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ABSTRACT
A typical problem for a search engine (hostingsponsored search
service) is to provide the advertisers with a forecast of thenum-
ber of impressions his/her ad is likely to obtain for a given bid.
Accurate forecasts have high business value, since they enable ad-
vertisers to select bids that lead to better returns on theirinvest-
ment. They also play an important role in services such as auto-
matic campaign optimization. Despite its importance the problem
has remained relatively unexplored in literature. Existing methods
typically overfit to the training data, leading to inconsistent per-
formance. Furthermore, some of the existing methods cannotpro-
vide predictions for new ads, i.e., for ads that are not present in
the logs. In this paper, we develop a generative model based ap-
proach that addresses these drawbacks. We design a Bayes netto
capture inter-dependencies between the query traffic features and
the competitors in an auction. Furthermore, we account for vari-
ability in the volume of query traffic by using a dynamic linear
model. Finally, we implement our approach on a production grade
MapReduce framework and conduct extensive large scale experi-
ments on substantial volumes of sponsored search data from Bing.
Our experimental results demonstrate significant advantages over
existing methods as measured using several accuracy/errorcriteria,
improved ability to provide estimates for new ads and more consis-
tent performance with smaller variance in accuracies. Our method
can also be adapted to several other related forecasting problems
such as predicting average position of ads or the number of clicks
under budget constraints.
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1. INTRODUCTION
Sponsored search has become an important channel of efficient

online advertisement and is a multi-billion dollar industry today. It
provides value to advertisers and users by providing targeted ad-
vertising, and is the major source of revenue for search engines.
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Figure 1: An overview of the sponsored search process: When a
user searches for a string say “Hotels”, the search engine sends
the extracted keyword (from the query string) for an auction
between advertisers, who are willing to pay certain amount of
money for a click by the user.

Each time a user issues a search query on a web search engine such
as Google or Bing, an auction is invoked among advertisers who
bid for the search query phrase and the winning ads appear along-
side the corresponding ‘organic’ search results. See Figure 1 for an
overview of the sponsored search process.

The auctions are conducted amongst advertisers where winners
are determined according to their scores given by: Score(L) =
bid(L) × pclick(L,Q), where Score(L) is the score of adL for
the auction of queryQ, bid(L) is the bid ofL, and pclick(L,Q) is
the predicted Click Through Rate (CTR), i.e., the probability that
adL is clicked when shown to the user in response to queryQ.
Typically, CTR (or pclick(L,Q)) is estimated by using a learning
algorithm such as the one proposed in [5]; these algorithms con-
tinuously adjust their estimates of pclick according to theobserved
click patterns.

Sponsored search is a dynamic process where the set of advertis-
ers and ads change continuously, and the query traffic demonstrate
substantial temporal, seasonal and geographic variations(e.g. holi-
day season, events in news etc. can lead to big fluctuations intraffic
volumes of specific queries). This makes it hard for advertisers to
set bid values to achieve their objectives (e.g., advertisers may want
to maximize the number of impressions/clicks for a given budget).
Many advertisers, especially small-scale ones, do not set bids effec-
tively and often end up with left-over budgets. A tool that forecasts
the number of impressions, average position and clicks for an ad,
given a bid value would therefore be of very useful to advertisers.
An estimate of the number of impressions, together with the pclick



estimate using methods like [5] would give us an estimate forthe
number of clicks for the ad. Thus, one of the main challenges that
needs be addressed is accurate estimation for the number of im-
pressions of an ad given its bid value. This is the problem we focus
on in this paper.

The ad impressions forecasting problem is challenging for the
following reasons: (1) Query traffic can be highly variable due to
multiple reasons as previously discussed. (2) The set of advertis-
ers and ads changes with time. Advertisers can change their bids;
budget pauses and budgets running out are another source of uncer-
tainty. (3) Pclick of an ad varies from auction to auction because of
changing query features (e.g. time and location of the query), and
also because the pclick estimation algorithm itself can introduce
large variations.

Search engines generally have tools that replay past auctions
with changing bids and show the result to the advertisers as aproxy
for future estimates. This type of past replay makes an inherent
simplifying assumption that the auctions in the future are exact
replicas of the auctions in the logs. Because of the aforementioned
challenges, these assumptions deviate widely in practice leading to
errors and inconsistency due to heavy overfitting. There arealso
a few recent works addressing similar problems, e.g. [1, 3, 8]; we
discuss these in some detail in Section 3. These works focus mostly
on modeling how advertisers bid in auctions, and do not explicitly
model the query traffic. As we show in Section 5 query traffic mod-
eling is a critical component in impression prediction and ignoring
it can lead to poor and inconsistent forecast.

In this work, we address the aforementioned challenges by tak-
ing a learning-centric view of the problem: our method models auc-
tions by a generative model to avoid overfitting. Specifically, we
use a Bayes net to model the query traffic component as well as the
minimum score required to win the auction. Since most of the auc-
tion features are categorical or can be efficiently discretized, Bayes
net can be easily trained and sampled to generate artificial auctions.
Furthermore, we parallelize Bayes net training using MapReduce;
this parallelization is critical for deployment in real-life large scale
systems.

For prediction, we generate artificial auctions using our Bayes
net. We then assess win or loss for the ad in each auction to de-
termine the total number of impressions.A crucial issue here is the
estimation of the number of samples to be generated from Bayes
net. We use a first order dynamic linear model trained on past key-
word traffic trends to this end.

We conduct experiments on a substantial portion of traffic from
Bing 1 and evaluate performance of our method against two well-
known existing methods according to several criteria. Our empiri-
cal results demonstrate significantly improved and consistent fore-
casts on multiple criteria compared to the existing methods. Specif-
ically, our method achieves up to20% more accuracy than the ex-
isting methods and can predict for up to33% more ads than one
of the baseline methods. Furthermore, our method is highly scal-
able and can be deployed in a real-life system. Our offline training
phase takes about four to five hours using standard production ar-
chitecture, while prediction for advertisers can be provided in real
time (online) using pre-computed impression values.

2. PRELIMINARIES AND NOTATION
In this section, we formally introduce the setting of sponsored

search auctions.
Following standard terminology, we refer to an ad in sponsored

search setting as a listing and denote it byL. Traffic features of a

1Exact percentages are not provided for confidentiality reasons.

user query are denoted byQ; this includes features such as loca-
tion, category, and time of the query. bid(L) denotes the bid value
of listing L and pclick(L,Q) denotes the estimated probability of
click on listingL when a user makes query with featuresQ.

In sponsored search, the ad serving engine conducts an auction
for every user query. For each such query phrase, advertisers com-
pete with pre-set bids and the score for each adL is given by:

Score(L,Q) = bid(L) × pclick(L,Q). (1)

pclick(L,Q) is estimated using a learning algorithm that uses sev-
eral features from the queryQ such as the traffic features mentioned
above and also features from the listingL and the associated adver-
tiser; see [5] for more details.

After computing the score of each listing for a given query, the
scores are sorted and at mostk listings with highest scores are se-
lected, wherek is a parameter set by the search engine and can vary
across auctions. Out of thesek, only those with scores greater than
a reserve score (again a parameter set by the search engine) are se-
lected. There may be additional criteria to further prune this list of
ads. If an advertiser’s ad is clicked by the user in auctionQ, then
the advertiser makes a payment to the search engine. This payment
is calculated by the GSP method [4]:

Payment(Li, Q) =
Score(Li+1, Q)

pclick(Li, Q)
,

whereLi+1 is the listing afterLi in the sorted scores list.

3. RELATED WORK
Ads impression forecasting in sponsored search has recently be-

come an important tool, hosted by search engines. The goal isto
help advertisers bid appropriately to achieve their returnover in-
vestment (ROI). Although, the tool is heavily used in practice, there
has been little research addressing this problem.

Notable exceptions are the works by Athey and Nekipelov [1]
and Pin and Key [8]. Both of these papers assume a probabilistic
model on the given ads’ competitors’ score. They learn parame-
ters of such model using training data and generate and simulate
auctions to determine number of impressions. In particular, Pin
and Key [8] assume that the “normalized scores” (ns(L′, Q) =
bid(L′)×
pclick(L′, Q)/pclick(L,Q)) of all the competitor adsL′ are sam-
pled i.i.d. from a fixed distribution (whereL is the ad for which we
are doing the prediction). Now to predict the slot in whichL will
appear in an auction, we just need to check for how many adsL′,
we have bid(L) < bid(L′) × pclick(L′, Q)/pclick(L,Q) (which
is same as bid(L) × pclick(L,Q) < bid(L′)pclick(L′, Q), i.e.,
Score(L) < Score(L′)). For a given bid bid(L), one can then
derive the expected number of impressions and clicks. Note,how-
ever, that there are issues with the assumptions in this model: For
instance, the assumptions that the scores have the same distribu-
tion across auctions do not hold in practice. Normalized scores
have pclick(L,Q) in the denominator, and pclick(L,Q) tends to
be highly variable, thus affecting all the normalized scores and in-
troducing correlations.

The Athey and Key [1] model is similar but more involved and
detailed and also computationally more demanding. [1] showthat
the distributional assumptions actually lead to simplification in the
set of equilibria (compared to the results in [4, 9]) and can even
lead to unique equilibrium under certain conditions. [1, 8]can also
infer advertiser’s value per click assuming that they bid optimally.
In accuracy, [1] does just slightly better.

Duong and Lahaie [3] use discrete choice analysis, a technique
developed in econometrics, for the problem of inferring advertiser’s



value per click. Using the estimated values they can predicthow
many clicks and impressions an ad will receive in the near future.
They, however, require that the ad in question be present in the
training week. Their experimental results show accuracy somewhat
comparable to [8] in predicting the number of clicks.

Recently, similar problems have also been addressed in the other
online advertising paradigms, namely, contextual and display ad-
vertising. For contextual ads, Wang et al. [10] propose a method
for impression forecasting based on replay of past auctionswith the
given advertisement. When adapted to sponsored search domain,
their approach reduces toTraining Week Replay (TWR); we empir-
ically evaluate our method against TWR (see Section 5). Alsonote
that, the efficient search strategies proposed by [10] do notapply to
our problem as the number of “published” pages are significantly
larger for sponsored search than for contextual ads domain.

For display ads, Cui et al. [2] propose a method for impression
forecasting based on Gradient Boosted Decision Trees. However,
the display ads and sponsored search settings are significantly dif-
ferent: In the display ads setting there are a small number ofpossi-
ble “targettings” for which bid landscape needs to be learned, hence
there is enough data to learn a regression model for each parameter
setting. In contrast, in sponsored search, the number of possible
“parameters” or “targettings” is extremely large (due to large num-
ber of query strings and also large number of contexts that give rise
to the query strings), hence a reliable regression model cannot be
learned for each parameter.

Further pointers to the literature can be found in the above cited
papers. In this paper, we will show that our result compare favor-
ably with those of [8]. This will also mean that our results compare
favorably with those of [1, 3].

4. METHODOLOGY
In this section, we first describe the problem of ad impression

forecasting and then provide our proposed method for this problem.
Ad impression forecasting problem:Given an advertiserA and

its advertisement (or listing)L, and a bid value bid(L), the goal of
ad impression forecasting is to predict the number of impressions
L is likely to obtain in a fixed amount of time in future. For sim-
plicity of exposition and for several practical reasons, weassume
that the prediction is made for next1 week 2. The training data
available for our forecasting problem are auction logs thatcontain
information about all auctions from the recent past, such as, query
traffic features, scores of the winners etc.

For the above mentioned problem, our method learns a genera-
tive models for auctions, in which the given listingL participates.
For modeling, we view an auction (in which the given listingL
participates) as a tuple of: 1) features of the query for which the
auction is held, 2) competitors’ scores, 3) score for the given listing
L. Below, we further explain the above mentioned aspects of an
auction that we model:

• Query: Search engines typically extract several features from
a user query. For example, features can include the location
where query originated from, time of the query, category of
the query, keywords in the query etc. These query traffic fea-
tures form an important component of auctions because both
competitors’ score as well as listingL’s score depend heavily
on these features. For example, suppose listingL got several
clicks from users in New York. Hence, if the query originates
from New York then the pclick ofL would tend to be high,
leading to high score forL in those auctions.

2most of the existing ad impression forecasting tools also forecast
for a time period of 1 week

To accurately model auctions for a particular query phrase,
we model the query traffic features associated with these auc-
tions. Due to ease of exposition, we focus on queries that
contain only a single auction key-phrase3. For example, for
a query “New York Hotels”, only advertisers who bid for
“New York Hotels” participate in the auctions.

• Competitor’s score: We model the scores of “typical” com-
petitors to the given listingL. Note that for predicting the
number of impressions, we need to predict whether or not
an advertisement will “win” a given auction, i.e., predict the
minimum score required to win a given auction. Hence, we
model theminimum score required to win an auction. The
minimum score takes into account various factors such as
bids and pclicks of the competitors, the number of winners,
as well as the reserve score and other filtering criteria.

As mentioned above, to determine if the given listingL wins a gen-
erated auction, we also need to generate the score ofL. We would
like to stress that wedo not model pclick. Instead, we compute the
score by multiplying the provided bid value and the pclick value
estimated using the pclick estimation module in production. How-
ever, typically, pclick estimation modules evolve with time. That is,
at different time instances, pclick of a listing in an auction for the
same query feature set can vary greatly. Hence, we use the pclick
values from the latest version of the production modules as aproxy
for the real run-time values. Recall that we are not trying tosolve
the problem of estimating pclick accurately; rather, our focus is
on forecasting how a listing will fare under the existing sponsored
search engine.

Next, we describe the generative model we use to model auc-
tions in which the given listingL participates. To this end, we use
a Bayes net model where each node of Bayes net corresponds to
either a query traffic feature or theminimum score required to win
the auction.

Bayes net is a popular method for modeling a set of correlated
random variables or features [6]. Bayes net is represented by a
directed acyclic graph (DAG) where every node of the DAG is a
random variable or a query feature in our system. Edges between
different nodes capture conditional dependencies betweendifferent
nodes. Specifically, it satisfies the Markovian property that given
its parents, a node is independent of all the other nodes thatare not
its descendants in the Bayes net. That is,

Pr(vi|Fi) = Pr(vi|Gi),

whereFi = {vj |vi is a child ofvj} and
Gi = {vk|vk is not a descendant ofvi}. Now, any member of the
joint distribution can be computed using the above property. Hence,
to train a Bayes net, we just need to estimatePr(vi|Fi) at each
nodevi.

Why Bayes net?: Bayes net is particularly effective for categori-
cal data as the discrete conditional probability tables (CPT) at each
node can then be easy formed and manipulated to draw samples
or inferences. As all of our query traffic features are categorical,
and theminimum score can also be discretized easily, we select
Bayes net to model auctions. Also, training Bayes net on categor-
ical data is a counting process that can be efficiently implemented
on a Map-reduce framework. Further, by restricting the formthat
joint probability distribution can take, Bayes net helps avoid over-
fitting to the training data. This is particularly useful formodeling
auctions generated from “tail” queries, i.e., queries witha small
number of searches.

3We use the terms key-phrase and keyword interchangeably.



(a) (b)

Figure 2: a) Overview of the training as well as prediction phase of our Generative Model based Ad Impression ForecastingMethod
(GMIF). In training phase, GMIF uses training logs to generate conditional probability tables (CPT) for each node in theBayes net.
During prediction, given a listing L and its bid value, GMIF samples the learned Bayes net to generate auctions. Number of samples
required is determined by the DLM module. pclick of L for each generated auction is estimated using latest production module.
Using the provided bid value and estimated pclick, GMIF computes score ofL in each auction and forecasts number of impressions
using (2). b) A sample Bayes net to model Auctions in Sponsored Search

Figure 2 (b) shows a sample Bayes net that we use. We do not re-
veal query traffic features due to confidentiality reasons. TheMin-
imum score of the auction is a child node of each query traffic
feature node, implying that the minimum score directly depends on
all the traffic features.

As mentioned above, for training Bayes net, we estimate CPT for
each node using training logs. We train one Bayes net per keyword.
As the number of keywords and volume of auctions is large in a
real-life sponsored search system, we use MapReduce framework
to efficiently compute CPTs (see Section 4.2).

Next, for forecasting, given a listingL, we use Bayes net trained
for its bidded keyword to generate sample auctions. The number of
auctions to be sampled is estimated using a Dynamic Linear Model
(DLM) based method that we discuss later in Section 4.1.1. After
generating the sample auctions, we put listingL in each auction and
estimate its pclick value for that auction using the latest production
module of pclick generator. Next, using the provided bid value
bid(L) we compute Score(L,Q) in each auction and compute the
total number of impressions by comparing against minimum win
score for the auction.

Formally, letML be the estimated number of auctions to be gen-
erated for the listingL. Let the set of auctions be:
A = {A1, A2, . . . , AML

}, whereAi = {Qi,MSi}, Qi consists
of the query features for the auctionAi andMSi is the minimum
score needed to winAi. Let the estimated pclick ofL in Ai be
denoted by pclick(L,Qi),∀1 ≤ i ≤ ML. Then, the total number
of impressions is given by:

Impressions(L)= |{i | bid(L)× pclick(L,Qi) ≥ MSi}|. (2)

See Figure 2 (a) for an overview of training and prediction phases.
Note that the predicted number of impressions critically depends

on ML, the estimated number of auctions thatL will participate
in test week. Estimation ofML is challenging due to two key is-
sues: 1) The number of searches for a given query can vary heavily
across different time periods. This effect is especially prominent
amongst “tail” queries that are popular for a short amount oftime.

For example, queries for a movie name peaks during the week of
release and then drops significantly in subsequent weeks. Seasonal
trends can also affect volumes of searches for a query, 2) A listing
L may not participate in each auction for its bidded keyword due
to several reasons. For example, an advertiser might like totarget
specific segment of users. Also, the sponsored search enginemight
filter out an ad due to its low relevance for a specific user query or
to introduce randomization to do explore-exploit.

4.1 Estimation of The Number of Auctions
In this section, we describe our method for estimation of the

number of auctions in which the given listingL is likely to par-
ticipate in the test week. As mentioned above, prediction ofthe
number of auctions in whichL is likely to participate is challeng-
ing due to the variability in query traffic and several other factors
such as exhaustion of budget, filtering by search engine etc.

To handle these challenges, we decouple the problem into two
problems: 1) determine the number of searches in the test week for
L’s bidded keyword, 2) determine the participation ratio forL, i.e.,
the fraction of auctions in whichL is likely to participate.

For the first problem, our approach is to model the volume of
searches for a keyword as a time series and use the first order Dy-
namic Linear Model (DLM)—a well-known forecasting algorithm—
to forecast the next point in the time series. We present details in
the next subsection. For the second problem, we estimate partic-
ipation ratio for each individual listingL using training logs. We
present details in Section 4.1.2.

After solving these two problems, i.e., after estimation ofthe
total number of searches and the participation ratio ofL, we obtain
the number of auctionsML thatL is likely to participate in in the
test week using:ML = N ×γL, whereN is the estimated number
of searches in the test week forL’s bidded keyword, andγ is the
estimated participation ratio ofL.

4.1.1 Dynamic Linear Model (DLM)



In this section, we describe our method for estimating the num-
ber of searches a keyword is likely to obtain in the test week.As
mentioned in the previous section, we use the first order DLM over
the time series of the number of searches in each week.

Formally, to form the time series, we divide the time axis into
bins, each of size one week. Then using logs, we compute the
number of searches for each keyword in each week. LetNt denote
the number of searches in thet-th week for the bidded keyword
corresponding to listingL. Also, let1 ≤ t ≤ T whereT is the test
week for which we want to forecast the number of auctions.

We train the DLM using{N1, . . . , Nt, . . . NT−1} and predict
the number of searches in theT -th (test) week. Below, we briefly
describe the first order DLM based method for time series forecast-
ing; see [11] for more details.

The use of the first order DLMs for prediction of keyword traf-
fic is motivated by the observation that traffic patterns are short
lived and DLMs are especially well-suited for such short horizon
forecasts. Assuming first order DLM, the number of searches of a
particular keyword at timet is given by:

Nt = µt + νt, νt ∼ N (0, V ),

µt = µt−1 + ωt, ωt ∼ N (0,W ), (3)

whereµt is the internal “state” of the series,V,W > 0 are con-
stants, andN (0, V ) is the Gaussian distribution with mean0 and
varianceV . We assume thatµ0 ∼ N (0, C0), whereC0 > 0 is a
constant.

Now, using the above mentioned model, the following update
equations can be easily derived:

(Nt|N1, . . . , Nt−1) ∼ N (mt−1, Ct−1 + V +W ),

mt = mt−1 +
Ct−1 +W

Ct−1 +W + V
(Nt−1 −mt−1),

Ct =
(Ct−1 +W )V

Ct−1 +W + V
, (4)

wherem0 = 0. Nt is a random variable that corresponds to the
number of searches of a given keyword; we abuse notation and
denote thet-th observed value also asNt.

For prediction, we sample(Nt|N1, . . . , Nt−1) using (4), while
mt, Ct are then updated using the observed value forNt. We fix
up the parameters toW = 20, V = 50, C0 = 100; these values
are selected using cross-validation over four weeks of data.

4.1.2 Estimation of Participation Ratio
In this section, we describe our method for estimating the par-

ticipation ratioγL of a given listingL which is defined as the ratio
of the number of auctions in whichL participates in theT -th (test)
week to the total number of auctions forL’s bidded keyword.

Note that, in real-life systems, a listing typically does not par-
ticipate in all the auctions (of its bidded keyword) due to several
reasons such as budget constraints, advertiser specified targeting
constraints, filtering by the sponsored search system etc. For exam-
ple, if the budget of a listing is finished then it cannot participate in
the future auctions for the relevant keyword. Similarly, advertisers
can provide certain constraints so as to target a particulargroup of
users only. Consequently, in practice, the participation ratio tends
to be very small for several listings. Hence, estimating participation
ratioγL is a crucial component for our method.

Note that, similar to the previous section, we can try to estimate
γL, the participation ratio of a listingL, using time series forecast-
ing methods. However, time span of most of the listings is a couple
of weeks and hence we cannot train the DLM accurately for this
problem.

To handle this problem, we make a simplifying assumption that
γL remains constant over time; we verify the assumption over mul-
tiple weeks of real-life data. Using this assumption, we estimate
γL by using training logs. That is, we compute the total number of
wins forL in the training week and divide it by the total number of
auctions thatL participates in training week.

Note that the above mentioned method to compute participation
ratio ofL applies to the existing listings only, i.e, listings present in
the logs. This poses a problem for new listings: listings that were
not present in the logs in the training week. New listings them-
selves can be further categorized into: a) new listing by an existing
advertiser, b) new listing by anew advertiser. Note that for the later
category, no information is available to estimate participation ratio.
Hence, for these listings we use a constant participation ratio, ob-
tained by cross-validation. However, for existing advertisers,γL is
set to be mean of the participation ratio existing listings of the same
advertiser campaign. That is,

γL =

∑
LA∈LA

γLA

|LA|
,

whereLA is the set of all listings in the given campaign by adver-
tiserA which also contains listingL. Now, note that rather than
computingγL using the above equation, we can use a constant
value forγL. The later extension to our method, that uses con-
stantγL, is referred to as GMIF-Const. For clarity, we call our for-
mer method (that uses participation ratios of other listings from the
same advertiser) as GMIF-Adv. For a given advertiser campaign,
typically targeting and budget allocation are same across all list-
ings. Hence, GMIF-Adv is able to exploit information from other
listings from the same campaign. Our empirical results confirm this
observation as ad impression forecasts by GMIF-Adv are signifi-
cantly more accurate than GMIF-Const, which ignores information
from other listings of the same advertiser (see Section 5.4.2).

4.2 Large-scale Deployment
In this section, we discuss some of the issues that arise while

implementing our methodology in a real-life large scale sponsored
search system.

Recall that, our method proceed in two phases: 1) training, 2)
prediction. For training, we generate conditional probability distri-
bution for each edge of our Bayes net. Then, for prediction, given
a listing, we sample the Bayes net to generate auctions usingwhich
we estimate the number of impressions.

Now, while training is offline, it is computationally expensive as
cardinalities of some of our features is large leading to large con-
ditional probability distribution tables (CPT). To scale to real-life
sponsored search systems, we use MapReduce framework to esti-
mate CPT from raw logs. Specifically, suppose we want to estimate
the following CPT:P (vi|Fi) where Fi = {vj |vi is a child ofvj}.
First we find out all the unique values eachj ∈ Fi can take.
Then, weReduce on each combination of unique values of nodes
in Fi and find the probability distribution ofvi using the obtained
records. Such a scheme can be implemented easily in any standard
MapReduce framework. We then use generated CPTs to construct
conditional cumulative distribution functions (CDF) of each node
variable. Obtained CDFs simplify and speed up the sampling pro-
cess.

Next, we consider the the prediction phase of our method. Note
that, this step is online, and hence requires real-time response. Con-
sequently, we cannot sample Bayes net online to generate number
of impressions. Instead, we pre-compute number of impressions
at all possible bid values (at small increments). Hence, when an
advertiser asks for a forecast, we perform simple look-up tore-



Table 1: Averaged data statistics for three train-test weekcom-
binations.

Statistics Train Test Common
No. of Keywords 38991 37959 33428
No. of Listings 365187 350400 248030
No. of Auctions 6638205 6265138 Not Applicable

turn predicted number of impressions at the supplied bid value.
Note that if a listing is not present in the logs, but the advertiser
is present. Then, we can pre-compute number of impressions for
the advertiser at all possible bid values and for all possible key-
words. If the advertiser is also, not present, then we simplystore
pre-computed number of impressions for eachkeyword.

5. EXPERIMENTS
In this section, we present results from large scale experiments

conducted over traffic logs obtained from Bing to evaluate our frame-
work. The goal of this section is three-fold: 1) establish that our
method outperforms existing methods on several accuracy criteria,
2) demonstrate increase in coverage (% of listings for whichpre-
diction is available) over a naive baseline method that replays the
training logs, 3) demonstrate scalability of our method on real-life
data.

5.1 Experimental Setup and Data Statistics
In this section, we present our experimental setup and some key

statistics from the data.
For conducting experiments, we select one week as the unit of

time. Our initial experiments showed that the latest weeklydata
provides more accurate information about trends and patterns in
query traffic as well as about advertiser participation as opposed to
data from longer or shorter periods. Thus using weekly data leads
to best accuracies for all the methods.

For our experiments, we take a randomly sample around40, 000
search queries and select the auctions corresponding to those key-
words from the training week logs (around 6.6 million). We select
queries with at least 30 impressions in the training week, sothat
the Bayes net model can be trained with reasonable confidence.
We also restrict our focus only on the listings that requiresexact
match between the bidded keyword and the query.

We call listings appearing in both training and test weeksexisting-
listings, while listings appearing in the test week but were not present
in the training week are termednew-listings. Table 1 presents a few
basic data statistics averaged over three train and test week combi-
nations.

5.2 Implementation Details
In this section, we provide implementation details of our method

as well as the existing methods against which we evaluate ourmethod.
As shown in the Table 1, the data that we consider for our exper-

iments is large scale and cannot possibly be processed usingstand
alone machines. Hence, to evaluate our method, we implemented a
production grade prototype of our method as well as existingmeth-
ods on a proprietary MapReduce platform. We use a total of nine
traffic/query related features to construct the Bayes net. While the
number of features considered is reasonably small, the cardinality
of features tends to be very large with values up to 100,000s.

We generate the conditional probability tables (CPT) usingMapRe-
duce framework as explained in Section 4.2. We also use grid to
sample the learned Bayes net for testing our method, which wecall
Generative Model based Impression Forecasting (GMIF).

We evaluate our method against two existing methods: Training
Week Replay (TWR), Normalized Bid Model (NBM) [8]. We im-
plemented both the methods on production grid using a proprietary
MapReduce platform.

TWR is a baseline method, and for a given listingL with a given
bid value, it simply replays relevant auctions from training week
logs. That is, it extracts out all the auctions thatL participated
in training week logs and compute new score for the given list-
ing L using Score(L,Q) = pclick(L,Q) × Newbid(L), where
Newbid(L) is the new bid provided for listingL. TWR then simu-
lates the auctions with new scores, computes total number ofwin-
ning auctions, and forecasts it as the number of impressionsfor L.
Note that, as TWR replays exact logs from training weeks, thepar-
ticipation and pclick information is not available for new-listings.
Hence, this method cannot predict for new listings.

Another method that we use to evaluate our method is an adap-
tation of the Normalized Bid Model (NBM) by [8]. While there
exist a few other approaches in literature, e.g. [1], [3], weselect
NBM for evaluation as it performs better or similar to the other
approaches; see [8] and [3] for comparisons of these approaches.
Additionally, NBM is a scalable and easy to implement approach.
NBM assumes that competitor listings’ “normalized scores”(de-
fined below) are i.i.d. across listings as well as auctions.

Normalized Score(L′) = Score(L′)/pclick(L′).

In our implementation, we sample this distribution to generate scores
for competitors while generating pclick using the prediction mod-
ule in production.

5.3 Evaluation Metrics
In this section, we describe various evaluation metrics we use to

compare different methods. For reporting results, similarto [8], we
first bin the listings according to the actual number of impressions
obtained in the test week. We form four bins in all and name them
asBin 1, Bin 2, Bin 3, Bin 4. The bins are ordered in increasing
order of number of impressions,Bin 1 representing the lowest vol-
umes,Bin 2 representing the next highest, and so on. We do not
disclose exact ranges of these bins due to confidentiality reasons.

We adopt the following metrics to evaluate performance of each
method:
Relative Error (RE) : Relative error of a listing is given by:RE =
|predicted−actual|

actual
, wherepredicted is the predicted number of im-

pressions for the listing andactual is the actual number of impres-
sions in the test period. We report average relative error over all the
test weeks listings. This is a standard metric in forecasting and was
used by [8] and others.
Accuracy: We measure the accuracy of a method for a bin as the
number of listings (in the bin considered) that have less than τ > 0
relative error. That is,

Accuracyτ =
|Listings s.t. RE≤ τ |

Number of Listings
. (5)

τ is a threshold parameter, where smaller values ofτ imply more
stringent accuracy measures. We report results for different τ val-
ues; default value ofτ is 0.5.

Accuracy measures percentage of listings for which the predic-
tion is within a factorτ of the actual prediction. That is, it accounts
for the volume of “reasonably good quality forecasts. Note that
while using this measure, the very low impression bins will gen-
erally show poorer results. This is because of the low valuesof
denominator. For example, assume a listing actually gets 2 im-
pressions while the prediction was 4 for a specific bid value;the
RE value for this item will be+100%. TheRE number in this



case can be misleading since the absolute values are not greatly
different. Higher impression bins do not face this problem and give
results which are more accurately indicative of the true quality and
are important because they belong to bigger advertisers with more
budget to spend on their campaigns. Thus while using this measure,
though we will provide numbers for both the high and low impres-
sion bins, we will specially focus more on the accuracy numbers
for the higher impression bins to gain fair insight into the quality of
our predictions.

We also report overall accuracy of methods across bins as well
as bin-wise averaged accuracies, i.e., average of accuracyobtained
in each bin.
F-measure: We report the F-measure to compensate for the defi-
ciencies of the Accuracy metric in lower impression bins. Given
the pre-defined bins on actual impressions, we calculate thetrue
positives (predictions in the specific bin and actuals in thesame bin
too: tp), false positives (predictions fall in the bin but actuals lie
in some other bin:fp) and false negatives (predictions made out-
side of the bin but actuals fall in the specific bin:fn) for each of
the bins. The precision and recall for each bin is then calculated
asPr = tp

tp+fp
andRe = tp

tp+fn
respectively. We also calcu-

late theF -measure which is the harmonic mean of precision and
recall:F = 2Pr.Re

Pr+Re
. F-measure is a well known performance mea-

sure and is widely used in a number of domains like information
retrieval [7].

We also report the additional number of new listings we can pre-
dict which did not appear in training week. New listings can be fur-
ther categorized into: 1) both the advertiser and the keyword were
present in the training data but the listing is new to the system, 2)
only the corresponding keyword was available in the training data
and the advertiser (and so also the listing) is new to the system. We
report accuracy and other metrics for both the categories and show
that our methods can effectively exploit information available from
the advertiser’s other listings.

Note that we can measure metrics mentioned in this section for
only those listings which do not change their bids in the entire test
week window. If a listing changes bid during test week, then it
is not clear which bid value to select for forecasting impressions.
However, we observe that approximately80% of the listings do not
change bids, hence we can report results over a substantial fraction
of listings.

5.4 Results
In this section, we report results of several experiments with

multiple weeks of data for evaluating forecasts from our method
against existing methods. We use evaluation metrics described in
the previous section to compare different methods. Recall that, we
name our method as Generative Model based Impression Forecast-
ing (GMIF), a baseline method as Test Week Replay (TWR), and
the method by [8] as Normalized Bid Model (NBM). Also, recall
that, for reporting results, we bin the listings into four bins: Bin 1,
Bin 2, Bin 3, Bin 4.

5.4.1 Existing Listings
Here, we report results regarding forecast of impressions for ex-

isting listings, i.e., the listings that are present in bothtraining and
test week logs. For our experiments, we obtain data from logsof a
recent month that shows considerable fluctuations in trafficvolume
of keywords and distribution of traffic parameters due to reasons
such as shopping season surges. As the traffic volume and patterns
change week by week, the results clearly bring out the advantages
of our method (generative modeling and short horizon time trend-
ing) compared to the others.

First, we present average accuracies (see Section 5.1) obtained
by all the three methods. Figure 3 compares the average accuracies
of the three methods in each of the four bins forτ = 0.3, 0.5, 0.6.
The bins are arranged on the axis in order of increasing test week
actual impressions. As mentioned earlier, the boundaries of the
bins could not be revealed due to confidentiality reasons. Figure 3
also reports the accuracy variances across the multiple test weeks
considered. Clearly, our method GMIF outperforms both TWR and
NBM in terms of average accuracy for all bins for all threshold
values except for Bin 1 withτ = 0.3. GMIF also consistently
achieves the lowest variance. NBM approach outperforms TWRin
all bins except for the lowest one.

Hence, our method is more accurate as well as more consistent
than the existing methods. We believe, low variance is due toour
more principled generative model based approach to modeling auc-
tions in comparison to other methods that are prone to overfitting
to the training data. Note that although NBM models competitor
scores by a simplifying assumption, it assumes exactly the same
number of auctions as the past week and uses exactly the same
query traffic.

Next, in Table 2, we report the overall accuracy across all the
bins (weighted by the number of listings) as well as the accuracy
averaged over all the bins (unweighted averaging). Clearly, our
method achieves significantly higher accuracy than both TWRand
NBM. In term of overall accuracy, GMIF is approximately 7% and
19% more accurate than TWR and NBR, respectively. Similarly,
in terms of bin-wise accuracy, GMIF is around 12% and 15% more
accurate than TWR and NBM, respectively. Bin-wise accuracyis
a widely used metric, but it is particularly useful for the sponsored
search scenario as it takes into account the effect of heavy tail dis-
tribution of impressions (i.e., many impressions in Bin 1) as well,
which is typical to sponsored search.

Method Overall Accuracy Bin-wise Accuracy
NBM 0.24 0.35
TWR 0.38 0.38
GMIF 0.45 0.50

Table 2: Overall and bin-wise accuracy (τ = 0.5) for different
methods. Our method (GMIF) is at least 7% more accurate
(according to overall accuracy) than NBM and TWR.

Now, observe that in Figure 3, the accuracy in the lowest impres-
sion bucket (Bin 1) is poor for all the methods. Reason being,in Bin
1, due to small number of actual impressions, the denominator (ac-
tual) values in calculatingRE are small that leads to largeRE. As
discussed earlier, this is an inherent drawback of any relative error
based metric. To alleviate this problem, we also report F-measure
obtained within each bin by the three methods considered. Figure 4
(a) reports the average F-measures for the three methods andalso
show variance in F-measure for each of the method. Here again,
our method (GMIF) consistently outperforms the other methods in
all the bins. However, we note that for the F-measure metric,TWR
outperforms NBM in all the bins consistently and is closer toGMIF
across all the bins.

5.4.2 New Listings
Here, we compare different methods for their predictions onnew

listings, listings that are present in the test week logs butnot in
the training week logs. We did similar set of experiments on new
listings as on the existing ones and used the same metrics to com-
pare different approaches. Since the Training Week Replay (TWR)
method uses logs to determine pclick as well as participation infor-



(a) (b) (c)

Figure 3: Average accuracy with different thresholds for existing listings: a) τ = 0.3, b) τ = 0.5, c) τ = 0.6. X-axis represents actual
number of impressions in test data, and is divided in four bins. Bin “ALL” represents all the listings, irrespective of the number of
impressions. Our method (GMIF) consistently obtains higher accuracy than both NBM and TWR, while obtaining smallest variance
of the three methods across all bins and all thresholdτ values.

Method Overall Accuracy Bin-wise Accuracy
NBM 0.05 0.19

GMIF-Const 0.05 0.21
GMIF-Adv 0.15 0.24

(a) (b) (c)

Figure 4: a) Average F-measure for Existing Listings. Our method obtains around 15% higher F-measure than TWR and about 25%
higher than NBM, in Bin 2 which forms the torso of the impression range and is one of the most interesting bins for real systems.
b) Average F-measure for New Listings. GMIF-Adv obtains 32%higher F-measure than GMIF-Const and 31% higher F-measure
than NBM.c) Overall and bin-wise accuracy (τ = 0.5) for different methods for new listings.

mation, we cannot use it to predict for new listings. However, we
can use our adaptation of the NBM method of [8] in this case.

Recall that new listings can be further divided into: 1) listings
whose advertiser was present in the past week, 2) listings with
new advertisers. As explained in Section 4.1.2, our method can
be adapted to both of these categories. We refer to our extension
of GMIF method that uses advertiser information as GMIF-Adv,
while the GMIF method adaptation that does not use advertiser in-
formation is referred to as GMIF-Const.

Figure 5 shows the average accuracy in each bin obtained by
NBM as well as our GMIF-Const and GMIF-Adv method forτ =
0.3, 0.5, 0.6. Note that while GMIF-Const and GMIF-Adv perform
essentially equally well for the higher impression bins, GMIF-Adv
does distinctly better in the lowest bucket which indicatesthat ad-
vertiser specific information plays a significant role in determining
the number of impressions for listings with small impression vol-
ume (tail listings). The figure also shows that both the GMIF ap-
proaches almost always give higher average accuracies and lower
variances compared to the NBM approach.

Similar to the previous section, we also report overall accuracies
and bin-wise mean accuracies for NBF and our GMIF methods (see
Figure 4 (c)). Here again, GMIF-Adv outperforms the other meth-
ods in both the measures. The gain in overall accuracy is substan-
tially higher compared to the gain in bin-wise accuracy measure.

Figure 4 (b) shows the corresponding F-measures for the three
approaches in different bins. Note that while considering this met-
ric, GMIF-Adv performs consistently better compared to NBMand

Table 3: Decrease in average Relative Error w.r.t. Baseline
NBM method.

Method Bin 1 Bin 2 Bin 3 Bin 4 ALL
GMIF-Const 5.20 11.99 16.54 16.47 5.66
GMIF-Adv 36.38 23.03 18.63 22.04 36.49

GMIF-Const which perform almost similar for the higher impres-
sion bins.

For new listings we also report gain in relative error for both
the GMIF approaches compared to NBM in each bin (see Table 3).
This metric clearly, shows that our methods are significantly bet-
ter than NBM in each bin and overall. It also corroborates the
fact that GMIF-Adv achieves maximum relative gain in the lower
bins where we observed that the influence of advertiser campaign
information is a crucial factor in predicting impressions (see Sec-
tion 4.1.2).

5.4.3 Dynamic Linear Model
In this subsection we take a deeper look at the accuracy of our

traffic prediction module that is based on first order dynamiclinear
models. Note that the accuracy of this module in the entire ar-
chitecture needs special attention since this predicts thenumber of
sample auctions in which a listing will participate in the test period.
Inaccuracy in this step should lead to a ripple effect on the error as
it magnifies inaccuracies of the overall impression forecasts. As
mentioned in Section 4.1.1, we learn a DLM for each keyword us-
ing past 6 week traffic volumes as time series points. We then tune
the DLM parameters for optimality using cross validation over mul-
tiple weeks of learning and use the trained and tuned models for
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Figure 5: Average accuracy with different thresholds for new listings: a) τ = 0.3, b) τ = 0.5, c) τ = 0.6. GMIF-Const and
GMIF-Adv are adaptations of our GMIF method to new listings, with main difference being that GMIF-Adv uses existing adver-
tiser’s information, while GMIF-Const ignores that inform ation. Clearly, GMIF-Adv is significantly better than NBM an d in Bin 1,
outperforms GMIF-Const as well.

Figure 6: Average accuracy in traffic volume prediction (with
τ = 0.3). First order DLM based method achieves signifi-
cantly higher accuracy than baseline method (using training
week traffic volume as approximation to test week traffic vol-
ume), especially for Bin1 which constitutes 80% of the traffic.

prediction of traffic volumes of keywords. We report relative er-
ror/accuracy (defined in Section 5.3) to evaluate gains fromusing
the DLM framework. We compare against a naive but a very ef-
fective method in practice: given a keyword assume its last week’s
traffic volume as the estimate for the next week’s traffic volume.
Note that both TWR and NBM methods obtain their number of
samples using this baseline heuristic. Figure 6 reports theaccu-
racy for the baseline (training week volume) and DLM prediction
method withτ = 0.3. We observe similar results for other values
of τ . The Bins on the horizontal axis are indicative of real traffic
ranges of the test week and are not disclosed for confidentiality rea-
sons. The Bins are arranged in increasing order of test week actual
traffic volume from Bin1 to Bin4. It can be observed from Fig-
ure 6 that DLM predictions overall show better results compared
to the baseline method. Bin1 is of special interest as it represents
torso and tail queries and contain around 80% of the total number
of keywords. For this bin, our DLM based method is significantly
better than baseline method (by4%). These results show that first
order DLMs can learn traffic volume trends reasonably well from
only a few points in time series data. This is especially needed
in our specific case since most torso and tail keywords have short
lifecycles of existence (typically ranging from 6-8 weeks).

5.4.4 Run-times
Finally, in this section we report approximate time required by

each step of our approach on a standard proprietary grid platform.
For a substantial fraction of production data from Bing, ourentire
pipeline in offline mode takes approximately 260 mins to run end
to end. We provide detailed average time breakups in Table 4

Table 4: Approximate Processing Time
Step Processing time

Traffic Feature Extraction 192 mins
Train Bayes net 19 mins

DLM based Traffic Volume Prediction 10 mins
Sampling Auctions from Bayes net 12 mins

Simulation on artificial traffic 27 mins

The first row in the above table reports time required to extract
query traffic features from raw logs. This time step is most expen-
sive and takes about three hours. Next row shows time required
for training the Bayes net. Fourth and fifth row shows the total
time required to forecast number of impressions for all the adver-
tisers, which is approximately one hour only. Hence, our method’s
training as well as pre-computation needed for real-time prediction
finishes within only half a day.

6. DISCUSSION AND CONCLUSION
In this paper, we considered the problem of ad impression fore-

casting, which is critical in helping advertisers optimizetheir return
on invest from sponsored search advertising.

Most of the existing methods view the problem from a game-
theoretic point of view, where the goal is to model how competi-
tor’s for an ad are going to bid. But they mostly ignore or overfit
to the query traffic information which, via pclick, also has asig-
nificant impact on the chances of an ad winning an auction. In
this paper, we modeled the auctions holistically using a carefully
designed Bayes net that captures explicitly the correlation between
competitors’ scores and query traffic features. Our empirical results
corroborate our view that the interplay between the query traffic
features and competitors’ scores plays a significant role and needs
to be captured using a detailed model.

While in this paper we focused on predicting the number of im-
pressions, our method is flexible and allows for various extensions.
For example, we can extend our method to estimate other perfor-
mance indicators such as number of clicks, average positionof an
ad. Further, our current method is designed assuming that only ad-



vertisers who bid for the exact user query can participate inits auc-
tions. However, in real-life systems, a listing can participate in the
“related” keywords’ auctions as well. For example, a listing that
bids on “shoes” can participate in a user query “running shoes”.
We can extend our method to such cases by forming a mapping be-
tween the bidded keywords and user queries for an advertiserby
using logs. In future, we plan to conduct rigorous experiments us-
ing our method’s extension for such listings. Finally, we used a first
order DLM to capture trends and momentary peaks in query search
volume. However, the DLM ignores information about query traffic
features and only focuses on the total number of searches. Weplan
to address this limitation using dynamic Bayes net, that smoothly
vary conditional probability distributions over each edge. Bayes
net also allows for feature targeting: For example, if the advertiser
has a certain geographical area, or a demographic group to which
they would like to advertise, then by fixing the corresponding nodes
in the Bayes net, we can generate the traffic corresponding tothe
targeting.
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