0−w∗‖2
. In particular, if initialized

at the origin, as Algorithms 1 and 2 do, we need only ensure M1 ≤ 1
RW

where RW = ‖w∗‖2. This can
be done using a simple binary search to identify an appropriate value of M1. Recall that both STIR and
STIR-GD operate in stages. We introduce a notion of a well-initialized stage below.

Definition 2 (Well-initialized Stage). A stage in the execution of STIR or STIR-GD is said to be well-
initialized if, given the truncation parameter MT which will be used during that stage, at the beginning of
that stage T , we are in possession of a model wT,1 that satisfies

∥∥wT,1 −w∗
∥∥

2
≤ 1

MT
.

Note that the initialization of STIR and STIR-GD with respect to the setting of M1 ensure M1 ≤ 1
‖w0−w∗‖2

which implies that the very first stage is always well-initialized. Now, Lemmata 8 and 9 show that, if
the preconditions of this theorem are satisfied, then a stage T , started off with a model wT =: wT,1

(see Algorithm 1, line 3) and a truncation parameter MT that satisfy the well-initialized condition i.e.∥∥wT,1 −w∗
∥∥

2
≤ 1

MT
, will ensure with probability at least 1− exp (−Ω (n− d log(d+ n))), that there exists

an upper bound of t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηMT
for all τ ≥ t0.

An application of the triangle inequality shows that we will have
∥∥wT,t0 −wT,t0+1

∥∥
2
≤ 2

ηMT
which implies

(see Algorithm 1, line 5) that we will exit this stage at the (t0 + 1)th inner iteration. However, notice that
at this point we are endowed with

∥∥wT+1,1 −w∗
∥∥

2
=
∥∥wT+1 −w∗

∥∥
2

=
∥∥wT,t0+1 −w∗

∥∥
2
≤ 1

ηMT
= 1

MT+1
.

Note that this means that stage (T + 1) is well-initialized too.
Thus, whenever a stage T is well-initialized, with probability at least 1 − exp (−Ω (n− d log(d+ n))),

we have
∥∥wT+1,1 −w∗

∥∥
2
≤ 1

η

∥∥wT,1 −w∗
∥∥

2
. Since we always set η > 1, there exists an upper bound

T0 = O
(

log 1
M1ε

)
on the number of stages. Thus, an application of union bound shows that we must have∥∥wT0+1,1 −w∗

∥∥
2
≤ ε with probability at least 1− exp

(
−Ω (n− d log(d+ n)) + log 1

M1ε

)
= 1− exp(−Ω̃ (n))

for all ε = 1
nO(1) .

Lemma 8. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. Suppose we initialize a stage T within an execution of
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STIR with truncation level M , increment parameter η, and a model wT =: wT,1 such that α ≤ c
2.88η+c and

‖w −w∗‖2 ≤
1
M , then with probability at least 1− exp (−Ω (n− d log(d+ n))), there exists an upper bound

of t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0. Here c is the

constant of the WSC property and depends only on the distribution D (see Lemma 12).

Proof. Let wT,τ be a model encountered by STIR within this stage and let r = X>wT,τ − y denote the

residuals due to wT,τ and S = diag(s) denote the diagonal matrix of weights where si = min
{

1
|ri| ,M

}
.

Then STIR will choose as the next model wT,τ+1 = (XSX>)−1XSy = w∗ + (XSX>)−1XSb which gives
us ∥∥wT,τ+1 −w∗

∥∥
2
≤

‖XSb‖2
λmin(XSX>)

Now by Lemma 5, with probability at least 1 − exp(−Ω (n− d)), we have ‖XB‖2 =
√
λmax(XBX>B ) ≤

√
1.01B. By Lemma 10 we have, again with probability at least 1− exp(−Ω (n− d))

‖Sb‖2 ≤
√

4B(1 + 1.01M2 ‖w −w∗‖22) ≤ 2
√

2.01B

It should be noted that Lemma 10 relies precisely on Lemma 5 to derive its confidence assurance. Since the
nature of Lemma 5 is such that it need be established only once, and not repeatedly for every iteration, we
have, with probability at least 1−exp(−Ω (n− d)), for all iterations within this stage (actually all iterations
across all stages), both Lemma 10 and Lemma 5 hold simultaneously.

Using Lemma 12, with probability at least 1 − exp (−Ω (n− d log(d+ n))), we have λmin(XSX>) ≥
λmin(XGSGX

>
G ) ≥ 0.99c · GM . Note that since all models wT,τ , τ ≥ 1 in this stage will at least satisfy∥∥wT,τ −w∗
∥∥

2
≤ 1

M (since the initial model wT,1 satisfies this by assumption and STIR offers monotonic
convergence), the result of Lemma 12 applies uniformly to all these models and need not be applied separately
to each model in this stage. Using these results to upper bound ‖XSb‖2 and lower bound λmin(XSX>)
shows that at either we must have ∥∥wT,τ+1 −w∗

∥∥
2
≤ 2B

√
2.0301

0.99c ·GM

or else if the above is not true, then we must instead have∥∥wT,τ+1 −w∗
∥∥

2
≤ 0.99 · ‖w −w∗‖2

Note that since we have α ≤ c
2.88η+c , we get 2B

√
2.0301

0.99c·GM ≤ 1
ηM . Thus, it is assured that after t0 = O (log η) =

O (1) iterations, iterates wT,τ of STIR will satisfy
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0

Lemma 9. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. Suppose we initialize a stage T within an execution of
STIR-GD with truncation level M , increment parameter η, and a model wT =: wT,1 such that α ≤ c

2.88η+c

and ‖w −w∗‖2 ≤
1
M , then with probability at least 1 − exp (−Ω (n− d log(d+ n))), there exists an upper

bound of t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0.

Proof. As observed before, all models wT,τ , τ ≥ 1 in this stage at least satisfy
∥∥wT,τ −w∗

∥∥
2
≤ 1

M since

the initial model wT,1 satisfies this by assumption and we will see below that STIR-GD offers monotonic
convergence. Thus, Lemma 12 applies uniformly to all these models and thus, with probability at least
1−exp (−Ω (n− d log(d+ n))), for all τ ≥ 1, the function ℘ 1

M
(·,wT,τ ) (refer to §6 for notation) is γ-strongly

convex for γ ≥ 0.99c ·GM .
Similarly, Lemma 5 tells us that, again with probability at least 1 − exp (−Ω (n− d log(d+ n))), for all

τ ≥ 1,the function ℘ 1
M

(·,wT,τ ) is δ-strongly smooth for δ ≤ 1.01Mn. From now on, we will be using the

shorthand ℘(·) := ℘ 1
M

(·,wT,τ ) to avoid notational clutter.
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If we denote gt := ∇℘(wT,τ ) = ℘ 1
M

(wT,τ ,wT,τ ), then it is clear that STIR-GD will choose as the next

model as wT,τ+1 := wT,τ − C
Mn · g

t. For sake of notational simplicity, we will abbreviate w := wT,τ ,w+ :=
wT,τ+1,g := gt. Then, applying strong smoothness tells us that

℘(w+)− ℘(w) ≤
〈
g,w+ −w

〉
+
δ

2

∥∥w+ −w
∥∥2

2

=
〈
g,w+ −w∗

〉
+ 〈g,w∗ −w〉+

δ

2

∥∥w+ −w
∥∥2

2

=
Mn

C
·
〈
w −w+,w+ −w∗

〉
+ 〈g,w∗ −w〉+

δ

2

∥∥w+ −w
∥∥2

2

=
Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
+ 〈g,w∗ −w〉+

(
δ

2
− Mn

2C

)∥∥w+ −w
∥∥2

2

≤ Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
+ 〈g,w∗ −w〉 ,

where the fifth step holds for any C ≤ Mn
δ ≤ 0.99. Strong smoothness on the other hand tells us that

〈g,w∗ −w〉 ≤ ℘(w∗)− ℘(w)− γ

2
‖w −w∗‖22

Combining the above two results gives us

℘(w+)− ℘(w∗) ≤ Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
− γ

2
‖w −w∗‖22

Now, we can either have ℘(w+)−℘(w∗) ≥ 0 in which case we get ‖w+ −w∗‖2 ≤
√

1− Cγ
Mn ‖w −w∗‖2 ≤√

1− 0.99cCG
n ‖w −w∗‖2 or else ℘(w+) − ℘(w∗) < 0 in which case applying strong convexity once again

yields
γ

2

∥∥w+ −w∗
∥∥2

2
≤ ℘(w+)− ℘(w∗) +

〈
∇℘(w∗),w∗ −w+

〉
≤
〈
∇℘(w∗),w∗ −w+

〉
Now notice that ∇℘(w∗) = XSb and Lemmata 10 and 5 tell us that ‖XSb‖2 ≤ 2B

√
5.05 which give us

‖w+ −w∗‖2 ≤
2B
√

2.0301
γ ≤ 2B

√
2.0301

0.99cGM < 1
ηM whenever B

G ≤
0.99c

2η
√

2.0301
. This completes the proof of the result

upon making similar arguments as those made in the proof of Lemma 9.

C.1 Bounding the Weights on Bad Points

The following lemma establishes that neither STIR nor STIR-GD put too much weight on bad points.

Lemma 10. Suppose during the execution of STIR or STIR-GD, we encounter a model w while the truncation
parameter is M . Denote ‖w −w∗‖2 = ε and let S = diag(s) be the diagonal matrix of M -truncated weights
assigned due to residuals induced by w. Then, with probability at least 1− exp(−Ω (n− d)), we must have

‖Sb‖22 ≤ 4B(1 + 1.01M2ε2),

where we recall that b denotes the vector of corruptions.

Proof. Let ∆ := w −w∗ and let bi denote the corruption on the data point xi. The proof proceeds via a
simple case analysis

Case 1: |bi| ≤ 2 |∆ · xi| In this case we simply bound (sibi)
2 ≤M2b2i ≤ 4M2(∆ · xi)2.

Case 2: |bi| > 2 |∆ · xi| In this case we have |ri| = |∆ · xi − bi| ≥ |bi| − |∆ · xi| ≥ |bi|
2 and thus we must

have si ≤ 2
|bi| (due to possible truncation) and thus (sibi)

2 ≤ 4.
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Thus, we get

‖Sb‖22 =
∑
i∈B

(sibi)
2 ≤ 4 ·

∑
i∈B

max
{

1,M2(∆ · xi)2
}
≤ 4(B +M2ε2λmax(XBX

>
B )) ≤ 4(B + 1.01M2ε2B),

where the last step follows due to Lemma 5 which holds with probability at least 1 − exp(−Ω (n− d)) and
finishes the proof.

C.2 Convergence with respect to Huber and Absolute Loss

A relatively straightforward application of Theorem 1 alongwith some Lipschitzness properties allows us to
show that STIR and STIR-GD also ensure convergence to the optimal objective value with respect to the
Huber and absolute loss functions. These are widely used in robust regression applications.

Theorem 11. Under the same preconditions as those in Theorem 1, we are assured with probability at least

1− exp(−Ω̃ (n)), that after K = O
(

log 1
M1ε

)
stages, both STIR and STIR-GD must produce a model wK so

that

1. `ε(w
K) ≤ `ε(w∗) +

√
1.01ε

2. 1
n

∥∥X>wK − y
∥∥

1
≤ 1

n

∥∥X>w∗ − y
∥∥

1
+ 3
√

1.01
2 ε.

Proof. The first part follows directly from Lemma 7 and Theorem 1. The second part follows due to the fact
that |x| ≤ fε(x) ≤ |x|+ ε

2 for any ε > 0 and thus,

1

n

∥∥X>wK − y
∥∥

1
≤ `ε(wK) ≤ `ε(w∗) +

√
1.01ε ≤ 1

n

∥∥X>w∗ − y
∥∥

1
+

3
√

1.01

2
ε,

where the second inequality in the above chain follows from part 1 of this claim.

D Establishing WSC/WSS - Supplementary Details

Recall that for any r > 0 and M > 0, SM (r) denotes the set of all diagonal M -truncated weight matrices
STIR could possibly generate with respect to models residing in the radius R ball centered at w∗ i.e.

SM (r) :=

{
S = diag(s), si = min

{
1

|〈w,xi〉 − yi|
,M

}
,w ∈ B2(w∗, r)

}
,

then we have the following result.

Lemma 12. Suppose the data covariates X = [x1, . . . ,xn] are generated from an isotropic R-sub-Gaussian
distribution D, and G denotes the set of uncorrupted points (as well as the size of that set) then there exists
a constant c that depends only on the distribution D such that for any fixed value of M > 0,

P
[
∃S ∈ SM

(
1
M

)
: λmin(XGSGX

>
G ) < 0.99c ·GM

]
P
[
∃S ∈ SM

(
1
M

)
: λmax(XGSGX

>
G ) > 1.01 ·GM

] } ≤ exp (−Ω (n− d log(d+ n))) ,

where the constants inside Ω (·) are clarified in the proof. In particular, if D is the standard Gaussian
N (0, Id), then we can take c = 0.96.

Proof. The bound for the largest eigenvalue follows directly due to the fact that all weights are upper
bounded by M and hence XGSGX

>
G � M ·XGX

>
G and applying Lemma 5. For the bound on the smallest
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eigenvalue, notice that Lemma 14 shows us that for any fixed S ∈ SM ( 1
M ), i.e. a set of M -truncated weights

that correspond to some fixed model w ∈ B2

(
w∗, 1

M

)
, we have

P
[
λmin(XGSGX

>
G ) < 0.995c ·GM

]
≤ 2 · 9d exp

[
−mn(0.005c)2

8R4

]
Recall that we let RX := maxi∈[n] ‖xi‖2 denote the maximum Euclidean length of any covariate. However,

Lemma 15 shows us that if w1,w2 ∈ B2

(
w∗, 1

M

)
are two models such that

∥∥w1 −w2
∥∥

2
≤ τ then, conditioned

on the value of RX , the following holds almost surely.∣∣λmin(XGS
1
GX
>
G )− λmin(XGS

2
GX
>
G )
∣∣ ≤ 2GτM2R3

X

This prompts us to initiate a uniform convergence argument by setting up a τ -net over B2

(
w∗, 1

M

)
for

τ = c
400R3

XM
. Note that such a net has at most

(
800R3

X

c

)d
elements by applying standard covering number

bounds for the Euclidean ball [28, Corollary 4.2.13]. Taking a union bound over this net gives us

P
[
∃S ∈ SM

(
1

M

)
: λmin(XGSGX

>
G ) < 0.99c ·GM

]
≤ 2 ·

(
7200R3

X

c

)d
exp

[
−mn(0.005c)2

8R4

]
≤ exp (−Ω (n− d log(d+ n))) ,

where in the last step we used Lemma 6 to bound RX = O
(
R
√
d+ n

)
with probability at least 1 −

exp(−Ω (n)). For the specific bound on the constant c for various distributions, including the Gaussian
distribution, we refer the reader to Section D.1.

The proof of the above result relies on several intermediate results which we prove in succession below.
In the first result Lemma 13, we establish expected bounds on the extremal singular values of the matrix
XGSGX

>
G corresponding to a fixed model w ∈ B2

(
w∗, 1

M

)
. In the next result Lemma 14, we establish

the same result, but this time with high probability instead of in expectation. The next result Lemma 15
establishes that extremal singular values corresponding to two models close to each other must be (deter-
ministically) close.

Lemma 13 (Pointwise Expectation). With the same preconditions as in Lemma 12, there must exist a
constant c > 0 that depends only on D such that for any fixed S ∈ SM ( 1

M ), and fixed vector unit v ∈ Sd−1,
we have

c ·GM ≤ E
[
v>XGSGX

>
Gv
]
≤ GM.

In particular, if D is the standard Gaussian N (0, Id), then we can take c = 0.96.

Proof. Let x ∼ D and let y = 〈w∗,x〉. Then if we let ∆ := w−w∗

‖w−w∗‖2
(note that ‖w −w∗‖ ≤ 1

M ), then we

have s = min
{

1
|〈w,x〉−y| ,M

}
≥ M ·min

{
1

|〈∆,x〉| , 1
}

as well as s ≤ M . Then by linearity of expectation we

have

E
[
v>XGSGX

>
Gv
]

= E

[∑
i∈G

si 〈xi,v〉2
]

= G · E
[
s · 〈x,v〉2

]
≤ GM · E

[
〈x,v〉2

]
= GM,

since D is isotropic. We also get

E
[
v>XGSGX

>
Gv
]

= G · E
[
s · 〈x,v〉2

]
≥ GM · E

[
min

{
1

|〈∆,x〉|
, 1

}
· 〈x,v〉2

]
≥ c ·GM,

where, for any distribution D over Rd, we define the constant c as

c := inf
u,v∈Sd−1

{
E

x∼D

[
min

{
1

|〈u,x〉|
, 1

}
· 〈x,v〉2

]}
.

This concludes the proof. For the specific bound on the constant c for various distributions, including the
Gaussian distribution, we refer the reader to Section D.1.
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Lemma 14 (Pointwise Convergence). With the same preconditions as in Lemma 12, for any fixed S ∈
SM ( 1

M ),

P
[
λmin(XGSGX

>
G ) < 0.995c ·GM

]
P
[
λmax(XGSGX

>
G ) > 1.005 ·GM

] } ≤ 2 · 9d exp

[
−mn(0.005c)2

8R4

]
Proof. Note that for any square symmetric matrix A ∈ Rd×d, we have c−δ ≤ λmin(A) ≤ λmax(A) ≤ c+δ for
some δ > 0 iff

∣∣v>Av − c
∣∣ ≤ δ for all v ∈ Sd−1 which itself happens iff ‖A− c · I‖2 ≤ δ. Now, ifNε denotes an

ε-net over Sd−1, then for any square symmetric matrixB ∈ Rd×d, we have ‖B‖2 ≤ (1−2ε)−1 supv∈Nε
∣∣v>Bv

∣∣.
Thus, setting B = A− c · I and ε = 1/4, we have ‖A− c · I‖2 ≤ 2 supv∈N1/4

∣∣v>Av − c
∣∣.

Let x ∼ D and t =

√
min

{
1

|〈w−w∗,x〉| ,M
}
≤
√
M and for any fixed v ∈ Sd−1, let Z := t · 〈x,v〉. Then

we have
‖Z‖ψ2

= sup
p≥1

p−1/2 (E [|Z|p])1/p ≤
√
M · sup

p≥1
p−1/2 (E [| 〈x,v〉 |p])1/p

= R
√
M,

where the last step follows by observing that since D is R-sub-Gaussian, ‖〈x1,v〉‖Ψ2
≤ R. Thus, Z is

R
√
M -sub-Gaussian. This implies Z2 is MR2-subexponential (see [28, Lemma 2.7.6]), as well as Z2 − EZ2

is 2MR2-subexponential by centering and applying the triangle inequality. Note that Lemma 13 implicitly
establishes that µ := EZ2 ∈ [cM,M ]. Let Z1, Z2, . . . , ZG be independent realizations of Z with respect to a
fixed vector v. Then we have

P
[∣∣v>XGSGX

>
Gv −Gµ

∣∣ ≥ ε ·GM] = P

[∣∣∣∣∣∑
i∈G

(Z2
i − µ)

∣∣∣∣∣ ≥ ε ·GM
]

≤ 2 exp

[
−m ·min

{
(ε ·GM)2

4M2R4G
,
ε ·GM
2MR2

}]
≤ 2 exp

[
−mnε

2

8R4

]
where m > 0 is a universal constant and in the last step we used G ≥ n/2 and w.l.o.g. we assumed that
ε ≤ 2R2. Taking a union bound over all 9d elements of N1/4, we get

P
[∥∥XGSGX

>
G −Gµ · I

∥∥
2
≥ ε ·GM

]
≤ P

[
max

v∈N1/4

∣∣v>XGSGX
>
Gv −Gµ

∣∣ ≥ ε

2
·GM

]
≤ 2 · 9d exp

[
−mnε

2

8R4

]
Setting ε = 0.005c and noticing that µ ∈ [cM,M ] by Lemma 13 finishes the proof.

Lemma 15 (Approximation Bound). Consider two models w1,w2 ∈ Rd such that
∥∥w1 −w2

∥∥
2
≤ τ and let

s1, s2 denote the M -truncated weight vectors they induce i.e. sji = min
{
M, 1
|〈wj ,xi〉−yi|

}
, j = 1, 2. Also let

S1 = diag(s1) and S2 = diag(s2). Then for any X = [x1, . . . ,xn] ∈ Rd×n such that ‖xi‖2 ≤ RX for all i,∣∣λmin(XS1X>)− λmin(XS2X>)
∣∣ ≤ 2nτM2R3

X

Proof. We have the following four cases with respect to the weights sji = min
{
M, 1
|〈wj ,xi〉−yi|

}
, j = 1, 2

these two models generate on any data point xi ∈ B2(RX). Note that we do not assume that these data
points are generated from D, just that they are bounded inside the ball B2(RX). Also note that although∣∣s1
i − s2

i

∣∣ ≤ M trivially holds by virtue of truncation, such a result is not sufficient for us since our later

analyses would like to be able to show
∣∣s1
i − s2

i

∣∣ ≤ M
1000 by setting τ to be really small.

Case 1 :
∣∣〈w1,xi

〉
− yi

∣∣ ≤ 1
M and

∣∣〈w2,xi
〉
− yi

∣∣ ≤ 1
M . Here s1

i = s2
i = M i.e.

∣∣s1
i − s2

i

∣∣ = 0.
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Case 2 :
∣∣〈w1,xi

〉
− yi

∣∣ > 1
M but

∣∣〈w2,xi
〉
− yi

∣∣ ≤ 1
M . In this case s2

i = M > s1
i . Thus,

∣∣s1
i − s2

i

∣∣ = M − 1

|〈w1,xi〉 − yi|
≤M − 1

|〈w2,xi〉 − yi|+ τRX
≤M − M

1 + τMRX
< 2τM2RX

Case 3 :
∣∣〈w1,xi

〉
− yi

∣∣ ≤ 1
M but

∣∣〈w2,xi
〉
− yi

∣∣ > 1
M . This is similar to Case 2 above.

Case 4 :
∣∣〈w1,xi

〉
− yi

∣∣ > 1
M and

∣∣〈w2,xi
〉
− yi

∣∣ > 1
M . In this case we have∣∣∣∣ 1

|〈w1,xi〉 − yi|
− 1

|〈w2,xi〉 − yi|

∣∣∣∣ ≤
∣∣〈w1 −w2,xi

〉∣∣
|〈w1,xi〉 − yi| · |〈w2,xi〉 − yi|

≤ 2τM2RX

This tells us that
∥∥s1 − s2

∥∥
1
≤ 2nτM2RX . Now, if we let S1 = diag(s1) and S2 = diag(s2), then for any

unit vector v ∈ Sd−1, denoting RX := maxi∈[n] ‖xi‖2 we have

∣∣v>XS1X>v − v>XS2X>v
∣∣ =

∣∣∣∣∣
n∑
i=1

(
s1
i − s2

i

)
〈xi,v〉2

∣∣∣∣∣ ≤ ∥∥s1 − s2
∥∥

1
·max
i∈[n]

〈xi,v〉2 ≤
∥∥s1 − s2

∥∥
1
·R2
X ≤ 2nτM2R3

X .

This proves that
∥∥XS1X> −XS2X>

∥∥
2
≤ 2nτM2R3

X and concludes the proof.

D.1 Calculation of Distribution-specific Constants

The WSC/WSS bounds from Lemma 12 are parametrized by a constant c that lower bounds on the singular
values of the matrix XGSGX

>
G . Recall that for any covariate distribution D, the constant is defined as

c := inf
u,v∈Sd−1

{
E

x∼D

[
min

{
1

|〈u,x〉|
, 1

}
· 〈x,v〉2

]}
.

Below we present some interesting cases where this constant is lower bounded.

Centered Isotropic Gaussian For the special case of D = N (0, Id), notice that by rotational symmetry,
we can, without loss of generality, take u = (1, 0, 0, . . . , 0) and v = (v1, v2, 0, 0, . . . , 0) where v2

1 +v2
2 = 1.

Thus, if we consider x1, x2 ∼ N (0, 1) i.i.d. then c ≥ inf(v1,v2)∈S1 f(v1, v2) where

f(v1, v2) = E
x1,x2∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2)

]
=

√
2

π

(∫ 1

0

(v2
1t

2 + v2
2)e−t

2/2dt+

∫ ∞
1

(
v2

1t+
v2

2

t

)
e−t

2/2dt

)
≥ 0.6827 · v2

1 + 0.9060 · v2
2

where in the second step we used the independence of x1, x2 and E [x2] = 0, in the third step we used
independence once more and E

[
x2

2

]
= 1, and in the last step we used standard bounds on the error

function and the exponential integral. This gives us c ≥ inf(v1,v2)∈S1

{
0.6827 · v2

1 + 0.9060 · v2
2

}
≥ 0.68.

Centered Non-isotropic Gaussian For the case of D = N (0,Σ), we have x ∼ D ≡ Σ1/2 · N (0, Id).
Thus, for any fixed unit vector v, we have 〈v,x〉 ∼ 〈ṽ, z〉 where ṽ = Σ−1/2v and z ∼ N (0, I). We

also have ‖ṽ‖2 ∈
[

1√
Λ
, 1√

λ

]
where λ = λmin(Σ) and Λ = λmax(Σ). Note that we must insist on
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having λ = λmin(Σ) > 0 failing which, as the calculations show below, there is no hope of expecting
c to be bounded away from 0. Now for any fixed vectors u,v we first perform rotations so that
we have ũ = (u, 0, 0, . . . , 0) and ṽ = (v1, v2, 0, 0, . . . , 0) where we can assume w.l.o.g. that u ≥ 0.

Note that since {‖ũ‖2 , ‖ṽ‖2} ∈
[

1√
Λ
, 1√

λ

]
, we have (v1, v2) ∈ Sr and r, u ∈

[
1√
Λ
, 1√

λ

]
. This gives us

c ≥ inf(v1,v2)∈Sr f(v1, v2) where

f(v1, v2) = E
x1,x2∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2)

]
=

1

u

√
2

π

(∫ 1
u

0

u(v2
1t

2 + v2
2)e−t

2/2dt+

∫ ∞
1
u

(
v2

1t+
v2

2

t

)
e−t

2/2dt

)

≥ 1

u

√
2

π

(∫ 1
u

0

u(v2
1t

2 + v2
2)e−

1
2 ( 1

u )
2

dt+ v2
1e
− 1

2 ( 1
u )

2

+
v2

2

2

∫ ∞
1
2 ( 1

u )
2

1

z
e−zdz

)

≥ 1

u

√
2

π

(
e−

1
2 ( 1

u )
2
(
v2

1

3u2
+ v2

2

)
+ v2

1e
− 1

2 ( 1
u )

2

+
v2

2

4
e−

1
2 ( 1

u )
2

log
(
1 + 4u2

))
≥
√

2λ

π
e−

Λ
2

(
v2

1

(
1 +

λ

3

)
+ v2

2

(
1 +

1

4
log

(
1 +

4

Λ

)))
≥
√

2λ

π
e−

Λ
2 (v2

1 + v2
2)

= r2

√
2λ

π
e−

Λ
2

≥ 1

Λ

√
2λ

π
e−

Λ
2

where in the second and third steps we used independence of x1, x2, E [x2] = 0 and E
[
x2

2

]
= 1 as

before, and in the sixth step we used lower bounds on the exponential integral.

Non-centered Isotropic Gaussian We discuss two techniques to handle the case of non-centered covari-
ates.

• Pairing Trick This technique requires changes to the data points and relies on the fact that the
difference of two i.i.d. non-centered Gaussian random variables is a centered Gaussian random
variable with double the variance. Thus, given n covariates x1, . . . ,xn ∼ N (µ, Id) and corre-
sponding responses y1, . . . , yn, create n/2 data points (assume without loss of generality that n

is even) x̃i =
xi−xi+n/2√

2
and ỹi =

yi−yi+n/2√
2

. Clearly x̃i ∼ N (0, 2 · Id). However, this method has

drawbacks since it is likely to increase the proportion of corrupted data points. If α fraction of
the original points were corrupted, at most 2α fraction of the new points would be corrupted.

• Direct Centering Suppose we have data from a distribution D = N (µ, Id). As earlier, by rota-
tional symmetry, we can take u = (1, 0, 0, . . . , 0),v = (v1, v2, 0, 0, . . . , 0) and µ = (µ1, µ2, µ3, 0, 0, . . . , 0).
Assume ‖µ‖2 = ρ and, without loss of generality, ρ ≥ 2. Letting 〈µ,v〉 =: p ≤ ρ and
x1, x2, x3 ∼ N (0, 1) i.i.d. gives c ≥ inf(v1,v2)∈S1 f(v1, v2) where, as before, independence of

x1, x2, x3 and the fact that E [x2] = 0 and E
[
x2

2

]
= 1, gives us

f(v1, v2) = E
x1∼N (0,1)

[
min

{
1

|x1 + µ1|
, 1

}
· ((p+ v1x1)2 + v2

2)

]
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Now, since (v1, v2) ∈ S1 we get two cases (recall that we have assumed w.l.o.g. ρ ≥ 2)

Case 1: v2
2 ≥ 1

2 In this case f(v1, v2) ≥ 1
2 E
x1∼N (0,1)

[
min

{
1

|x1+µ1| , 1
}]
≥ Ω

(
exp−ρ

2/2 log
(

1 + 1
ρ2

))
.

Case 2: v2
1 ≥ 1

2 In this case, if x1 ≥ 2
√

2ρ, then |v1x1 + p| ≥ v1x1

2 , as well as |x1 + µ1| ≤ 2x1.

f(v1, v2) ≥ E
x1∼N (0,1)

[
min

{
1

|x1 + µ1|
, 1

}
(p+ v1x1)2 · I

{
x1 ≥ 2

√
2ρ
}]

≥ E
x1∼N (0,1)

[
min

{
1

2x1
, 1

}
x2

1

8
· I
{
x1 ≥ max 2

√
2ρ
}]
≥ 1

16
e−4ρ2

Since the value ρ influences the final bound on c very heavily, it is advisable to avoid a large ρ
value. One way to ensure this is to algorithmically center the covariates i.e. use x̃i := xi − µ̂
where µ̂ := 1

n

∑n
i=1 xi. This would (approximately) center the covariates and ensure an effective

value of ρ ≈ O
(√

d
n

)
Bounded Sub-Gaussian Suppose our covariate distribution has bounded support i.e. supp(D) ⊂ B2(ρ) for

some ρ > 0. Assume ρ ≥ 1 w.l.o.g. Also, using the centering trick above, assume that E
x∼D

[x] = 0. Then

we have |〈u,x〉| ≤ ρ which implies min
{

1
|〈u,x〉| , 1

}
≥ 1

ρ . Let Σ denote the covariance of the distribution

D and let λ := λmin(Σ) denote its smallest eigenvalue. This gives us c ≥ 1
ρ E

x∼D

[
〈x,v〉2

]
≥ λ

ρ .

E Corruptions and Dense Noise - Supplementary Details

In this section, we will provide details of the convergence analysis of STIR and STIR-GD in the setting where
even the “good” points experience sub-Gaussian noise. Thus, we will assume that our data is generated as
y = X>w∗ + b + ε where, as before ‖b‖0 ≤ α · n and ε ∼ Dε where Dε is a σ-sub-Gaussian distribution
with zero mean and real support. As mentioned before, we can tolerate noise with non-zero mean as well,
by using the same pairing trick we used to center the covariates in Appendix D.1. This would have a side
effect of at most doubling the corruption rate α. We will denote, as before B := supp(b) and G := [n] \ B.
Our covariates will continue to be sampled from an R sub-Gaussian distribution D with support over Rd.
We (re)state the main result of this section below.

Theorem 2. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted with the rest subjected to sub-Gaussian noise sampled
from a distribution Dε with sub-Gaussian norm σ. If STIR (or STIR-GD) is initialized at an (arbitrary) point
w0, with an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1 such

that we have α ≤ cε
5.85η+cε

, where cε > 0 is a constant that depends only on the distributions D and Dε, then

with probability at least 1− exp
(
−Ω

(
n− d log(d+ n) + log 1

M1σ

))
, after K = O

(
log 1

M1σ

)
stages, each of

which has only O (1) iterations, we must have
∥∥wK −w∗

∥∥
2
≤ O (σ).

Proof. The overall proof of this result follows exactly the same way as the result in Theorem 1. We will still
utilize the notion of a well-initialized stage and establish (see Lemma 16 below) a convergence guarantee for
each well-initialized stage. However, Lemma 16 will itself require a few new results to be proved.

However, note that Lemma 8, a similar result for well-initialized stages in the setting without dense noise,
required two results, namely Lemmata 12 and 10 that established the WSC/WSS properties and bounded the
weight put on bad points. Those results implicitly assumed that good points incur absolutely no modification
to their response value which is no longer true here since in the setting being considered here, even good
points do incur sub-Gaussian noise in their responses. Thus, we will establish below Lemmata 17 and 18
which will establish those results in the dense noise setting. We note that a similar convergence guarantee
may be established for STIR-GD in the dense noise setting as well.
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However, note that this result only guarantees a convergence to
∥∥wK,1 −w∗

∥∥
2
≤ O (σ) and thus, does

not ensure a consistent solution. A technical reason for this is because Lemma 17 holds true only for values
of M ≤ O

(
1
σ

)
which restricts the application of this result to offer errors much smaller than σ. It would be

interesting to show, as [5] do, that STIR, or a variant, does offer consistent estimates.

For sake of notational simplicity, we will assume that εB = 0 by shifting any sub-Gaussian noise a bad
point, say j ∈ B does incur, into the corruption value corresponding to that point i.e. bj . This is without loss
of generality since we impose no constraints on the corruptions other than that they be sparse, in particular
the corruptions need not be bounded and can thus, absorb sub-Gaussian noise values into them.

Lemma 16. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted with the rest experiencing noise generated i.i.d. from a
distribution Dε with sub-Gaussian norm σ. Suppose we initialize a stage T within an execution of STIR with
truncation level M ≤ cε

8ησ , increment parameter η, and a model wT =: wTT, 1 such that α ≤ cε
5.85η+cε

and

‖w −w∗‖2 ≤
1
M , then with probability at least 1− exp (−Ω (n− d log(d+ n))), there exists an upper bound

of t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0. Here cε is the

constant of the WSC property and depends only on the distributions D and Dε (see Lemma 17).

Proof. Let wT,τ be a model encountered by STIR within this stage and let r = X>wT,τ − y denote the

residuals due to wT,τ and S = diag(s) denote the diagonal matrix of weights where si = min
{

1
|ri| ,M

}
.

Then STIR will choose as the next model wT,τ+1 = (XSX>)−1XSy = w∗ + (XSX>)−1XS(b + ε) which
gives us ∥∥wT,τ+1 −w∗

∥∥
2
≤
‖XS(b + ε)‖2
λmin(XSX>)

Now by Lemma 5, with probability at least 1 − exp(−Ω (n− d)), we have ‖XB‖2 =
√
λmax(XBX>B ) ≤

√
1.01B. By Lemma 10, with the same probability, we have

‖Sb‖2 ≤
√

4B(1 + 1.01M2 ‖w −w∗‖22) ≤ 2
√

2.01B,

whereas by Lemma 18, as we have restricted M ≤ 1
8σ , we have, yet again with the same probability,

‖XSε‖2 = ‖XGSGεG‖ ≤ 4MGσ
√

1.01 ≤ cε
√

1.01

2η
G,

where the first equality follows due to our convention that supp(ε) = G since for bad points in the set B, we
clubbed any sub-Gaussian noise into the corruption itself, thus leaving εB = 0. Now, by Lemma 17, with
probability at least 1−exp (−Ω (n− d log(d+ n))), we have λmin(XSX>) ≥ λmin(XGSGX

>
G ) ≥ 0.99cε ·GM .

This give us ∥∥wT,τ+1 −w∗
∥∥

2
≤

2B
√

2.0301 + cε
√

1.01
2η G

0.99cε ·GM
≤ 2B

√
2.0301

0.99cε ·GM
+

√
1.01

1.98η ·M

Now, since we have α ≤ cε
5.85η+cε

, we also have 2B
√

2.0301
0.99cε·GM ≤

(
1−

√
1.01

1.98

)
1
ηM and thus,

2B
√

2.0301+ cε
√

1.01
2η G

0.99cε·GM ≤
1
ηM . Arguing as we did in the proof of Lemma 8, we must either have ‖w+ −w∗‖2 ≤

2B
√

2.0301
0.9801cε·GM +

√
1.01

1.9602η·M
and if that does not happen, we must instead have∥∥wT,τ+1 −w∗

∥∥
2
≤ 0.99 ·

∥∥wT,τ −w∗
∥∥

2

This proves the claimed result.
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E.1 Establishing WSC/WSS in Presence of Dense Noise

We will rework a counterpart to Lemma 12 in this section.

Lemma 17. Given the problem setting above, then there exists a constant cε > 0 that depends only on the
distributions D,Dε such that for any M ∈

[
0, 1

σ

]
, we have

P
[
∃S ∈ SM

(
1

M

)
: λmin(XGSGX

>
G ) < 0.99cε ·GM

]
≤ exp (−Ω (n− d log(d+ n)))

In particular, for standard Gaussian covariates and Gaussian noise with variance σ2, we can take cε ≥ 0.52.

Proof. Let x ∼ D, ε ∼ Dε and let y = 〈w∗,x〉 + ε be the response of an uncorrupted data point and
w ∈ B2

(
w∗, 1

M

)
be any fixed model. Then if we let ∆ := w − w∗, the weight s that the model w would

cause STIR to put on this (clean) data point must satisfy s ≥ min
{

1
|〈∆,x〉−ε| ,M

}
. This gives us, for any

fixed v ∈ Sd−1,
E
[
v>XGSGX

>
Gv
]
≥ cε ·GM,

where we define,

cε := inf
0≤r≤ 1

M

u,v∈Sd−1

{
E

x∼D,ε∼Dε

[
min

{
1

|Mr 〈u,x〉 −Mε|
, 1

}
· 〈x,v〉2

]}

We analyze the constant c for the Gaussian case at the end of the proof. For now, we proceed as in Lemma 14
and realize that the sub-Gaussian norm calculations continue to hold in this case since they simply upper
bound the weights by M , and get

P
[
λmin(XGSGX

>
G ) < 0.995cε ·GM

]
≤ 2 · 9d exp

[
−mn(0.005cε)

2

8R4

]
After this we notice that the proof of Lemma 15 pays no heed to corruptions or additional noise and hence,
continues to hold in this setting too. Proceeding as in the proof of Lemma 12 to set up a τ -net over
B2

(
w∗, 1

M

)
and taking a union bound over this net finishes the proof.

For the special case of D = N (0, Id) and Dε = N (0, σ2), by rotational symmetry, we can, without loss of
generality, take u = (1, 0, 0, . . . , 0) and v = (v1, v2, 0, 0, . . . , 0) where v2

1 + v2
2 = 1. Thus, if x1, x2, ε ∼ N (0, 1)

i.i.d. then c ≥ inf(v1,v2)∈S1,r∈[0, 1
M ] f(v1, v2, r) where

f(v1, v2, r) = E
x1,x2,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2)

]
= v2

1 · E
x1,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
x2

1

]
︸ ︷︷ ︸

(A)

+v2
2 · E

z∼N (0,1)

[
min

{
1

M
√
r2 + σ2 |z|

, 1

}]
︸ ︷︷ ︸

(B)

where in the second step we used the independence of x1, x2 and E [x2] = 0, in the third step we used
independence once more and E

[
x2

2

]
= 1. In the fourth step, we substituted

√
r2 + σ2z = rx1 − σε and

noticed that rx1 − σε ∼ N (0, (r2 + σ2)) i.e. z ∼ N (0, 1). To bound (B) we notice r ≤ 1
M and M ≤ 1

σ and
use standard bounds on Gaussian and exponential integrals to get

(B) ≥ E
z∼N (0,1)

[
min

{
1√
2 |z|

, 1

}]
≥ 0.815
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To bound (A), we use the fact that pairwise orthogonal projections of a standard Gaussian vector yield
independent variables. Thus, if we denote a = Mr, b = Mσ and z = ax1−bε√

a2+b2
, w = bx1+aε√

a2+b2
, then z, w ∼ N (0, 1)

as well as z ⊥ w. Thus, we have

(A) = E
z,w∼N (0,1)

[
min

{
1

M
√
r2 + σ2 |z|

, 1

}
·
(
r2z2 + σ2w2 + 2rσzw

r2 + σ2

)]
≥ E
z,w∼N (0,1)

[
min

{
1√
2 |z|

, 1

}
·
(
r2z2 + σ2w2

r2 + σ2

)]
≥ 0.52r2

r2 + σ2
+

0.815σ2

r2 + σ2
= 0.52 +

0.295σ2

r2 + σ2

where in the second step we used M ≤ 1
σ and r ≤ 1

M , independence of z and w and the fact that E [w] =
0,E

[
w2
]

= 1 and the last step uses standard bounds on Gaussian and exponential integrals.

E.2 Bounding the Weights on Good Points

Although Lemma 10 continues to hold in this case, since good points also incur modifications to their response
values, albeit modifications that are stochastic and not adversarial, we need an analogous result for the good
points in this case as well.

Lemma 18. Suppose σ is the sub-Gaussian norm of the noise distribution Dε and the identity of the good
points G is chosen independently of the covariates. Then for any M > 0, if S is the diagonal matrix of M -
truncated weights assigned to the data points by a model w, then with probability at least 1−exp(−Ω (n− d)),

‖XGSGεG‖2 ≤ 4MGσ
√

1.01

Proof. We have, by applying Lemma 5, with probability at least 1− exp(−Ω (n− d)),

‖XGSGεG‖2 ≤
√
λmax(XGX>G ) · ‖SGεG‖ ≤

√
1.01G · ‖S‖2 ‖εG‖2 ≤

√
1.01GM · ‖εG‖2 ,

where the last inequality follows since S is a diagonal matrix and by M -truncation, the maximum value of
any weight is M . Now, since our noise is σ sub-Gaussian and unbiased, we have, for any fixed u ∈ SG−1,
E [〈ε,u〉] = 0, as well as, by applying the Hoeffding’s inequality,

P [|〈ε,u〉| ≥ t] ≤ 3 exp

(
− t2

2σ2

)
Now, if u1,u2 ∈ SG−1, such that

∥∥u1 − u2
∥∥

2
≤ 1

2 , then we have
∣∣〈u1 − u2, ε

〉∣∣ ≤ 1
2 · ‖ε‖2. Thus, taking a

union bound over a 1/2-net over SG−1 gives us

P
[
‖ε‖2 = max

u∈SG−1
〈u, ε〉 ≥ 1

2
· ‖ε‖2 + t

]
= P [‖ε‖2 ≥ 2t] ≤ 3 · 5G exp

[
−t2/2σ2

]
Setting t = σ

√
4G establishes the result.

F Robust Linear Bandits

In this section, we briefly discuss the linear contextual bandit problem with corrupted arm pulls. We refer
the reader to [19] for a more relaxed introduction to the problem as well as formal regret bounds. Indeed,
the discussion here is adapted from the discussion in [19].
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Problem Setting 1 Adversarial Linear Bandits

for t = 1, 2, 3.. do
Player receives a set of contexts At =

{
xt,1, . . . ,xt,nt

}
⊂ Rd

Player plays an arm, x̂t ∈ At
Clean reward is generated r∗t = 〈w∗, x̂t〉+ εt conditioned on Ht
Adversary inspects x̂t, r∗t ,Ht and chooses bt //while making sure |τ ≤ t : bτ 6= 0| ≤ η · (t+ 1)
Player receives reward, rt = r∗t + bt

end for

F.1 Problem Setting

The stochastic linear contextual bandit framework [1, 20] considers a (possibly infinite) set of arms. Arms
correspond to various actions that can be performed by the algorithm. For instance, in a recommenda-
tion setting, arms may correspond to various products that are available for sale, for instance, at an e-
commerce website, or in a quantitative trading setting, arms may correspond to stocks that are available for
sale/purchase.

Every arm a is parametrized by a vector a ∈ Rd (we abuse notation to denote the arm and its corre-
sponding parametrization using the same notation). Recall that the set of all arms is potentially infinite.
However, not all arms may be available at every time step. For instance, an e-commerce website would not
like to recommend products not currently in stock. Similarly, stocks not currently in one’s possession cannot
be sold.

At each time step t, the algorithm receives a set of nt arms (also called contexts) At =
{
xt,1, . . . ,xt,nt

}
⊂

Rd that can be played or pulled in this round. Pulling an arm is akin o performing the action as-
sociated with that arm, for example, recommending an item or selling a stock unit. The context set
At, as well as the number nt of contexts available can vary across time steps. The algorithm selects
and pulls an arm x̂t ∈ At as per its arm selection policy. In response, a reward rt is generated. Let
Ht =

{
A1, x̂

1, r1, . . . , At−1, x̂
t−1, rt−1, At, x̂

t
}

.

F.2 Adversary Model

In the stochastic linear bandit setting, as has been studied in prior work [1, 20] , at every time step, the
reward rt is generated using a model vector w∗ ∈ Rd (that is not known to the algorithm) as follows:
rt = 〈w∗, x̂t〉 + εt, where εt is a noise value that is typically assumed to be (conditionally) centered and
σ-sub-Gaussian, i.e., E [εt |Ht] = 0, as well as for some σ > 0, we have E [exp(λεt) |Ht] ≤ exp(λ2σ2/2) for
any λ > 0.

However, recent works [19, 22] have considered settings where the rewards may suffer not only sub-
Gaussian noise, but also adversarial corruptions that are introduced by an adaptive adversary that is able
to view the on-goings of the online process and at any time instant t, after observing the history Ht and the
“clean” reward value, i.e., 〈w∗, x̂t〉 + εt, is able to add a corruption value bt to the reward. For notational
uniformity, we will assume that for time instants where the adversary chooses not to do anything, bt = 0.
Thus, the final reward to the player at every time step is rt = 〈w∗, x̂t〉+ εt + bt. This model is described in
Problem Setting 1.

For sake of simplicity we will assume that, for some B > 0, the final (possibly corrupted) reward presented
to the player satisfies rt ∈ [−B,B] almost surely. The only constraint the adversary need observe while
introducing the corruptions is that at no point in the online process, should the adversary have corrupted more
than an η fraction of the observed rewards. Formally, let Gt = {τ < t : bτ = 0} and Bt = {τ < t : bτ 6= 0}
denote the set of “good” and “bad” time instances till time t. We insist that |Bt| ≤ η · t for all t.
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Algorithm 4 WUCB-Lin: Weighted UCB for Linear Contextual Bandits

Input: Upper bounds σ0 (on sub-Gaussian norm of noise distribution), B (on magnitude of corruption), α0 (on
fraction of corrupted points), initial truncation M1, increment rate η

1: for t = 1, 2, . . . , T do
2: Receive set of arms At
3: Play arm x̂t = arg max

x∈At,w∈Ct−1

〈x,w〉

4: Receive reward rt
5: (ŵt, St)← STIR

(
{x̂τ , rτ}tτ=1 ,M1, η

)
//Denote St = diag(st1, s

t
2, . . . , s

t
t)

6: V t ←
∑
τ≤t s

t
τ x̂

τ (x̂τ )>, Xt ←
[
x̂1, x̂2, . . . , x̂t

]
7: w̄t ← (V t)−1XtSty
8: Ct ← {w :

∥∥w − w̄t
∥∥
V t
≤ σ0

√
d log T + α0BT}

9: end for

F.3 Notion of Regret

The goal of the algorithm is to maximize the cumulative reward it receives over the time steps
∑T
t=1 rt.

However, a more popular technique of casting this objective is in the form of cumulative pseudo regret. At
time t, let xt,∗ = arg maxx∈At 〈w∗,x〉 be the arm among those available that yields the highest expected
(uncorrupted) reward. The cumulative pseudo regret of a policy π is defined as follows

R̄T (π) =

T∑
t=1

〈
w∗,xt,∗

〉
− E [rt] .

Note that the best arm here may change across time-steps.

F.4 WUCB-Lin: An Algorithm for Robust Linear Bandits

We use the notation ‖x‖M =
√

x>Mx for a vector x ∈ Rd and a matrix M ∈ Rd×d. We reproduce, for
convenience, the WUCB-Lin algorithm in Algorithm 4. WUCB-Lin builds upon the OFUL principle [1] for
linear contextual bandits. At every step, WUCB-Lin uses rewards obtained from previous arm pulls to obtain
an estimate ŵt of the true model vector w∗.

Whereas classical algorithms utilize ordinary least squares to solve this problem, WUCB-Lin utilizes STIR
(actually STIR-GD for sake of speed) to obtain this estimate. This lends resilience to the algorithm against
the (possibly several) past arm pulls whose rewards got corrupted by the adversary. The previous work of
[19] used the TORRENT algorithm for the same purpose.

The next step in executing the OFUL principle is the construction of a confidence set. It is common
to use an ellipsoidal confidence set with the ellipsoid induced by the covariance matrix of the arm vectors
pulled so far. The work of [19] modifies this to only consider arms considered as clean by the TORRENT
algorithm while constructing the confidence ellipsoid.

Since STIR, instead of selecting a specific subset of arms like TORRENT, instead would assign weights to
all previously pulled arms, with a small weight indicating a high likelihood of the arm pull being a corrupted
one and a large weight indicating a high likelihood of the arm pull being a clean one. Thus, STIR utilizes
these weights to construct a weighted covariance matrix which is then used to define the confidence ellipsoid
and carry out the arm selection step.
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