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Abstract

We study stochastic gradient descent without re-
placement (SGDo) for smooth convex functions.
SGDo is widely observed to converge faster than
true SGD where each sample is drawn indepen-
dently with replacement (Bottou, 2009) and hence,
is more popular in practice. But it’s convergence
properties are not well understood as sampling
without replacement leads to coupling between
iterates and gradients. By using method of ex-
changeable pairs to bound Wasserstein distance,
we provide the first non-asymptotic results for
SGDo when applied to general smooth, strongly-
convex functions. In particular, we show that
SGDo converges at a rate of O(1/K?) while
SGD is known to converge at O(1/K) rate, where
K denotes the number of passes over data and is
required to be large enough. Existing results for
SGDo in this setting require additional Hessian
Lipschitz assumption (Giirbiizbalaban et al., 2015;
HaoChen & Sra, 2018). For small K, we show
SGDo can achieve same convergence rate as SGD
for general smooth strongly-convex functions. Ex-
isting results in this setting require X = 1 and
hold only for generalized linear models (Shamir,
2016). In addition, by careful analysis of the cou-
pling, for both large and small K, we obtain bet-
ter dependence on problem dependent parameters
like condition number.

1. Introduction

In this paper, we study the standard finite sum optimiza-
tion problem that arises in most machine learning based
optimization problems: F(z) := 23" | f(z;i), where
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f(x;4) : R — R is the i-th component function. For ex-
ample, in standard ERM and deep learning training f(x; )
denotes the loss function w.r.t. the i-th data point. Stochastic
Gradient Descent (SGD), originally proposed by Robbins
& Monro (1985), has emerged as one of the most popular
techniques to solve this problem.

At t-th step, SGD updates the iterate by z;41 = x; —
NV f(x; 1) where V f(xy;4,) is the gradient of f(x;4s)
and i, is selected uniformly at random with replacement
yielding E;, [V f(z;4,)] = VF(x;). SGD has been exten-
sively studied in literature and a vast number of results are
known in many different settings, most prominent being
that of convex optimization (Benaim, 1999; Borkar, 2009;
Kushner & Yin, 2003; Bubeck, 2015; Bottou et al., 2018;
Schmidt & Roux, 2013; Gower et al., 2019; Nguyen et al.,
2018; Vaswani et al., 2018). While SGD holds the rare
distinction of being both theoretically well understood and
practically widely used, there are still significant differences
between the versions of SGD that are studied in theory vs
those used in practice. Resolving this discrepancy is an
important open question. One of the major differences is
that SGD is widely used in practice with out replacement
(SGDo). SGDo uses the standard SGD update but in each
epoch/pass over data, every i € [n] is sampled exactly once
but in a uniformly random position i.e., without replacement.
This implies, that E;, [V f(z4;4,)] = VF () does not hold
anymore, making the analysis of SGDo significantly more
challenging.

Studies however, have shown empirically that SGDo con-
verges significantly faster than SGD (Bottou, 2009).
Giirbiizbalaban et al. (2015) provided first formal guaran-
tee for this observation and proved that the suboptimal-
ity of SGDo after K epochs behaves as O (1 /K 2) , where
as the suboptimality of SGD is known to be O (1/nK)
(and this bound is tight). Under the same assump-
tions, (HaoChen & Sra, 2018) improve upon the result
of (Giirbiizbalaban et al., 2015) and show a suboptimality
bound of O (1/n?K? + 1/K?) where n is the number of
samples and K is the number of epochs. However, both the
above given guarantees require Hessian Lipschitz, gradient
Lipschitz (also known as smoothness) and strong convexity
assumptions on F. In contrast, SGD’s rate of O (1/nK)
requires only strong convexity. It is also known that this
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Table 1. Comparison of our results with previously known results in terms of number of functions n and number of epochs K. For
simplicity, we suppress the dependence on other problem dependent parameters such as Lipschitz constant, strong convexity, smoothness

etc. These dependencies are clearly stated in Theorems 1, 2 and 3.

rate cannot be improved with out smoothness (gradient Lip-
schitz). So, in this work, we ask the following fundamental
question: Does SGDo converge at a faster rate than SGD for
general smooth, strongly-convex functions (with out Hessian
Lipschitz assumption)?

We answer the above question in affirmative_and show
that SGDo can achieve convergence rate of O (1 /nK 2)
for general smooth, strongly-convex functions. Moreover,
for K < n, our result improves upon the best known
rates (HaoChen & Sra, 2018). Our results also improve upon
the O(1/nK) rate of SGD once K > O(r?) where k is the
condition number of the problem (2). In contrast, (HaoChen
& Sra, 2018) requires K > O (k" - \/n) to improve upon
the rates of SGD. Note that in practice one takes only a few
passes over the data and hence a practical method needs to
demonstrate faster rate for a small number of epochs. Fi-
nally, our analysis yields improved dependence on problem
dependent parameters like «.

As mentioned above, in many settings, we are interested
in the performance of SGDo, when the number of passes
K is quite small. (Shamir, 2016) considers an extreme
version of this setting, and obtains suboptimality bounds for
SGDo for the first pass, for the special case of generalized
linear models. These bounds are similar to the standard
suboptimality bounds for SGD of O (1/n) and O (1/+/n)
for convex functions with and with out strong convexity
respectively (here number of passes K = 1).

For the small K regime, we obtain similar convergence rates
of O (1/nK) and O(1/+/nK) for smooth convex functions
with and with out strong convexity respectively. This im-
proves upon (Shamir, 2016) by showing the result for gen-
eral convex functions, for any number of epochs and also

in terms of dependence on problem dependent parameters.
These results are summarized in Table 1. The first three
rows of the table compare our result for large K against
those of (Giirbiizbalaban et al., 2015) and (HaoChen & Sra,
2018). The next two rows compare our result for small K
(i.e., constant K') against that of (Shamir, 2016) in the pres-
ence of strong convexity. The final two rows compare our
result for small K against that of (Shamir, 2016) without
strong convexity.

As noted earlier, the main challenge in analyzing SGDo is
that in expectation, the update does not follow gradient de-
scent (GD). That is, E;, [V f(z+;it)] # VF(x¢). The main
proof strategy is to bound the bias in SGDo update, i.e.,
IE;, [V f(x;4)] — VF(xy)]| as well as the variance associ-
ated with the update, i.e., E;, [||V f(2¢;30)||?] — | VF () ||2.
To bound the bias term, we use a novel coupling technique
for limiting Wasserstein distance between the paths of SGDo
and SGD. For the variance term, we use smoothness of the
function to show that compared to SGD, SGDo naturally
leads to variance reduction. We put together these two terms
and analyze them in different settings of K (constant vs
condition number dependent K) to obtain our final results
(Theorems 1, 2 and 3).

Organization: We introduce problem setup, notations, and
a brief overview of related works in Section 2. In Section 3,
we present our main results, compare it with existing work
and give a rough outline of our proof strategy. In Section 4,
we introduce coupling and Wasserstein distances and use
these ideas to state and prove some important lemmas in our
context. Section 5 presents the proofs of our main results.
Finally, we conclude with Section 6. Due to space limita-
tions, some of the proofs are presented in the appendix.
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2. Problem Setup

Given convex functions f(;1),..., f(;n) : R = R, we
consider the following optimization problem:

min F(z) := %Zf(x,z), (1)

where W C R? is a closed convex set. We will refer to
F as the objective function and f(-;4) as the component
functions. Henceforth, we let * denote the minimizer of
F over W and Iy denote the projection operator onto
the set WW. We study SGDo when applied to the above
problem. The algorithm takes K passes (epochs) over the
data. In each pass, it goes through the component functions
in a random order oy, : [n] — [n] and requires a step size
sequence cy,; > Ofork € [K], 0 < i < n—1 for
computing stochastic gradient. See Algorithm 2 for pseudo-
code. For simplicity of analysis and exposition, we assume
constant step-sizes oy, ;. For our analysis, we assume that
the component functions are twice differentiable, uniformly
G lipschitz and L smooth over W.

Assumption 1 (Lipschitz Continuity). There exists G > 0
such that |V f(z;i)|| < GV x € Wandi € [n].

Assumption 2 (Smoothness/Gradient Lipschitz). There ex-
ists L > 0 such that, ||V f(x;1) — Vf(y;i)|| < Lljz —
y|Va,y € Wandi € [n].

In addition, we require strong-convexity of F'(-) for Theo-
rem | and Theorem 2 to hold.

Assumption 3 (Strongly-convex). There exists 1 > 0 s. t.
F(y) = F(z) +(VF(x),y —2) + §lly—z|* ¥ 2,y € W.

We define condition number « of the problem (1) as:

k=L/u, )

where L and . are smoothness and strong convexity param-
eters defined by Assumptions 2 and 3, respectively. Finally,
we denote the distance of initial point z¥ from the optimum

by Die., D def H:r? — a:*H

2.1. Related Work

Gradient descent (GD) and it’s variants are well-studied
in literature (Bubeck, 2015). If Assumption 1 is satisfied,
then suboptimality of GD (more precisely subgradient de-
scent) with averaging is bounded by O(G - D/v/K) where
K is the number of GD iterations. With Assumption 2, the
convergence rate improves to O(LD?/K) and with addi-
tional Assumption 3, it further improves to O(e~%/#LD?)
where « is defined by (2). For smooth functions, acceler-
ated gradient descent (AGD) further improves the rates to
O(LD?/K?) and O(e~%/VFLD?), in the above two set-
tings respectively (Bubeck, 2015).

Each iteration of GD requires a full pass over data and hence
requires prohibitively large O(n - Ty) computation where
T is the computation cost of evaluating gradient of any
f(z;4) at any x. In contrast, SGD (Algorithm 1) requires
only O(Ty) computation per step. Moreover, SGD’s sub-
optimality after K passes over the data is O(G - D/v/nK)
with Assumption 1. Similarly, itis O(G?/u-1/(nK)) if As-
sumption 3 also holds. Without any additional assumptions,
these rates are known to be tight.

With additional Assumption 2, people have designed acceler-
ation methods for SGD such as SAGA (Defazio et al., 2014),
SVRG (Johnson & Zhang, 2013), SDCA (Shalev-Shwartz &
Zhang, 2013) and SAG (Schmidt et al., 2017) - these meth-
ods achieve variance reduction using previous iterates in the
algorithm and obtain faster rates of convergence. Note that
none of these results applies for SGDo as sampling with-
out replacement introduces dependencies between iterates
and gradients. But, at a high-level, our result shows that
SGDo naturally achieves some amount of variance reduc-
tion giving better convergence rate than SGD. There have
also been other works that study SGDo. (Recht & Re, 2012)
relate the performance of SGDo to a noncommutative ver-
sion of arithmetic-geometric mean inequality (Zhang, 2014;
Israel et al., 2016). However, this conjecture has not yet
been fully resolved. (Ying et al., 2018) shows that for a small
enough fixed step size, the distibution of SGDo converges
closer to the optimum than SGD.

3. Main Results

In this section, we present our main results for SGDo and
the main ideas behind the proofs. Recall that z¥ denotes the
iterates of SGDo and let z* be a minimizer of F(-) over
W. We define d; 1, := ||2¥ — x*||. We now present our first
result that improves upon the convergence rate of SGD for
large K.

Theorem 1. Suppose F(-) satisfies Assumptions 1-3. Fix
I > 0 and let number of epochs K > 32Ix?. Let xf

be the iterates of SGDo (Algorithm 2) when applied to

lognK
unk

Then the following holds for the tail average T def

K .
m Dk [K/2] xk of the iterates:

. . def
F(-) with constant learning rate ay; = o = 4l

E[F(#)] - F(z) < 0 (ugidy ) +0 (567 Gosn?)

Remarks:

e The error has two terms — first term depending on ini-
tial error dp ; and second term depending on problem
parameters L, G and . The dependence on initial er-
ror can be made to decay very fast by choosing [ to be



SGD without Replacement: Sharper Rates for General Smooth Convex Functions

Algorithm 1 SGD: SGD with replacement

Algorithm 2 SGDo: SGD without replacement

Input: Functions f(x;1),4 € [n], convex set J/, maximum num- Input: Functions f(x;4),i € [n], convex set W, number of epochs

ber of epochs K, step-size sequence ay,;, k € [K], i € [n]
1: 22«0
2: for k € [K] do

3 ke gkt

4 for0<i<n-—1do

5 J¥ « Unif[n]

6: ok Ty (rf —aiVf (xlfyjzk))
7 end for

8: end for

K, step-size sequence o, k € [K], © € [n]

1

2

3

4: oy < uniformly random permutation of [n]

5: for0<i<n-—1do

6: aiy <+ Iw (2F — arVf (25500 (i + 1))
7:  end for

8: end for

a large enough constant, i.e., K = Q(x2). In this case,
the leading order term is the second term which decays

as O (#) Our result improves upon the O (%)
rate of SGD once K > O (k?).

e Our result improves upon the state of the art result for
SGDo by (HaoChen & Sra, 2018) as long as K < kn,
which captures the most interesting setting in prac-
tice. Furthermore, we do not require the additional
Hessian Lipschitz assumption. For the sake of clarity,
(HaoChen & Sra, 2018) keeps all parameters other than
1 constant and takes k = O(1/u) to get suboptimality
of O (nf—;{z + I% + %) By the same token, our

3

suboptimality is O( ).

Note that Theorem 1 requires the number of passes K > x2.
We now present results that apply even for small number
of passes. In this setting, we match the rates of SGD. The
problem setting is the same as Theorem 1.

Theorem 2. Suppose F(-) satisfies Assumptions 1-3. Let
x¥ be the iterates of SGDo (Algorithm 2) when ap-

plied to F(-) with constant learning rate oy,; = « def
min (%7 4] lignz(K) for a fixed | > 0. Then the following
holds for the tail average & def m Zf_[ﬁ] mg of
-1% =[5
the iterates:
2l |2 2l _p*2
E[F()] - F(a) = O (5™ + L)
L0 (G JZ%LK n Lg’nlzolg{gl(> .

Remarks:

e The dependence on initial error can be made to decay
as fast as any polynomial by choosing [ to be a large
enough constant.

e Our result is the first such result for general smooth,
strongly-convex functions and for arbitrary K; recall
that the result of (Shamir, 2016) requires F' to be a

generalized linear function and requires K = 1. Fur-
thermore, even in setting of (Shamir, 2016), our result

improves upon best known bounds when n K > x2. In

2
this case, our error rate is O (C’Vﬁig;f() that matches

the rate of SGD upto log factors. The result of (Shamir,
2016) does not obtain this rate even when n — oo.

The above two theorems require F'(-) to be strongly convex
(Assumption 3). We now present our result for F' that need
not satisfy the strong convexity assumption.

Theorem 3. Suppose F(-) satisfies Assumptions 1-2 and
n—1 K k
that diam(W) < D . The average & dof %

of SGDo (Algorithm 2) with constant learning rate oy, ; =
def

lef . (2 _ D : .
a = min (L, G\/ﬁ) satisfies:

E[F(#)] — F(a*) < 22L 4 3GD

=
ﬁ
=

Remarks:

e The second term of O ( GD ) is the same as the rate

VnK
of SGD in this setting. This becomes the leading order
212
term once nk > LGQ .

e Our result is the first such result for general smooth,
Lipschitz convex functions. The earlier result
by (Shamir, 2016) applied only for generalized linear
models but does not require smoothness assumption.

3.1. Necessity of Smoothness

In the classical analysis of SGD for O (=) rate, one only
requires Assumptions 1 and 3. In this section, we out-
line an argument showing that obtaining a better rate than
O (-%) for SGDo as in Theorem 1, requires additional
Assumption 2 (smoothness). In contrast, it is well known
that the rate of O () is tight for SGD even with addi-
tional Assumption 2. Consider the example where all the
component functions are same. i.e, f(z;7) = g(x) for all
1<i<mnandz € R% Then, running SGDo for optimiz-
ing F(z) := 237" | f(x;i) = g(z) for K epochs (over

T n



SGD without Replacement: Sharper Rates for General Smooth Convex Functions

a closed convex set W) is the same as running gradient
descent over F'(z) for nK iterations.

Given any 7' = nK, (Bubeck, 2015, Theorem 3.13) shows
the existence of a function satisfying Assumptions 1 and 3
and a closed convex set VV such that the suboptimality of
all iterates up to the T iteration of GD-hence, for all the
iterates up to K" epoch of SGDo—is lower bounded by
SE:K. This establishes the necessity of Assumption 2 for
obtaining improved rates over SGD as in Theorem 1.

3.2. Proof Strategy

As a general note, in the proofs, we assume that VW = R4,
which avoids the projection operator 11,y . All the steps go
through in a straight forward fashion even with this pro-
jection operator. When we try to apply the classical proof
of rate of convergence of SGD to SGDo, the major prob-
lem we encounter is that E[f (2¥; 0y (i + 1))] # E[F («F)].
In section 4, we propose a coupling sequence and use
it to bound a certain Wasserstein distance to argue that
E[f(z¥; ok (i + 1))] ~ E[F(2¥)]. This along with standard
analysis tools then yields Theorems 2 and 3.

However, this technique does not suffice to obtain faster
rate as in Theorem 1. So, to prove Theorem 1, we show
that in expectation, SGDo over one epoch approximates
one step of GD applied to F'. Therefore, K epochs of
SGDo approximates GD iterates after K iterations. Recall

n—1

ogtt = ab —ar Y V(@ onli +1)).
=0

If 2% ~ %, then the equation above implies:

n—1

ot~ wf—ar Y V(g 0k(i+1)) = 2§ —nap VF(x() .

=0

We observe that the right hand side is one step of gradi-
ent descent. Lemma 5 in Section 4 makes this argument
rigorous as it shows that E[||z¥ — 2%(|?] becomes small as
F(xf) — F(x*).

4. Coupling and Wasserstein distance
In this section, we develop the required machinery to show:
E[f(«f; 0k (i + 1))] = E[F (7). (3)

Define the following exchangeable pair: suppose we run the
algorithm for k — 1 epochs using permutations oy, . .., 01
to obtain xlg. When k£ = 1, this means that we start with
the same starting point 2. We draw two independent uni-
form permutations: o, and o,. If we run the k-th epoch
with permutation oy, we denote the k-th epoch iterates by

(z;(ok));, to explicity show the dependence on oy, Simi-
larly, the sequence obtained by using the permutation o}, for

the k-th epoch is denoted by (z;(07,));—,). It is clear that
(x;(0},))i, is independent and indentically distributed as
(zi(o%))™ . We note:

E[f(zi(o); ok (i + 1))] = E[f(zi(0}))] = E[F(z})].  (4)

Here the first equality follows from the fact that oy, is inde-

pendent of ¢}, (and applying Fubini’s theorem which allows
us to exchange the order of integration with respect to oy,
and o07,). The second equality follows from the fact that
x;(0}.) and x;(0y,) are identically distributed. Therefore, to
show (3), we need to show that: E[f(z;(0},); ok (i + 1))] —
E[f(zi(ok); 0k(i+1))] = 0. Since f(-;7) is uniformly lip-
schitz, a bound on the Wasserstein distance between x; (o)
and x;(o7,) would imply the above result. That is, Lemma 1
shows that E[f(x;(0},); 0k (i + 1))] — E[f(zs(ok); ok (i +
1))] is bounded by the Wasserstein distance between x; (o)
and z;(o},), and Lemma 4 then bounds the Wasserstein
distance, to bound the above quantity.

We first introduce some notation to prove the result. Let
D := L(x;(ok)) and Dl(rk) =L (zi(ok)|ox(i +1) =1).
Here £(X') denotes the distribution of the random variable
X. We let Lip, () be the set of all 5 lipschitz functions
from R? — R.

Definition 1. Let P and Q) be two probability measures over
RY such that Ex p[|| X||?] < oo and By gl||Y]|?] < occ.
Let X ~ PandY ~ @ be random vectors defined on a
common measure space (i.e, they are coupled). We define
Wasserstein-1 and Wasserstein-2 distances between P and

Q as:

DY(P.Q) Y inf Bl X -V d
w (P, Q) ot Il ], an
X~P
Y~Q
DZ(P.Q) Y inf VE[X —Y|?
w (P.Q) AotV il 2],
X~P
Y~Q

respectively. Here the infimum is over all joint distributions
over (X,Y') with prescribed marginals.

By Jensen’s inequality, we have D\(,a)(P, Q) > D\(,\l,)(P7 Q).
The following result gives a fundamental characterization
of Wasserstein distance (Santambrogio, 2015).

Theorem 4 (Kantorovich Duality). Let P and Q) satisfy the
conditions in Definition 1. Let X ~ P andY ~ Q@ then:

DY (P, Q) = s Elg(X)] ~ Elg(Y))

We can use Theorem 4 to bound the approximation error
in (3) in terms of average Wasserstein-1 distance between

D; 1, and Dl(rk)
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Lemma 1.

EIFEHIElf G| < § 30 (P 2l3)

Proof. Let R; := oy, (j) forall j € [n]. Using (4):

E[f(z]; Rit1)]|

‘E[f(m(ak); Ris)] — Elf (x:(00); Ris)]

< LN IE[f(zi(0h);m)) — B [f(@i(on); r) [ Rigy = 1]
<32 s (Ble(oh)] B oteon) e =)
13 o (o0t

r=1

where the second step follows from triangle inequality and
the fact that z;(o},) is independent of oy,. Second to last
inequality follows from the fact that f € Lipy(G) and the
last inequality follows from Theorem 4. We also used the
fact that conditioned on o, (i + 1) = r, 2% (0}) ~ D; , O

From Lemma 1, we see that we only need to upper
bound DY (D 1., D)
of Wasserstein-1 distance (Definition 1) by constructing a
nice coupling between D; ;, and DZ(;') , that we present in the
following lemma; see Appendix B for a proof of the lemma.

We note that in essence, this lemma is similar to the stability
analysis in (Hardt et al., 2015).

). We hope to use the definition

Lemma 2. Given k, suppose «y, ; is a non-increasing func-
tion of i and auy, o < % Then almost surely, Vi € [n),

lzi(or) —@i(on)l| < 2Gawo-[{j < i:ow(j) # or(i)}H-
&)

Here |{j <i:0k(j) # 0(J)}| is the number of iterations

till i where the two permutations oy, and o}, choose different

component functions.

A key ingredient in the proof of Lemma 2 is the following
standard result which says that gradient step with small
enough step size is contracting for smooth convex functions.

Lemma 3. (Nesterov, 2013, Theorem 2.1.5) Let V?g de-
note the Hessian of g. If g is convex and ||V?g|| < L, then,
Va)lI* < L(Vg(z) ~

Vg(z) — Vg(y),r —y).

4.1. Coupling o}, and o},

In this section, we construct a coupling between o, and o7,
that minimizes the bound in Lemma 2. Let S,, be the set
of all permutations over n letters. For a, b € [n], we define
the exchange function F, 4 : S,, — Syt forany 7 € S,
E, »(7) gives a new permutation where a-th and b-th entries
of 7 are exchanged and it keeps everything else same. We
construct the operator A, ; : S, = Syt

Ar,i(T) = {Ezdrl,j (7_)

Basically, A, ; makes a single swap so that ¢ 4+ 1-th position
of the permutation is r. Clearly, if o, is a uniformly ran-
dom permutation, then A, ;(o) has the same distribution as

ifr(i+1)=r
ifr(j)=randj#i+1

ok|ok(i+ 1) = r. We use the defintion of D\(,\l,) to conclude:

Lemma 4. Let k be fixed. When o0 < % and oy, ; be a
non-increasing function of 1,

D\(/\I/) (IDHk?Dz(,’k)) S D\(/i) ('DZ"]C,D(T ) < QOLk oG

1‘7

where D, y, D( k) are defined above. Consequently, from
Lemma 1, we conclude

— E[f(zf; o (i + 1))]| < 2ak,0G2.

Proof. Let oy, be a uniformly random permutation and r €
[n]. Therefore, z;(0)) ~ D, and x; (A, ;(r)) ~ DZ(Tk)

This gives a coupling between D; j, and D( n) . By definition
of Wasserstein distance:

DY (D DY) < Ellas(on) — mi(Ars)? - ©)

It is clear that |[{j < i : 04(j) # [Ari(on)] ()} < 1
almost surely. Therefore, from Lemma 2, we conclude that

lzi (o) — zi(Arsok)|| < 204 0G almost surely. Together
with Equation 6, and the fact that D\(,s) > D\(,\l,) we conclude

the result. O

The lemmas presented above tightly bound the difference in
suboptimality between iterates of SGD and SGDo. These
will be used in proving Theorems 2 and 3, matching the
rates of SGD. For Theorem 1, we need to show that there is
some amount of automatic variance reduction while running
SGDo. In order to do this, we need to show that the iterates
x¥ do not move much when they are close to the optimum.
The following lemma makes this precise.

def
Lemma 5. Recall that d; , = ||z¥ — 2*||. Let a0 < 2
and oy, ; be a non-increasing sequence in j for a given k.
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For any i € [n], we have:
IE[fo - x’SHz] < 52'04%’06’2 + 2iago - E [F(mlg) - F(x*)] ,
and E[dik] < E[dg,k] + 5io¢i70 -G2,

See Appendix B for a detailed proof of the above lemma.

5. Proofs of Main Results

In this section, we will present proofs of Theorems 1, 2
and 3 using the results from the previous section.

5.1. Proof of Theorem 1

In this subsection, for the sake of clarity of notation, we

take R; A (j) for every j € [n]. Recall the definition

di i := ||2¥ — 2*||. From the definition of SGDo, and the

—a= 4llognK

S, We have:

choice of step sizes oy, ;

n—1
aptt :Ié—aZVf(zf,RiH).
i=0

Using the hypothesis that o < % (since & < 1) and taking

norm squared on both sides,

n—1
d(z),k+1 = d(2),k -2« Z<vf(va Rit1), 25 —2%)
=0
n—1 2
Z vf H—l

=dj —2na<VF(x0) —z")

— 2 Z<Vf(x?7Ri+1) VF(z9), x5 — z*)
i=0

n—1 2

i PO

< (1~ no) ~ 2na (Pl — F(e*)

n—1
— 2« Z(Vf(:x
=0

H—l

Rit1) — VFE(zg), x5 — x™)

2
; (7

(zF, Rit1)

where we used strong convexity of F in the third step. We
consider the term:

n—1
T, % 9q Z(Vf(a: Riy1) — VF(xg), x5 — x™)
i=0
n—1
= —2a ) (Vf(a}; Rit1) — Vf(2f; Riyr), af — ).
=0

= —2aE Z(Vf(xf, Rip1) — Vf(zk:Ri1), af — %)
i=0
n—1
<2aL) B[z} —af| =5 — =*]
i=0

n—1
<2aL Y \JElla — b2 /Eleh - 2|
=0

< QOan\/IEI[dg,k,]\/E)n042C1Y2 + 2naE [F(af) — F(z*)],
®)

where we used Cauchy-Schwarz and smoothness in the sec-
ond step and Lemma 5 in the last step. Applying aritmetic
mean - geometric mean inequality on (8), we have:

2 2 2 kY _F(g*
E[Ty] < aLn {#EE{M} AL(5na”G* +2naE[F(af) ~ F(a*)])
“w

aun 2a3n2 2
= R[] 4 BLaE?

+ 8L [F(af) — F(a)] 9)
‘We now consider

 def ?
: ZVf Rit)

We use the fact that: VF (z*) = 0=/~ 01 Vf(z*; Riy1)

in the equation above to conclude:

va
<a? [Tf

=0

n—1 2
< a?L? [anf - x*”]
i=0

Taking expectation, we have

E[Ty] < o®L*) ) "Eld; kd; 4]

2

2
non
= (12L2 Z Z d@kdj,k.

i=1 j=1

Rit1) = Vf(z"; Riy1)

Vf(@); Riv1) — V(2% Riy1)

i=1 j=1
<a’L? Z; Z; VEldZ 1]\ /E[d7 ]
i=1 j=

< &’L?n® [Eld 1] 4 5na”G?] (10)

where we again used Cauchy-Schwarz inequality and
Lemma 5.
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Plugging the inequalities (9) and (10) in (7), we conclude:
6) — F(z"))
aun a3n o L?n?E[F(zF)—F(2*
T g3 | 4+ WLlatle? | ST ) )]

H M
+ &’ L*n’E[d} ] + 5o’ L*G*n®

E[dj 1] S E[dg,k](l —nop) — 2naE(F(x

< B[} ](1 - 20 + a?n’L?)
2 *
— 2na (1— %)E[F(xg) — F(z")]
+ 2OL2a:n2G2 + 502 L2G%n3. (11)

Itis clear that 1 — 329 4 (2212 <1 —
use the fact that F'(x§) > F(

E[d ;] <

=5 In (11), we
x*) to conclude:

2

( _ %) E[dak,l]—i-QOLz o’ G2+5a4L2G2 3

Unrolling the recursion above, we have:

E[d3 ) < (1-25%)" d3,,
i i (1 _ ’I’L;ﬂ)t [20L2a:n2G2 4 5044L2G2n3]
t=0

< exp (— ”kza”) dg,l

2 20L%a®n2G? 4722 3
+m {#4‘50& L G n

nkau) d2 40L2a2n02 + 100*L2G%n?

u? I

<exp (-

Taking o = 4l ﬁgn’}(K and k = %, we have:

2
IE[d0 2] < (nK

40L2ozznG2 10a0®L2G?%n?
)’ + T 2 :

We now analyze the suffix averaging scheme given.
Adding (11) from k = % to k = K, we conclude:

K
>0 K
=]

K-[51+1

E[d? 2 3. _2~2
[ 0,}1{{/2] 4 20L%0°n?G? | 5 472023
K—[E]—O—l H

E[F(zf)—F(z"))
no

Here we have used the fact that 2na (1

Srerr/21 Flat)
K—[K/2]+1

— 4a2L2> > na.
Since F'(&) < by convexity of F', we have:
E[F(2) — F(2")]

d2
< MQ(& {(n%[} n [SOﬁj?(GZ n 20042#L;G2n}

2 2 ~2
4 20L (l nG 4 5a3L2G2n2

2
d[)l

:O(u(nK)l) +O<

W22 (105[7;12() ) ) 0

5.2. Proof of Theorem 3

We note that we have taken o, ; = a < % By definition,
ab = Iy (2 — aV f(aF;04(i +1))). We take r =
o1 (i + 1) below. Taking norm squared and using Lemma 6
ot |? + |V f ()12
—2(Vf(wisr),xf — %)
< laf = 2*|* + a®G® = 2a(f (2f;7) — f(a™57))

In the last step we have used convexity of of f(;7) and the
fact that |V f(;5)|| < G. Taking expectation above, and
noting that E f (z*; 0, (¢+1)) = F(z*) and using Lemma 4,
we have:

25y —2*|* < flaf ~

E|azf,, —a*|? <E|z} — =
+5a%G?

Summing from ¢ = 0ton—1and k = 1 to K, we conclude:

*||* = 20E(F(a7) - F(z"))

(12)

—

n—

K
LZ
nK

Elzg—=*|> | 5 2
- F(2") < =55 g + 506G
k=1 i=0
D? L GVnK 5G% . 2 D
< 5ox max(3, =5) + 25-min(f, z7==)
D? (L + GVnK + 5G2 D _ D?L 4+ 3GD
— 2nK \ 2 D 2 "GvnkK = 4nK VnK '
By convexity of F'(-), we conclude:
K n—1
1
)<k Z >
=1 =0

6. Conclusions

In this paper, we study stochastic gradient descent with
out replacement (SGDo), which is widely used in practice.
When the number of passes is large, we present the first
convergence result for SGDo, that is faster than SGD, under
standard smoothness, strong convexity and Lipschitz as-
sumptions where as prior work uses additional Hessian Lip-
schitz assumption. Our convergence rates also improve upon
existing results in practically interesting regimes. When the
number of passes is small, we present convergence results
for SGDo that match those of SGD for general smooth con-
vex functions. These are the first such results for general
smooth convex functions as previous work only showed
such results for generalized linear models. In order to prove
these results, we use techniques from optimal transport the-
ory to couple variants of SGD and relate their performances.
These ideas may be of independent interest in the analysis
of SGD style algorithms with some dependencies.
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