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Abstract
In this paper, we consider the problem of learning functions over sets, i.e., functions that are invariant

to permutations of input set items. Recent approaches of pooling individual element embeddings [34]
can necessitate extremely large embedding sizes for challenging functions. We address this challenge by
allowing standard neural networks like LSTMs to succinctly capture the function over the set. However,
to ensure invariance with respect to permutations of set elements, we propose a novel architecture called
SPAN that simultaneously learns the function as well as adversarial or worst-case permutations for
each input set. The learning problem reduces to a min-max optimization problem that is solved via a
simple alternating block coordinate descent technique. We conduct extensive experiments on a variety
of set-learning tasks and demonstrate that SPAN learns nearly permutation-invariant functions while
still ensuring accuracy on test data. On a variety of tasks sampled from the domains of statistics, graph
functions and linear algebra, we show that our method can significantly outperform state-of-the-art
methods such as DeepSets [34] and Janossy Pooling [23]. Finally, we present a case study of how
learning set-functions can help extract powerful features for recommendation systems, and show that
such a method can be as much as 2% more accurate than carefully hand-tuned features on a real-world
recommendation system.

1 Introduction
Inputs to several ML applications are naturally structured as sets. Traditionally, ML algorithms assume

the inputs to be vector-valued, and thus are in general ill-suited to handle set-valued inputs. But, several
recent works have shown that certain simple functions over sets can be learned accurately.
The key insight behind these methods was discovered by [34, 32], which show that any set function can

be represented as f(X = {x1, . . . ,xn}) = σ(
∑

i φ(xi)), where φ(x) is the embedding of x and σ is an
arbitrary function. While this representation admits any set function, it forces to pool together independent
embeddings of each set item which in turn might render the embedding layer ineffective or require it to be
exponentially large for functions such as f(X) = maxij ‖xi −xj‖. [23] attempts to address this challenge by
casting the problem as set function learning over pairs or higher-order tuples of set elements. Naturally, for
large sets, learning functions with even 3-sized tuples becomes prohibitively expensive.
We propose SPAN that admits arbitrary functions rather than forcing permutation-invariance explicitly

which restricts the form of the function and can compromise learnability. SPAN can be trained to maximize
permutation-invariance. Naively, such a training would require optimization with respect to all the permu-
tations of the sets in training data that would be prohibitively expensive. [23] proposed optimizing w.r.t.
only a few random permutations. However, such an approach in general can produce large variance in the
function value w.r.t. different permutations of the same set (see Section 4.1).

In contrast, our approach is to set up the problem as an adversarial network or a min-max problem, where
the adversary picks up worst case permutations from a permutation network for a given function and the
learner attempts to minimize the loss with respect to such permutations. That is, we set up a min-max loss
function where the maximum is taken over the set of all permutations while the minimum is computed over
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the function. Now, several challenging set-functions can be computed by iterating sequentially over the set
elements. Hence we select recurrent neural networks as the base function that is learned in a permutation
invariant manner by the above mentioned min-max approach. We learn permutation functions using the
Sinkhorn update based technique introduced by [1].

To demonstrate an application, consider a problem where each set is generated from the spiked covariance
model [13], i.e., X = {x1, . . . , xn} where xi ∼ N (0,vvT + σ2I) and the goal is to compute v, the top
eigenvector of C =

∑
i xix

T
i . An intuitive embedding function for DeepSets [34] and similar approaches

would be φ(xi) = xix
T
i , i.e., the pooling layer would compute the covariance matrix C. However, in that

case, the final layer σ(·) (typically a fixed depth feed-forward network) would be required to compute the
largest eigenvector of C, which is challenging as it is well-known that eigenvector computation requires
an iterative algorithm. On the other hand, for any permutation, our technique can apply a simple RNN
transformation: ht+1 = ht + vT ht · v, which is the standard Oja algorithm and is known to converge to v at
nearly optimal rate [11].
Independent of our work, [35] proposed an algorithm that also learns permutations over the inputs, and

then the permuted inputs are passed into an LSTM for predicting the label. However, the goal of our
method is to learn permutation invariant functions, so we optimize w.r.t. the worst possible permutations. In
contrast, [35] attempts to find a permutation function which will lead to minimum loss on the training data.
Hence, if the data exhibits bias w.r.t. permutations, then the method can learn that bias. E.g., consider
the task of learning maximum of a given set of numbers. Suppose each set in the training data is sorted,
then an identity permutation of the data combined with an LSTM that predicts the last element in the
sequence would give 0 training error. Hence, the method will be stuck at the identity permutation and learn
an incorrect model. In contrast, our method will attempt to find the worst case permutation and hence
would be somewhat agnostic to the training data permutations.

We applied our algorithm to a variety of tasks including set-statistics computation, finding a tuple of
k-farthest points, finding maximum flow in a graph etc. For each task, we compare our method against
DeepSets [34] and other appropriate baseline algorithms. We observe that for most of the tasks, our method
could significantly outperform the existing methods, especially for challenging tasks. For example, our
method is ∼ 55% more accurate than DeepSets for the k-farthest point task with k = 3, while [23]’s method
was difficult to scale because of a cubic number of tuples of the set.

Finally, while set-function learning methods for computing set-statistics have been reasonably successful,
they have not been demonstrated on many large-scale real-world problems. We propose application of
set-function learning methods in recommendation systems, where statistics of users’ interaction with the
system are represented as sets. We use SPAN to compute set-representations/features that can then be
consumed by traditional recommendation systems. We show that such set representation learning can
improve the performance of a real-world recommendation system (deployed in production) by as much as
2% when compared to a system that uses carefully-designed features.

1.1 Related Work
Applications: A wide variety of problems can be formulated as learning functions on sets. Examples

include learning a probability distribution from a set of points [24], multiple instance learning [20], 3d
point classification [25], etc. In fact, several recent papers demonstrated that DeepSets [34] and similar
pooling approaches can lead to interesting solutions for various problems in the domain of computer vision
[25, 26, 33, 29] and graph convolutions [16], [2], [9]. [8] considers a complementary problem of predicting sets
as outputs, by defining a likelihood over cardinalities and sets. Finally, [4] extended Variational Autoencoders
[15] to learn summarized statistics from sets in an unsupervised manner.
Permutation learning: Several recent works have discussed neural-network architectures to learn

permutations. In particular, [1, 21] described how Sinkhorn normalization [30] can be employed to learn
approximate matchings in O(n2) time instead of O(n3) and applied it to ranking and ordering tasks like
image ordering [28], jigsaw puzzle solving [21], etc. [31] uses a different approach to permutation learning and
computes "hard" assignments. Here, we note that our goal is to learn a permutation invariant set function
instead of learning a specific permutation for a given input set.
Min-max optimization: Min-max formulations are getting increasingly popular in the ML literature

with GANs [7] being the most popular example. Other instances include robust learning [19] and learning

2



with non-decomposable losses [27]. Several interesting algorithms have been proposed to solve such problems
that can provide strong convergence guarantees in various settings [12, 3, 27]. In this work, we focus on a
simple alternating block coordinate descent type of method.

2 Problem Formulation and Method
Suppose we are given a training dataset X = {(X1, y1), . . . , (XN , yN )} where Xi = {xi

1, . . . ,x
i
n}, xi

j ∈ Rd,
yi ∈ RL, and L is the dimensionality of the prediction-space. The goal is to learn a permutation-invariant
function f : Rd×n → RL s.t.

∑
i `(yi, f(Xi)) is minimized where ` : RL×L → R is a loss function. Permutation

invariant functions are defined below:

Definition 2.1 Denote Π as the set of all permutations, then function f({x1, . . . ,xn}) is permutation
invariant if for every permutation P ∈ Π, the following holds: f(X = {x1, . . . ,xn}) = f(PX), where
f(PX) := f({xP (1), . . . ,xP (n)}).

Most of the existing methods [34] explicitly enforce permutation invariance by using a pooling layer. That
is, f(X) = σ(POOL(φ(x1, ), . . . , φ(xn))) where POOL() is a simple operation like sum or max of all the
elements. While this form capture all set functions, learning with such functional restrictions can require
large embedding dimension of φ(·) or highly complicated function σ.

In contrast, our method attempts to learn a permutation-invariant function without explicitly enforcing it.
To this end, we first formulate the problem of learning a permutation-invariant function as the following
min-max problem:

min
f

max
P1∈Π,...,PN∈Π

∑
i

`(f(PiXi), yi), (1)

where `(·) is a loss function. Note that for realizable cases, i.e., when ∃f∗ s.t., yi = f∗(Xi),∀i, the optimal
solution of (1) is guaranteed to be permutation-invariant over the training data and assuming large enough
N , it should be nearly permutation invariant over the test data as well. Note the philosophical difference
between such a formulation and that of pooling-based methods [34, 23], which is that the later methods
force permutation invariance by design and hence, even if yi’s are not derived from set functions, they still
lead to permutation invariant functions. In contrast, the above formulation assumes that yi’s are based
on permutation invariant functions. Also, this is in contrast to the formulation by an independent work
by [35] which attempts to learn one permutation s.t. f(PiXi) = yi, while we require f(PiXi) = yi for all
permutations.
Note that solving (1) is quite challenging as it requires optimizing over the combinatorially large set of

permutation matrices for each training point. Furthermore, such formulation might lead to large sample
complexity. We alleviate this concern by using the technique from [21] which parameterizes permutation
learning using a neural network. Using such a permutation network with (1), we obtain the following learning
problem:

min
f

max
P N,Pi=P N(Xi)

∑
i

`(f(PiXi), yi), s.t., PN(Xi;WP N ) = (arg max
P∈Π
〈P,Relu(Xi ·WP N )〉)−1, (2)

where Relu(a) = max(0, a), WP N ∈ Rd×n. That is PN(X;WP N ) embeds X in a n× n dimensional space
and then learns a permutation for X. Finally, we parameterize f as an LSTM as it can “summarize" the set
well and learn key properties about it. That is, the final optimization problem is given by:

min
θ

max
PN,Pi=PN(Xi)

∑
i

`(LSTM(PiXi), yi; θ), s.t., PN(Xi;WPN ) = (arg max
P∈Π
〈P,Relu(Xi ·WPN )〉)−1, (3)

where θ are the parameters of the LSTM [10]. That is, the formulation optimizes for LSTM’s parameters θ
where the data is permuted by an adversarial permutation network.
Training Procedure: We now discuss an optimization algorithm for (3). We handle the min-max form

using standard alternating block coordinate descent approach to reach a saddle point of the min-max problem.
That is, for a fixed permutation network, we optimize for the LSTM’s parameters θ to minimize the loss in
(3). To this end, we use standard back-propagation for optimizing w.r.t. θ.
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1: Input: training data (Xi, yi), inner max-iteration K
2: Initialize W 0

P N using Xavier initialization [6]
3: for all t = 1, 2, . . . , do
4: PTi ← arg maxP∈Π〈P,Relu(Xi ·W t−1

PN )〉
5: θt ← SGD updates for

minθ f(θ) =
∑

i
`(LSTM(PiXi), yi; θ)

6: W t
P N ← SGD+Sinkhorn updates [1] for

maxWP N g(WPN ) =
∑

i
`(LSTM(PiXi), yi; θt)

s.t. PTi ← arg maxP∈Π〈P,Relu(Xi ·WPN )〉
7: end for

Figure 1: (a) SPAN Architecture: It computes adversarial permutation P−1 ≈ PT for a given point X using
the permutation network along with Sinkhorn updates [1]. The data permuted by PT is then processed
by the LSTM and a final feed-forward layer to predict the label y. (b) Outline of the Min-max Block
Coordinate Descent Method for optimizing (3)

Next we optimize for PN for a fixed θ, which requires computing gradient w.r.t. permutations which are dis-
crete objects. Concretely, the key challenge is to compute the derivative ofM(Xi) = arg maxP∈Π〈P,Relu(Xi ·
WP N )〉; note that M is a matching of Relu(Xi · WP N ). To this end, we use the method proposed
by [1, 21] that views permutations as a point in the convex-hull of doubly-stochastic matrices that ad-
mits easy projection using iterative row and column normalization. That is, M(Xi) = lim`→inf S(X)
where S`(X) = Tc(Tr(Sl−1(X))) where Tc(·) and Tr(·) are the column and row normalization opera-
tors, respectively. That is, Tc(X) (and Tr(X)) set the sum of each column (and row) to be 1. Hence,
∇WP N

M(Xi) = ∂Tc�Tr

∂Sl−1(X) ·
∂Sl−1(X)

∂WP N
. Now, ∂Tc�Tr

∂Sl−1(X) can be computed using a closed form expression given
by [1].
Inference Procedure: Given a test set X, we infer the function value as f(X) = LSTM(PTX, θ) where

P = arg maxP∈Π〈P,Relu(Xi ·WP N )〉. As in the training procedure, we compute an “incomplete" matching
using a few iterations of the Sinkhorn operator (row-column wise normalization) which can be computed in
O(n2) time instead of O(n3) time required by exact matching. Naturally, the solution is only approximately
correct and hence approximating P−1 by PT can lead to further error. However, our empirical results
suggest that the approximation error is not significant as the overall method is fairly accurate.

3 DeepStats: Case Study
Consider the following recommendation problem that is critical for various social networks: compute

relevance of a message M written by a certain author Aj posted in a particular group/channel/thread Gk for
a given user Ui. There are two critical signals in this problem: a) text of the message, b) user’s affinity for
an author or a group. While the message content is important, it can be captured using standard techniques
like word2vec [22], doc2vec [17]. So we ignore this signal in this section.
Now more relevant signals for this work are the indicators of a user’s affinity for a group/author. This

information is available in the form of a set of likes/replies/clicks by a user on messages posted by an author
or on messages posted in a certain group. Hence, learning set representations is important in capturing the
full strength of these signals. Current techniques typically compute hand-designed set-features. For example,
a similar real-world user-message recommendation system deployed by Microsoft Teams uses features like
weighted average number of likes or replies by a user for an author/group. Naturally, designing such heuristic
set-features is challenging and might not be able to capture key discriminating representations.

We formulate the following set representation learning problem. Say from a four-month window, we collect
the following sets for each user-author pair: Sij = {x1, . . . ,xnij}, where xa ∈ R6 summarizes day-wise
interaction between Ui and Aj ; xa is absent in the case of no interaction on that day. First coordinate
of xa denotes the day of the interaction, second the day of the week, third coordinate denotes the total
number of messages from Aj to Ui, and the remaining three denote the number of likes/replies/clicks from
Ui for messages by Aj . Similarly, we define sets Qik for interactions between Ui and Gk. While we can
represent this set as a matrix, the resulting matrix is extremely sparse as most users and authors have limited
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Figure 2: (a) Performance on Microsoft Teams message recommendation problem. Our DeepStats formulation
with SPAN consistently achieves ≈ 2% improvement over the baseline method that uses hand-designed
features, in contrast, DeepStats-DeepSets improves marginally over the baseline. (b), (c): Max 2-ary
Distance: Error incurred by various methods for set sizes n = 100, 200 and different d (see Section 4.1).
SPAN is significantly more accurate than DeepSets.
interactions. This leads to heavy overfitting. In contrast, set based methods can learn strong representations
even when interaction sets have a small number of elements appearing in an arbitrary order.

We now present our DeepStats recommendation system architecture. Given Ui and a message M authored
by Aj , posted in Gk, we compute relevance of M for Ui as: R(Ui,M) = FC(f1(Sij), f2(Qik))) where FC is
a fully connected layer and f1, f2 are two set functions that embed Sij and Qik into a vector-space. We
now train this entire pipeline, i.e., FC layer and f1, f2 end-to-end using the labeled data that indicates if Ui

engaged/interacted with M . The architecture also allows for additional signals like the text of M that can
be directly consumed by the FC layer.

We applied the DeepStats architecture to a message recommendation system deployed in Microsoft Teams
– an enterprise social network – and compared it with a version of the production model (minus other
signals) for a random subset of users. Over four-months’ interaction data, we computed > 70K user-author
interaction sets and > 30K user-group interaction sets. Thereafter, we used one week’s data for training the
model, where any (Ui,M) is labeled as positive if Ui liked/replied/clicked on message M , and negative if
there was no action. Finally, the latest one week’s data is used for evaluating three models, namely Baseline,
DeepStats-DeepSets and DeepStats-SPAN; DeepStats-DeepSets (DeepStats-SPAN) uses DeepSets (SPAN)
to learn set features in the above described DeepStats architecture. Baseline corresponds to a version of the
production model, which uses hand-designed features like weighted averages of number of likes/replies/clicks.

We compare both the methods on an AUC@k (AUC in top-k) metric, used by Microsoft Teams’ production
pipeline; relevant values of k for the product are between 25 to 100. Figure 2 (a) shows that our proposed
DeepStats-SPAN technique is able to learn a ∼ 2% more accurate model than the Baseline. Furthermore,
DeepStats-SPAN leads to better performance consistently compared to DeepStats-DeepSets.

4 Empirical Results
In this section, we present results from experiments conducted on a variety of set-function learning tasks.

In particular, the goal is a) to study performance of SPAN when compared to baseline methods on various
set-function learning tasks, b) to study SPAN’s performance with respect to various parameters on the tasks
like number of elements in the set, dimensionality of the data, complexity of the task and c) to conduct
ablation studies with respect to the two components of SPAN.
Baselines: We compare SPAN with DeepSets [34], which is a state-of-the-art technique on general

set-function learning tasks. We also compare against Janossy Pooling (JP) [23] which can capture k-ary
set functions, but reduces to DeepSets when the arity is 1 or is unknown. For the max 2-ary distance task,
we also compare against the π-SGD technique of JP [23]; as the performance of the method on this task
was significantly worse than the other methods, we do not report it’s performance on other tasks. For
DeepSets, we use the standard instantiation suggested by [34]. That is, f(X) = FC(

∑
i FC(xi)), i.e., both

the embedding as well as final layers are full-connected (FC) layers. We use the same architecture for the JP
method as well.
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Metric: For each of the tasks we report absolute relative error in prediction, i.e., Err = |y − ŷ|/y where ŷ
is the predicted value and y is the ground truth. We report results averaged on 10 random runs, and report
standard deviation in the numbers as well.
Hyperparameters: We use a fixed set of parameters for SPAN irrespective of tasks. That is, we set the

learning rate to be 1e− 4, hidden size of LSTM to be 128, batch-size to be 32 and FC layers to be of size
128. The temperature parameter as described in [21] is fixed to be 0.1, and we set the number of iterations
of the Sinkhorn operator on the matrix output by the permutation network to be 100. To ensure fair
evaluation of DeepSets and JP, we did extensive sweeps for both the methods. In particular, we computed
validation set loss over every combination of the following parameters and report numbers corresponding to
parameters with the lowest loss on the validation set: a) size of the embedding and final FC layer with values
in {64, 128}, b) dropout rate in each layer selected from {0.5, 0.2, 0.0} and c) l2 weight decay over weights
with regularization constant in {0, 0.1, 0.01, 1}. In addition, after extensive experimentation, we found that
a learning rate of 1e− 4 with the Adam optimizer [14] seemed to consistently provide the best results.
We now discuss various set-function learning tasks, our experimental methodology, and report results

for SPAN and baseline methods. A preliminary version of the source code for SPAN is available at
https://github.com/chogba/SPAN.

4.1 Max k-ary Distance
The objective of this task is as follows: Given a set of n vectors in Rd, learn that the underlying function

is f(X) = maxH∈[n],|H|=k

∑
(i,j)∈H ‖xi − xj‖. Specifically, this task requires capturing k-wise relations

between elements of the set. DeepSets’ pooling operation discards information about relations between
elements, thus leaving most of the heavy-lifting to the final layer.
Training data for this task was generated as follows: for k-ary task, for each set X, we generate

k cluster centers µ1, . . . , µk ∈ Rd where µq, 1 ≤ q ≤ k are sampled from the uniform distribution i.e.
µq ∼ Unif [1 : n]d. We then sample each xi, 1 ≤ i ≤ n from the standard mixture of Gaussians distribution,
i.e., xi ∼ 1

k

∑
qN (µq, 10 · I). We set the label as y = maxH∈[n],|H|=k

∑
(i,j)∈H ‖xi − xj‖. We studied the

task for k = 2, 3.
Max 2-ary Distance: We generated N = 5000 sets for training and 1000 sets for testing with each set

containing n = 100, 200 points. We conducted experiments for d = 2, 5, 8, 10. As mentioned above, we use a
fixed set of hyperparameters for SPAN while we conduct a thorough grid search to select the best parameters
for DeepSets and JP. Figure 2 (b), (c) reports the average relative error incurred by each method averaged
over the sets in test data and 10 independent runs with n = 100, 200, respectively. SPAN incurs significantly
lower error than DeepSets. For example, for d = 5, the error incurred by DeepSets is nearly twice the error
incurred by SPAN for n = 100. The ratio of error jumps to 2.2 for n = 200 which also reflects the general
trend that SPAN’s error gain over DeepSets increases for larger n, and hence for more challenging tasks.

When compared to JP, our method incurs more error in this task. However, note that the JP 2-ary model
enumerates all pairs of vectors in a set, and thereafter applies DeepSets to the significantly easier task
of computing maximum over O(n2) numbers, so it explicitly captures the fact that the function is 2-ary.
However with larger n, the number of enumerations explodes, making it difficult to train the JP model. This
aspect is explored further in the following section. We also evaluated the π-SGD variant of JP[23] for the
case with d = 2 by sampling and training with 20 random permutations of each set, but the results were
significantly worse: for n = 100, there was an 18x increase in average relative error, while there was a 25x
increase in the case of n = 200. Also, the predictions showed a large standard deviation (≈ 2) for different
permutations of the same set. Since the error numbers were larger by an order of magnitude, we do not
focus on that method in the remaining sections.
Max 3-ary Distance: We generate 10000 training and 2000 test sets as above. As even generating data

and labels itself is expensive, we conduct the experiment with d = 2 only. Figure 3 (a) compares averaged
relative error for various methods. Similar to the 2-ary task, here also SPAN is significantly more accurate
than DeepSets. In fact, for n = 200, the ratio of DeepSets’ error to SPAN’s error increases to ∼ 2.4. However,
results for JP are more interesting. Recall that due to 3-arity of the function, this method will form training
sets of size

(
n
3
)

= 1313400 (when n = 200). Naturally, even a simple function like max with such large sets is
difficult and hence the relative error for this method turns out to be an order of magnitude larger than that
of SPAN. Furthermore, for n = 200, we had to train the 3-ary JP model for 3 days with a batch size of just

6

https://github.com/chogba/SPAN


n=100 n=200
Set Size

0.00

0.02

0.04

0.06

0.08

0.10
Av

er
ag

e 
Re

la
tiv

e 
Er

ro
r

Max 3ary Distance
DeepSets
JP
SPAN

50th
Percentile

n=100

50th
Percentile

n=200

70th
Percentile

n=100

70th
Percentile

n=200
Task

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Av
er

ag
e 

Re
la

tiv
e 

Er
ro

r

50th and 70th Percentile Estimation
DeepSets
SPAN SPAN w/o

APN

SPAN

7 7
3 7
6 6
2 6
3 3
0 3

(a) (b) (c)
Figure 3: (a) Max 3-ary Distance: Error incurred by various methods for set sizes n = 100, 200 and with
d = 2 (see Section 4.1). (b) rth Percentile Estimation: Relative error for various methods with set size
n = 100, 200. (c) Effect of Adversarial Permutation Network (APN) in SPAN: The goal here is to predict
the maximum digit in a given set of MNIST images. SPAN exhibits permutation-invariance and correctly
predicts the largest digit in the set of images while SPAN w/o APN gets biased to predict the last image in
the set (Section 4.5).

Average Relative Error (Std)
DeepSets 0.0203 (0.0017)
SPAN 0.0154 (0.0009)

d = 20 (Std) d = 30 (Std)
DeepSets 0.9072 (0.0032) 0.8331 (0.0038)
SPAN 0.9338 (0.0021) 0.8943 (0.0056)

(a) (b)

Table 1: (a) Error incurred for multi-source max-flow task (Section 4.3) with n = 3, |V | = 100, |E| = 300.
(b): Absolute cosine similarity of the predicted vector and the top eigenvector (Section 4.4).
4 to fit in the GPU memory, thus underlining challenges in capturing higher order interactions between set
elements via JP method.

4.2 rth Percentile Estimation
In this task, the objective is to estimate the rth percentile value in a set of n numbers. We generate

random sets of integers of size n = 100, 200, with values ranging from [1, 100] for n = 100 and [1, 200] for
n = 200. The label for each set was the rth-percentile value; we consider r = 50, 70. We train with 5000 sets,
and evaluate the performance of SPAN and DeepSets on 1000 sets. Since intuitively this is a 1-ary problem,
JP reduces to DeepSets. Here again, average relative error for DeepSets is significantly higher than that of
SPAN, and the difference is more pronounced for larger set size n = 200. In particular, for n = 200, DeepSets
incurs ∼ 18% more error in the 50-th percentile learning task, while for the 70-th percentile learning task,
DeepSet’s relative error is ∼ 37% higher than SPAN.

4.3 Multiple-source Maximum Flow Computation
We choose the next task from the domain of submodular functions over graphs. The goal here is to learn

the following set function: given a directed graph G, with vertex set V and edge set E, and a capacity ci

defined ∀ei ∈ E, the function value is the maximum flow from a subset of vertices H ⊂ V to a destination
sink s. For this task, we generated a random directed graph with one connected component, 100 vertices,
300 edges and capacities sampled randomly in [1, 20]. The sink s was fixed to be an arbitrary vertex. We
sampled N = 5000 random subsets of 3 vertices Hi ⊂ V \ s from the graph. For each subset Hi, we set the
label to be the maximum flow fi from Hi to s computed using Ford-Fulkerson’s algorithm [5]. The labels
ranged from 17 to 64. We did not scale to subsets of larger size in this task, because the distribution of labels
for large subsets converges to a small range of values. The training sets Xi consist of one-hot encodings
of each vertex in Hi concatenated with an embedding of the adjacency matrix of G. Naturally, the task
is quite challenging, but SPAN is able to learn the task reasonably well with an average relative error of
0.015; DeepSets’ error is 30% higher and small standard deviation between various runs indicates that the
improvement is statistically significant (see Table 1(a)).
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Max Last Other
SPAN w/o APN 0.100 0.576 0.324

SPAN 0.894 0.009 0.097

Average Relative Error (Std)
n = 100 n = 200

SPAN 0.0129 (0.0002) 0.0074 (0.0002)
SPAN w/ FC 0.0135 (0.0002) 0.0126 (0.0005)

(a) (b)

Table 2: Ablation studies. (a): SPAN w/o APN is biased by training data in predicting the last element in
the set instead of the maximum element. The numbers indicate the fraction of sets for which the model
predicted the max, last and other set elements. (Section 4.5). (b): Comparison of SPAN with LSTM and
SPAN with FC on max 3-ary distance task with d = 2 and n = 100, 200.

4.4 Learning Top-eigenvector in Spiked Covariance Model
Our final task requires learning a vector-valued set function. That is, to learn eigenvectors from a given

set of points sampled from the spiked covariance model [13]. For each set Xi we sample v uniformly at
random from the unit-sphere, and each xj ∼ N(0,vvT + σ2I) for all 1 ≤ j ≤ n and n = 100. Hence, v – the
top-eigenvector of the covariance matrix – is the label for the task. The training data comprised of 10000
such sets and the test data had 2000 sets. For a normalized prediction vector v̂ we report the absolute cosine
similarity, i.e., |v · v̂|/(‖v‖ · ‖v̂‖). Table 1 (b) shows that SPAN’s cosine similarity is about 3% higher than
DeepSets for d = 20 and the gap increases to 6% for the more challenging task of d = 30.

Finally, we observe that over 20 random permutations of each set in test data for each of the above described
tasks, predictions of SPAN do not change significantly, with the ratio of standard deviation in predictions
to the mean being ≤ 1e − 5 (for 4.4 too, the predicted vectors across different permutations agree upto
1e− 5 precision in each component), thus indicating that SPAN can learn effectively permutation-invariant
functions.

4.5 Ablation Studies
Finally, we study the isolated impact of the two components in our architecture: adversarial permutation

network (APN) and the final learner.
APN Ablation: Here, we remove the adversarial PN from our architecture (Figure 1, (3)), which then

simplifies to applying a standard LSTM to the set treating it as a sequential point. We then compare
performance of SPAN against SPAN w/o APN on the task of finding the maximum digit contained in a set
of MNIST [18] images. To demonstrate the impact of APN, we train both the models with biased training
data where the image corresponding to the maximum digit is placed as the last element of the set; however,
the test data does not exhibit this bias. The intuition behind this bias is that the LSTM, without APN,
would learn to predict the last element in each set as the label instead of the max element1. Figure 3 (c)
confirms this intuition where SPAN w/o APN always picks up the last digit in the set irrespective of the
maximum digit, while SPAN with APN is able to identify the maximum digit accurately. Table 2 (a) further
confirms the same hypothesis as SPAN w/o APN is able to pick up the maximum digit in only 10% of the
test points.
Learner Ablation: Here, we study the impact of LSTM on SPAN’s performance. Intuitively, LSTMs and

similar recurrent networks are well-suited for set learning tasks as they allow for a compact “summarization"
of the set iteratively that can be updated after processing each point in the set. E.g., an LSTM’s internal
state can maintain the maximum number out of elements seen till a step, and update the state only if the
next element is larger than the current state. Table 2 (b) indicates a similar trend where SPAN with LSTM’s
performance is better than SPAN with fully-connected (FC) layer’s performance on the challenging max
3-ary distance task (Section 4.1).

5 Conclusions
We studied the problem of learning functions over sets. We modelled the problem as a permutation

adversarial network, where the goal is to find a learner (LSTM) that correctly predicts the label of a
given set despite adversarial permutations of the set elements. We demonstrate that our approach is

1As mentioned in the introduction, a similar bias holds for the method by [35] when initialized with the identity permutation.
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able to learn challenging set functions like maximum flow over a graph, and can outperform existing
state-of-the-art techniques like DeepSets [34], Janossy Pooling [23]. We also present an application of our
method in the domain of recommendation systems via a DeepStats architecture. Further exploration of such
recommendation and similar problems is of great interest. Also, establishing sample complexity of learning
permutation-invariant functions is an important open question.
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