
150

FlashProfile: A Framework for Synthesizing Data Profiles

SASWAT PADHI∗, University of California ś Los Angeles, USA

PRATEEK JAIN, Microsoft Research, India

DANIEL PERELMAN, Microsoft Corporation, USA

OLEKSANDR POLOZOV, Microsoft Research, USA

SUMIT GULWANI, Microsoft Corporation, USA

TODD MILLSTEIN, University of California ś Los Angeles, USA

We address the problem of learning a syntactic profile for a collection of strings, i.e. a set of regex-like patterns
that succinctly describe the syntactic variations in the strings. Real-world datasets, typically curated from
multiple sources, often contain data in various syntactic formats. Thus, any data processing task is preceded
by the critical step of data format identification. However, manual inspection of data to identify the different
formats is infeasible in standard big-data scenarios.

Prior techniques are restricted to a small set of pre-defined patterns (e.g. digits, letters, words, etc.), and
provide no control over granularity of profiles. We define syntactic profiling as a problem of clustering strings
based on syntactic similarity, followed by identifying patterns that succinctly describe each cluster. We present
a technique for synthesizing such profiles over a given language of patterns, that also allows for interactive
refinement by requesting a desired number of clusters.

Using a state-of-the-art inductive synthesis framework, PROSE, we have implemented our technique as
FlashProfile. Across 153 tasks over 75 large real datasets, we observe a median profiling time of only ∼0.7 s.
Furthermore, we show that access to syntactic profiles may allow for more accurate synthesis of programs, i.e.
using fewer examples, in programming-by-example (PBE) workflows such as Flash Fill.

CCS Concepts: • Information systems→ Clustering and classification; Summarization; • Software and

its engineering→ Programming by example; Domain specific languages; • Computing methodologies

→ Anomaly detection;

Additional Key Words and Phrases: data profiling, pattern profiles, outlier detection, hierarchical clustering,

pattern learning, program synthesis

ACM Reference Format:

Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, and Todd Millstein. 2018.
FlashProfile: A Framework for Synthesizing Data Profiles. Proc. ACM Program. Lang. 2, OOPSLA, Article 150
(November 2018), 28 pages. https://doi.org/10.1145/3276520

∗ Work done during an internship with PROSE team at Microsoft.

Authors’ addresses: Saswat Padhi, Dept. of Computer Science, University of California ś Los Angeles, CA, 90095, USA,

padhi@cs.ucla.edu; Prateek Jain, Microsoft Research, Bangalore, India, prajain@microsoft.com; Daniel Perelman, Microsoft

Corporation, Redmond, WA, 98052, USA, danpere@microsoft.com; Oleksandr Polozov, Microsoft Research, Redmond, WA,

98052, USA, polozov@microsoft.com; Sumit Gulwani, Microsoft Corporation, Redmond, WA, 98052, USA, sumitg@microsoft.

com; Todd Millstein, Dept. of Computer Science, University of California ś Los Angeles, CA, 90095, USA, todd@cs.ucla.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART150

https://doi.org/10.1145/3276520

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276520
https://doi.org/10.1145/3276520

150:2 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

Reference ID
ISBN: ␣ 1-158-23466-X

not_available

doi: ␣ 10.1016/S1387-

7003(03)00113-8
.

.

.

PMC9473786

ISBN: ␣ 0-006-08903-1

doi: ␣ ␣

10.13039/100005795

PMC9035311
.

.

.

PMC5079771

ISBN: ␣ 2-287-34069-6

(a) Sample data

· W_W (5)
· W: N.N/LN-N(N)N-D (11)
· W: D-N-N-L (34)
· W: N.N/N (110)
· W: D-N-N-D (267)
· WN (1024)

Classes: [L]etter, [W]ord, [D]igit, [N]umber

(b) Profile from Ataccama One

· doi:␣+10\.\d\d\d\d\d/\d+ (110)
· .* (113)
· ISBN:␣ 0-\d\d\d-\d\d\d\d\d-\d (204)
· PMC\d+ (1024)

(c) Profile from Microsoft SSDT

· łnot_availablež (5)

· łdoi:ž ␣ + ł10.1016/ž U D 4 ł-ž D 4

ł(ž D 2 ł)ž D 5 ł-ž D (11)

· łISBN:ž ␣ D ł-ž D 3 ł-ž D 5 ł-Xž (34)

· łdoi:ž ␣ + ł10.13039/ž D+ (110)

· łISBN:ž ␣ D ł-ž D 3 ł-ž D 5 ł-ž D (267)

· łPMCž D 7 (1024)

Classes: [U]ppercase, [D]igit

Superscripts indicate repetition of atoms.
Constant strings are surrounded by quotes.

(d) Default profile from FlashProfile

Fig. 1. Profiles for a set of references1Ð number of matches for each pattern is shown on the right

1 INTRODUCTION

In modern data science, most real-life datasets lack high-quality metadata Ð they are often in-
complete, erroneous, and unstructured (Dong and Srivastava 2013). This severely impedes data
analysis, even for domain experts. For instance, a merely preliminary task of data wrangling (im-
porting, cleaning, and reshaping data) consumes 50 ś 80% of the total analysis time (Lohr 2014).
Prior studies show that high-quality metadata not only help users clean, understand, transform,
and reason over data, but also enable advanced applications, such as compression, indexing, query
optimization, and schema matching (Abedjan et al. 2015). Traditionally, data scientists engage in
data gazing (Maydanchik 2007) Ð they manually inspect small samples of data, or experiment with
aggregation queries to get a bird’s-eye view of the data. Naturally, this approach does not scale to
modern large-scale datasets (Abedjan et al. 2015).
Data profiling is the process of generating small but useful metadata (typically as a succinct

summary) for the data (Abedjan et al. 2015). In this work, we focus on syntactic profiling, i.e. learning
structural patterns that summarize the data. A syntactic profile is a disjunction of regex-like patterns
that describe all of the syntactic variations in the data. Each pattern succinctly describes a specific
variation, and is defined by a sequence of atomic patterns or atoms, such as digits or letters.

While existing tools, such as Microsoft SQL Server Data Tools (SSDT) (Microsoft 2017c), and
Ataccama One (Ataccama 2017) allow pattern-based profiling, they generate a single profile that
cannot be customized. In particular, (1) they use a small predetermined set of atoms, and do not
allow users to supply custom atoms specific to their domains, and (2) they provide little support for
controlling granularity, i.e. the number of patterns in the profile.
We present a novel application of program synthesis techniques to addresses these two key

issues. Our implementation, FlashProfile, supports custom user-defined atoms that may encapsulate
arbitrary pattern-matching logic, and also allows users to interactively control the granularity of
generated profiles, by providing desired bounds on the number of patterns.

A Motivating Example. Fig. 1(a) shows a fragment of a dataset containing a set of references
in various formats, and its profiles generated by Ataccama One (in Fig. 1(b)), Microsoft SSDT
(in Fig. 1(c)), and our tool FlashProfile (in Fig. 1(d)). Syntactic profiles expose rare variations that
are hard to notice by manual inspection of the data, or from simple statistical properties such as
distribution of string lengths. For example, Ataccama One reveals a suspicious pattern łW_Wž, which
matches less than 0.5% of the dataset. SSDT, however, groups this together with other less frequent
patterns into a ł.*ž pattern. Since SSDT does not provide a way of controlling the granularity of
the profile, a user would be unable to further refine the ł.*ž pattern. FlashProfile shows that this
pattern actually corresponds to missing entries, which read łnot_availablež.

1 The full dataset is available at https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/motivating_example.json.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/motivating_example.json

FlashProfile: A Framework for Synthesizing Data Profiles 150:3

For this dataset, although Ataccama One suggests a profile of the same granularity as from
FlashProfile, the patterns in the profile are too coarse to be immediately useful. For instance, it may
not be immediately obvious that the pattern W: D-N-N-Lmaps to ISBNs in the dataset. FlashProfile
further qualifies the W (word) to the constant łISBNž, and restricts the [N]umber patterns to D 3

(short for Digit×3) and D 5, and the final [L]etter to the constant łXž.

· łnot_availablež (5)

· łdoi:ž ␣ + ⟨DOI⟩ (121)

· łISBN:ž ␣ ⟨ISBN10⟩ (301)

· łPMCž D 7 (1024)

(a) Auto-suggested profile from FlashProfile

· łnot_availablež (5)

· łdoi:ž ␣ + ł10.1016/ž U D 4 ł-ž D 4 ł(ž D 2 ł)ž D 5 ł-ž D (11)

· łdoi:ž ␣ + ł10.13039/ž D+ (110)

· łISBN:ž ␣ ⟨ISBN10⟩ (301)

· łPMCž D 7 (1024)

(b) A refined profile on requesting 5 patterns

Fig. 2. Custom atoms,2 and refinement of profiles

FlashProfile also allows users familiar with
their domains to define custom patterns, that
cluster data in ways that are specific to the do-
main. For example, the two patterns for łdoiž
in Fig. 1(d) are vastly different Ð one contains
letters and parentheses, whereas the other con-
tains only digits. However, grouping them to-
gether makes the profile more readable, and
helps spot outliers differing from the expected
patterns. Fig. 2(a) shows a profile suggested by
FlashProfile when provided with two custom
atoms: ⟨DOI⟩ and ⟨ISBN10⟩,2 with appropriate
costs. Users may refine the profile to observe more specific variations within the DOIs and ISBNs.
On requesting one more pattern, FlashProfile unfolds ⟨DOI⟩, since the DOIs are more dissimilar to
each other than ISBNs, and produces the profile shown in Fig. 2(b).

Key Challenges. A key barrier to allowing custom atoms is the large search space for the desirable
profiles. Prior tools restrict their atoms to letters and digits, followed by simple upgrades such
as sequences of digits to numbers, and letters to words. However, this simplistic approach is not
effective in the presence of several overlapping atoms and complex pattern-matching semantics.
Moreover, a naïve exhaustive search over all profiles is prohibitively expensive. Every substring
might be generalized inmultiple ways into different atoms, and the search space grows exponentially
when composing patterns as sequences of atoms, and a profile as a disjunction of patterns.

One approach to classifying strings into matching patterns might be to construct decision trees
or random forests (Breiman 2001) with features based on atoms. However features are typically
defined as predicates over entire strings, whereas atoms match specific substrings and may match
multiple times within a string. Moreover, the location of an atomic match within a string depends
on the lengths of the preceding atomic matches within that string. Therefore, this approach seems
intractable since generating features based on atoms leads to an exponential blow up.
Instead, we propose to address the challenge of learning a profile by first clustering (Xu and

Wunsch II 2005) Ð partitioning the dataset into syntactically similar clusters of strings and then
learning a succinct pattern describing each cluster. This approach poses two key challenges:
(1) efficiently learning patterns for a given cluster of strings over an arbitrary set of atomic patterns
provided by the user, and (2) defining a suitable notion of pattern-based similarity for clustering, that
is aware of the user-specified atoms. For instance, as we show in the motivating example (Fig. 1 and
Fig. 2), the clustering must be sensitive to the presence of ⟨DOI⟩ and ⟨ISBN10⟩ atoms. Traditional
character-based similarity measures over strings (Gomaa and Fahmy 2013) are ineffective for
imposing a clustering that is susceptible to high-quality explanations using a given set of atoms.

Our Technique. We address both the aforementioned challenges by leveraging recent advances
in inductive program synthesis (Gulwani et al. 2017) Ð an approach for learning programs from
incomplete specifications, such as input-output examples for the desired program.

2 ⟨DOI⟩ is defined as the regex 10.\d{4,9}/[-._;()/:A-Z0-9a-z]+.

⟨ISBN10⟩ is defined as the regex \d-\d{3}-\d{5}-[0-9Xx].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:4 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

First, to address challenge (1), we present a novel domain-specific language (DSL) for patterns,
and define a specification over a given set of strings. Our DSL provides constructs that allow users
to easily augment it with new atoms. We then give an efficient synthesis procedure for learning
patterns that are consistent with the specification, and a cost function to select compact patterns
that are not overly general, out of all patterns that are consistent with a given cluster of strings.
Second, we observe that the cost function for patterns induces a natural syntactic dissimilarity

measure over strings, which is the key to addressing challenge (2). We consider two strings to be
similar if both can be described by a low-cost pattern. Strings requiring overly general / complex
patterns are considered dissimilar. Typical clustering algorithms require computation of all pairwise
dissimilarities (Xu and Wunsch II 2005). However, in contrast to standard clustering scenarios,
computing dissimilarity for a pair of strings not only gives us a numeric measure, but also a pattern
for them. That this allows for practical performance optimizations. In particular, we present a
strategy to approximate dissimilarity computations using a small set of carefully sampled patterns.

Approximation
Parameters

Custom Atoms
with Costs

Number of
Patterns

Pattern
Learner

+
Cost

Function

Hierarchical
Clustering

Profile

Dataset

Fig. 3. FlashProfile’s interaction model: dashed
edges denote internal communication, and thin

edges denote optional parameters to the system.

To summarize, we present a framework for syn-
tactic profiling based on clustering, that is param-
eterized by a pattern learner and a cost function.
Fig. 3 outlines our interaction model. In the default
mode, users simply provide their dataset. Addition-
ally, they may control the performance vs. accuracy
trade-off, define custom atoms, and provide bounds
on the number of patterns. To enable efficient refine-
ment of profiles based on the given bounds, we construct a hierarchical clustering (Xu and Wunsch
II 2005, Section IIB) that may be cut at a suitable height to extract the desired number of clusters.

Evaluation. We have implemented our technique as FlashProfile using PROSE (Microsoft 2017d),
also called FlashMeta (Polozov and Gulwani 2015), a state-of-the-art inductive synthesis framework.
We evaluate our technique on 75 publicly-available datasets collected from online sources.3 Over
153 tasks, FlashProfile achieves a median profiling time of 0.7s, 77% of which complete in under 2s.
We show a thorough analysis of our optimizations, and a comparison with state-of-the-art tools.

Applications in PBE Systems. The benefits of syntactic profiles extend beyond data understanding.
An emerging technology, programming by examples (PBE) (Gulwani et al. 2017; Lieberman 2001),
provides end users with powerful semi-automated alternatives to manual data wrangling. For
instance, they may use a tool like Flash Fill (Gulwani 2011), a popular PBE system for data trans-
formations within Microsoft Excel and Azure ML Workbench (Microsoft 2017a,b). However, a key
challenge to the success of PBE is finding a representative set of examples that best discriminates
the desired program from a large space of possible programs (Mayer et al. 2015). Typically users
provide the desired outputs over the first few entries, and Flash Fill then synthesizes the simplest

generalization over them. However, this often results in incorrect programs, if the first few entries
are not representative of the various formats present in the entire dataset (Mayer et al. 2015).

Instead, a syntactic profile can be used to select a representative set of examples from syntactically
dissimilar clusters. We tested 163 scenarios where Flash Fill requires more than one input-output
example to learn the desired transformation. In 80% of them, the examples belong to different
syntactic clusters identified by FlashProfile. Moreover, we show that a profile-guided interaction
model for Flash Fill, which we detail in ğ6, is able to complete 86% of these tasks requiring the
minimum number of examples. Instead of the user having to select a representative set of examples,
our dissimilarity measure allows for proactively requesting the user to provide the desired output
on an entry that is most discrepant with respect to those previously provided.

3 All public datasets are available at: https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests

FlashProfile: A Framework for Synthesizing Data Profiles 150:5

In summary, we make the following major contributions:

(ğ2) We formally define syntactic profiling as a problem of clustering of strings, followed by
learning a succinct pattern for each cluster.

(ğ3) We show a hierarchical clustering technique that uses pattern learning to measure dissimilar-
ity of strings, and give performance optimizations that further exploit the learned patterns.

(ğ4) We present a novel DSL for patterns, and give an efficient synthesis procedure with a cost
function for selecting desirable patterns.

(ğ5) We evaluate FlashProfile’s performance and accuracy on large real-life datasets, and provide
a detailed comparison with state-of-the-art tools.

(ğ6) We present a profile-guided interaction model for Flash Fill, and show that data profiles may
aid PBE systems by identifying a representative set of inputs.

2 OVERVIEW

Henceforth, the term dataset denotes a set of strings. We formally define a syntactic profile as:

Definition 2.1. Syntactic Profile Ð Given a datasetS and a desired number k of patterns, syntactic
profiling involves learning (1) a partitioning S1⊔ . . .⊔Sk = S, and (2) a set of patterns {P1, . . . , Pk },
where each Pi is an expression that describes the strings in Si . We call the disjunction of these

patterns P̃ = P1 ∨ . . . ∨ Pk a syntactic profile of S, which describes all the strings in S.

The goal of syntactic profiling is to learn a set of patterns that summarize a given dataset, but
is neither too specific nor too general (to be practically useful). For example, the dataset itself is
a trivial overly specific profile, whereas the regex ł.*ž is an overly general one. We propose a
technique that leverages the following two key subcomponents to generate and rank profiles:4

• a pattern learner L : 2 S → 2L , which generates a set of patterns over an arbitrary pattern
language L , that are consistent with a given dataset.

• a cost function C : L × 2 S → R≥ 0, which quantifies the suitability of an arbitrary pattern (in
the same language L) with respect to the given dataset.

Using L and C, we can quantify the suitability of clustering a set of strings together. More specifi-
cally, we can define a minimization objective O : 2 S → R≥ 0 that indicates an aggregate cost of a
cluster. We can now define an optimal syntactic profile that minimizes O over a given dataset S:

Definition 2.2. Optimal Syntactic Profile Ð Given a dataset S, a desired number k of patterns,
and access to a pattern learner L, a cost function C for patterns, and a minimization objective

O for partitions, we define: (1) the optimal partitioning S̃opt as one that minimizes the objective

function O over all partitions, and (2) the optimal syntactic profile P̃opt as the disjunction of the

least-cost patterns describing each partition in S̃opt . Formally,

S̃opt
def
= argmin
{S1, ... ,Sk }

s.t. S =
k⊔
i = 1
Si

k∑

i = 1

O(Si) and P̃opt
def
=

∨

Si ∈ S̃opt

argmin
P ∈ L(Si)

C(P ,Si)

Ideally, we would define the aggregate cost of a partition as the minimum cost incurred by a

pattern that describes it entirely. This is captured by O(Si)
def
= minP ∈ L(Si) C(P ,Si). However, with

this objective, computing the optimal partitioning S̃opt is intractable in general. For an arbitrary
learner L and cost function C, this would require exploring all k-partitionings of the dataset S.5

4 We denote the universe of all strings as S, the set of non-negative reals as R≥ 0, and the power set of a set X as 2X .
5 The number of ways to partition a set S into k non-empty subsets is given by Stirling numbers of the second kind (Graham

et al. 1994),
{

k

|S |
}
. When k ≪ |S |, the asymptotic value of

{

k

|S |
}
is given by

k |S|

k !
.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:6 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

Instead, we use an objective that is tractable and works well in practice Ð the aggregate cost of a
cluster is given by the maximum cost of describing any two strings belonging to the cluster, using

the best possible pattern. Formally, this objective is Ô(Si)
def
= maxx,y ∈ Si minP ∈ L({x,y }) C(P , {x ,y}).

This objective is inspired by the complete-linkage criterion (Sùrensen 1948), which is widely used

in clustering applications across various domains (Jain et al. 1999). To minimize Ô, it suffices to
only compute the costs of describing (at most) |S|2 pairs of strings in S.

func Profile⟨L,C⟩(S : String[],m : Int,M : Int,θ : Real)

output: P̃ , a partitioning of S with the associated patterns

for each partition, such thatm ⩽ | P̃ | ⩽ M

1 · H ← BuildHierarchy⟨L,C⟩(S,M,θ) ; P̃ ← {}

2 · for all X ∈ Partition(H ,m,M) do

3 · ⟨Pattern: P ,Cost: c⟩ ← LearnBestPattern⟨L,C⟩(X)

4 · P̃ ← P̃ ∪ {⟨Data: X ,Pattern: P⟩}

5 · return P̃

Fig. 4. Our main profiling algorithm

We outline our main algorithm Profile in
Fig. 4. It is parameterized by an arbitrary learner
L and cost function C. Profile accepts a
dataset S, the bounds

[
m,M

]
for the desired

number of patterns, and a sampling factor θ

that decides the efficiency vs. accuracy trade-
off. It returns the generated partitions paired
with the least-cost patterns describing them:
{⟨S1, P1⟩, . . . , ⟨Sk , Pk ⟩}, wherem ⩽ k ⩽ M .
At a high level, we partition a dataset using the cost of patterns to induce a syntactic dissimilarity

measure over its strings. For large enough θ , we compute all O(|S|2) pairwise dissimilarities, and

generate the partitioning S̃opt that minimizes Ô. However, many large real-life datasets have a

very small number of syntactic clusters, and we notice that we can closely approximate S̃opt by
sampling only a few pairwise dissimilarities. We invoke BuildHierarchy, in line 1, to construct a
hierarchy H over S with accuracy controlled by θ . The hierarchy H is then cut at a certain height
to obtain k clusters by calling Partition in line 2 Ð ifm , M , k is heuristically decided based on
the quality of clusters obtained at various heights. Finally, using LearnBestPattern, we learn a

pattern P for each cluster X , and add it to the profile P̃ .
In the following subsections, we explain the two main components: (1) BuildHierarchy for

building a hierarchical clustering, and (2) LearnBestPattern for pattern learning.

2.1 Pattern-Specific Clustering

BuildHierarchy uses an agglomerative hierarchical clustering (AHC) (Xu and Wunsch II 2005,
Section IIB) to construct a hierarchy (also called a dendrogram) that depicts a nested grouping of
the given collection of strings, based on their syntactic similarity. Fig. 5 shows such a hierarchy
over an incomplete and inconsistent dataset containing years, using the default set of atoms listed
in Fig. 6. Once constructed, a hierarchy may be split at a suitable height to extract clusters of
desired granularity, which enables a natural form of refinement Ð supplying a desired number
of clusters. In contrast, flat clustering methods like k-means (MacQueen et al. 1967) generate a
fixed partitioning within the same time complexity. In Fig. 5(b), we show a heuristically suggested
split with 4 clusters, and a refined split on a request for 5 clusters. A key challenge to clustering is
defining an appropriate pattern-specific measure of dissimilarity over strings, as we show below.

Example 2.3. Consider the pairs: p = { ł1817ž, ł1813?ž } and q = { ł1817ž, ł1907ž }. Selecting the
pair that is syntactically more similar is ambiguous, even for humans. The answer depends on the
user’s application Ð it may make sense to either cluster homogeneous strings (containing only
digits) together, or to cluster strings with a longer common prefix together.
A natural way to resolve this ambiguity is to allow users to express their application-specific

preferences by providing custom atoms, and then to make the clustering algorithm sensitive
to the available atoms. Therefore we desire a dissimilarity measure that incorporates the user-
specified atoms, and yet remains efficiently computable, since typical clustering algorithms compute
dissimilarities between all pairs of strings (Xu and Wunsch II 2005).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:7

Year

1900

1877

ϵ

1860

?

1866

ϵ

1893
.
.
.

1888 ?

1872

(a) Dataset 6

⊥⊥⊥

Any+

ł1ž ⋄ Any+

ł1ž ⋄ Digit×3

ł18ž ⋄ Digit×2

1813 · · · 1898

ł190ž ⋄ Digit

1900 · · · 1903

ł18ž ⋄ Digit×2 ⋄ ł?ž

1850? · · · 1875?

ł?ž

?

Empty

ϵ

. .
. ..
.
. . .

. .
. ..
.
. . .

. .
. ..
.
. . .

Suggested

Refined

(b) A hierarchy based on default atoms from Fig. 6

Fig. 5. A hierarchy with suggested and refined clusters: Leaf nodes rep-
resent strings, and internal nodes are labelled with patterns describing
the strings below them. Atoms are concatenated using ł ⋄ ž. A dashed
edge denotes the absence of a pattern that describes the strings together.

Lower Bin
[a−z] [01]

Upper Digit
[A−Z] [0−9]

⟨TitleCaseWord⟩ Hex
Upper ⋄ Lower+ [a−f A−F 0−9]

Alpha AlphaDigit
[a−zA−Z] [a−zA−Z 0−9]

␣ AlphaDigitSpace
\s [a−zA−Z 0−9\s]

DotDash Punct
[.−] [., : ? /−]

AlphaDash Symb
[a−zA−Z−] [−., : ? /@#$%& ···]

AlphaSpace Base64
[a−zA−Z \s] [a−zA−Z 0−9+\=]

Fig. 6. Default atoms in FlashProfile,
with their regex: We also allow łAnyž
atom that matches any character.

Syntactic Dissimilarity. Our key insight is to leverage program synthesis techniques to efficiently
learn patterns describing a given set of strings, and induce a dissimilarity measure using the learned
patterns Ð overly general or complex patterns indicate a high degree of syntactic dissimilarity.
In ğ3.1, we formally define the dissimilarity measure η as the minimum cost incurred by any

pattern for describing a given pair of strings, using a specified pattern learner L and cost function
C. We evaluate our measure η in ğ5.1, and demonstrate that for estimating syntactic similarity it
is superior to classical character-based measures (Gomaa and Fahmy 2013), and simple machine-
learned models such as random forests based on intuitive features.

Adaptive Sampling and Approximation. While η captures a high-quality syntactic dissimilarity,
with it, each pairwise dissimilarity computation requires learning and scoring of patterns, which
may be expensive for large real datasets. To allow end users to quickly generate approximately
correct profiles for large datasets, we present a two-stage sampling technique. (1) At the top-level,
FlashProfile employs a Sample−Profile−Filter cycle: we sample a small subset of the data, profile
it, and filter out data that is described by the profile learned so far. (2) While profiling each sample,
our BuildHierarchy algorithm approximates some pairwise dissimilarities using previously seen
patterns. We allow end users to control the degree of approximations using two optional parameters.

Our key insight that, unlike typical clustering scenarios, computing dissimilarity between a pair
of strings gives us more than just a measure Ð we also learn a pattern. We test this pattern on other
pairs to approximate their dissimilarity, which is typically faster than learning new patterns. Our
technique is inspired by counter-example guided inductive synthesis (CEGIS) (Solar-Lezama et al.
2006). CEGIS was extended to sub-sampling settings by Raychev et al. (2016), but they synthesize a
single program and require the outputs for all inputs. In contrast, we learn a disjunction of several
programs, the outputs for which over a dataset, i.e. the partitions, are unknown a priori.

Example 2.4. The pattern łPMCž ⋄ Digit×7 learned for the string pair { łPMC2536233ž, łPMC4901429ž },
also describes the string pair { łPMC4901429ž, łPMC2395569ž }, and may be used to accurately estimate
their dissimilarity without invoking learning again.

However this sampling needs to be performed carefully for accurate approximations. Although
the pattern ł1ž ⋄ Digit×3 learned for { ł1901ž, ł1875ž }, also describes { ł1872ž, ł1875ž }, there exists
another pattern ł187ž ⋄ Digit, which indicates a much lower syntactic dissimilarity. We propose an
adaptive algorithm for sampling patterns based on previously observed patterns and strings in the
dataset. Our sampling and approximation algorithms are detailed in ğ3.2 and ğ3.3 respectively.

6 Linda K. Jacobs, The Syrian Colony in New York City 1880-1900. http://bit.ly/LJacobs

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

http://bit.ly/LJacobs

150:8 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

2.2 Pattern Learning via Program Synthesis

An important aspect of our clustering-based approach to profiling, described in ğ2.1, is its generality.
It is agnostic to the specific language L in which patterns are expressed, as long as appropriate
pattern learner L and cost function C are provided for L .

func LearnBestPattern⟨L,C⟩(S : String[])
output: The least-cost pattern and its cost, for S

1 · V ← L(S)

2 · if V = {} then return ⟨Pattern:⊥⊥⊥,Cost:∞⟩

3 · P ← argminP ∈V C(P ,S)
4 · return ⟨Pattern: P ,Cost:C(P ,S)⟩

Fig. 7. Learning the best pattern for a dataset

LearnBestPattern, listed in Fig. 7, first invokes L
to learn a set V of patterns each of which describes
all strings in S. If pattern learning fails,7 in line 2, we
return the special pattern ⊥⊥⊥ and a very high cost ∞.
Otherwise, we return the pattern that has the minimum
cost using C w.r.t. S. LearnBestPattern is used dur-
ing clustering to compute pairwise dissimilarity and
finally compute the least-cost patterns for clusters.
A natural approach to learning patterns is inductive program synthesis (Gulwani et al. 2017),

which generalizes a given specification to desired programs over a domain-specific language (DSL).
We propose a rich DSL for patterns, and present an efficient inductive synthesizer for it.

Language for Patterns. Our DSL LFP is designed to support efficient synthesis using existing
technologies while still being able to express rich patterns for practical applications. A pattern is
an arbitrary sequence of atomic patterns (atoms), each containing low-level logic for matching a
sequence of characters. A pattern P ∈ LFP describes a string s , i.e. P(s) = True, iff the atoms in P

match contiguous non-empty substrings of s , ultimately matching s in its entirety. FlashProfile
uses a default set of atoms listed in Fig. 6, which may be augmented with new regular expressions,
constant strings, or ad hoc functions. We formally define our language LFP in ğ4.1.

Pattern Synthesis. The inductive synthesis problem for pattern learning is: given a set of strings
S, learn a pattern P ∈ LFP such that ∀ s ∈ S: P(s) = True. Our learner LFP decomposes the
synthesis problem for P over the strings in S into synthesis problems for individual atoms in P over
appropriate substrings. However, a naïve approach of tokenizing each string to (exponentially many)
sequences of atoms, and computing their intersection is simply impractical. Instead, LFP computes
the intersection incrementally at each atomic match, using a novel decomposition technique.
LFP is implemented using PROSE (Microsoft 2017d; Polozov and Gulwani 2015), a state-of-the-art

inductive synthesis framework. PROSE requires DSL designers to define the logic for decomposing a
synthesis problem over an expression to those over its subexpressions, which it uses to automatically
generate an efficient synthesizer for their DSL. We detail our synthesis procedure in ğ4.2.

Cost of Patterns. Once a set of patterns has been synthesized, a variety of strategies may be used
to identify the most desirable one. Our cost function CFP is inspired by regularization (Tikhonov
1963) techniques that are heavily used in statistical learning to construct generalizations that do
not overfit to the data. CFP decides a trade-off between two opposing factors: (1) specificity: prefer a
pattern that is not general, and (2) simplicity: prefer a compact pattern that is easy to interpret.

Example 2.5. The strings { łMalež, łFemalež } are matched by the patterns Upper ⋄ Lower+, and
Upper ⋄ Hex ⋄ Lower+. Although the latter is more specific, it is overly complex. On the other hand,
the pattern Alpha+ is simpler and easier to interpret, but is overly general.

To this end, each atom inLFP has a fixed static cost similar to fixed regularization hyperparameters

used in machine learning (Bishop 2016), and a dataset-driven dynamic weight. The cost of a pattern
is the weighted sum of the cost of its constituent atoms. In ğ4.3, we detail our cost function CFP,
and provide some guidelines on assigning costs for new atoms defined by users.

7 Pattern learning may fail, for example, if the language L is too restrictive and no pattern can describe the given strings.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:9

3 HIERARCHICAL CLUSTERING

We now detail our clustering-based approach for generating syntactic profiles and show practical
optimizations for fast approximately-correct profiling. In ğ3.1 ś ğ3.4, we explain these in the context
of a small chunk of data drawn from a large dataset. In ğ3.5, we then discuss how profile large
datasets by generating profiles for as many chunks as necessary and combining them.

func BuildHierarchy⟨L,C⟩(S : String[],M : Int,θ : Real)
output: A hierarchical clustering over S

1 · D ← SampleDissimilarities⟨L,C⟩(S, ⌈θ M⌉)

2 · A← ApproxDMatrix(S,D)

3 · return AHC(S,A)

Fig. 8. Building an approximately-correct hierarchy8

Recall that our first step in Profile is to
build a hierarchical clustering over the data.
The BuildHierarchy procedure, listed in Fig. 8,
constructs a hierarchy H over a given dataset
S, with parameters M and θ . M is the maxi-
mum number of clusters in a desired profile.
The pattern sampling factor θ decides the performance vs. accuracy trade-off while constructing H .

Henceforth, we use pair to denote a pair of strings. In line 1 of BuildHierarchy, we first sample
pairwise dissimilarities, i.e. the best patterns and their costs, for a small set (based on the θ factor)
of string pairs. Specifically, out of all O(|S|2) pairs within S, we adaptively sample dissimilarities
for only O(θM |S|) pairs by calling SampleDissimilarities, and cache the learned patterns in D.
We formally define the dissimilarity measure in ğ3.1, and describe SampleDissimilarities in ğ3.2.
The cache D is then used by ApproxDMatrix, in line 2, to complete the dissimilarity matrix A over
S, using approximations wherever necessary. We describe these approximations in ğ3.3. Finally, a
standard agglomerative hierarchical clustering (AHC) (Xu and Wunsch II 2005, Section IIB) is used
to construct a hierarchy over S using the matrix A.

3.1 Syntactic Dissimilarity

We formally define our syntactic dissimilarity measure as follows:

Definition 3.1. Syntactic Dissimilarity Ð For a given pattern learner L and a cost function C
over an arbitrary language of patterns L , we define the syntactic dissimilarity between strings
x ,y ∈ S as the minimum cost incurred by a pattern in L to describe them together, i.e.

η (x ,y)
def
=

0 if x = y

∞ if x , y
∧

V = {}

min
P ∈V

C
(
P , {x ,y}

)
otherwise

where V = L
(
{x ,y}

)
⊆ L is the set of patterns that describe strings x and y, and ∞ denotes a

high cost for a failure to describe x and y together using patterns learned by L.

The following example shows some candidate patterns and their costs encountered during
dissimilarity computation for various pairs. The actual numbers depend on the pattern learner and
cost function used, in this case FlashProfile’s LFP and CFP, which we describe in ğ4. However, this
example highlights the desirable properties for a natural measure of syntactic dissimilarity.

Example 3.2. For three pairs, we show the shortcomings of classical character-based similarity
measures. We compare the Levenshtein distance (LD) (Levenshtein 1966) for these pairs against the
pattern-based dissimilarity η computed with our default atoms from Fig. 6. On the right, we also
show the least-cost pattern, and two other randomly sampled patterns that describe the pair.
First, we compare two dates both using the same syntactic format łYYYY-MM-DDž:

(a)
1990-11-23

2001-02-04
LD = 8 vs. η = 4.96

{
4.96 Digit×4 ⋄ ł-ž ⋄Digit×2 ⋄ ł-ž ⋄Digit×2

179.9 Hex+ ⋄ Symb ⋄Hex+ ⋄ ł-ž ⋄Hex+

46482 Digit+ ⋄ Punct ⋄ Any+

8 ⌈x ⌉ denotes the ceiling of x , i.e. ⌈x ⌉ = min {m ∈ Z | m ⩾ x }.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:10 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

Syntactically, these dates are very similar Ð they use the same delimiter ł-ž, and have same width
for the numeric parts. The best pattern found by FlashProfile captures exactly these features.
However, Levenshtein distance for these dates is higher than the following dates which uses a
different delimiter and a different order for the numeric parts:

(b)
1990-11-23

29/05/1923
LD = 5 vs. η = 30.2

{
30.2 Digit+ ⋄ Punct ⋄Digit×2 ⋄ Punct ⋄Digit+

318.6 Digit+ ⋄ Symb ⋄Digit+ ⋄ Symb ⋄Digit+

55774 Digit+ ⋄ Punct ⋄ Any+

The Levenshtein distance is again lower for the following pair containing a date and an ISBN code:

(c)
1990-11-23

899-2119-33-X
LD = 7 vs. η = 23595

{
23595 Digit+ ⋄ ł-ž ⋄Digit+ ⋄ ł-ž ⋄ Any+

55415 Digit+ ⋄ Punct ⋄ Any+

92933 Any+

The same trend is also observed for Jaro-Winkler (Winkler 1999), and other measures based on edit
distance (Gomaa and Fahmy 2013). Whereas these measures look for exact matches on characters,
pattern-based measures have the key advantage of being able to generalize substrings to atoms.

3.2 Adaptive Sampling of Patterns

Although η accurately captures the syntactic dissimilarity of strings over an arbitrary language
of patterns, it requires pattern learning and scoring for every pairwise dissimilarity computation,
which is computationally expensive. While this may not be a concern for non-realtime scenarios,
such as profiling large datasets on cloud-based datastores, we provide a tunable parameter to end
users to be able to generate approximately correct profiles for large datasets in real time.

Besides a numeric measure of dissimilarity, computing η over a pair also generates a pattern that
describes the pair. Since the patterns generalize substrings to atoms, often the patterns learned
for one pair also describe many other pairs. We aim to sample a subset of patterns that are
likely to be sufficient for constructing a hierarchy accurate untilM levels, i.e. 1 ⩽ k ⩽ M clusters
extracted from this hierarchy should be identical tok clusters extracted from a hierarchy constructed
without approximations. Our SampleDissimilarities algorithm, shown in Fig. 9, is inspired by the
seeding technique of k-means++ (Arthur and Vassilvitskii 2007). Instead of computing all pairwise
dissimilarities for pairs in S × S, we compute the dissimilarities for pairs in ρ × S, where set ρ is a
carefully selected small set of seed strings. The patterns learned during this process are likely to be
sufficient for accurately estimating the dissimilarities for the remaining pairs.

func SampleDissimilarities⟨L,C⟩(S : String[], M̂ : Int)

output: A dictionary mapping O(M̂ |S|) pairs of strings from S,
to the best pattern describing each pair and its cost

1 · D ← {} ; a ← a random string in S ; ρ ← {a}

2 · for i ← 1 to M̂ do

3 · for all b ∈ S do

4 · D[a,b] ← LearnBestPattern⟨L,C⟩({a,b})

▶ Pick the most dissimilar string w.r.t. strings already in ρ.
5 · a ← argmaxx ∈ S miny ∈ ρ D[y,x].Cost
6 · ρ ← ρ ∪ {a}

7 · return D

Fig. 9. Adaptively sampling a small set of patterns

SampleDissimilarities takes a dataset S
and a factor M̂ , and it samples dissimilarities

forO(M̂ |S|) pairs. It iteratively selects a set ρ

containing M̂ strings that are most dissimilar
to each other. Startingwith a random string in
ρ, in each iteration, at line 6, it adds the string
x ∈ S such that it is as dissimilar as possible,
even with its most-similar neighbor in ρ. In
the end, the setD only contains dissimilarities
for pairs in S × ρ, computed at line 5. Recall

that, M̂ is controlled by the pattern sampling

factor θ . In line 1 of BuildHierarchy (in Fig. 8), we set M̂ = ⌈θM⌉.
Since the user may request up to at most M clusters, θ must be at least 1.0, so that we pick at

least one seed string from each cluster to ρ. Then, computing the dissimilarities with all other
strings in the dataset would ensure we have a good distribution of patterns that describe intraś
and interś cluster dissimilarities, even for the finest granularity clustering withM clusters.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:11

Example 3.3. Consider the dataset containing years in Fig. 5(a). Starting with a random string,

say ł1901ž; the set ρ of seed strings grows as shown below, with increasing M̂ . At each step, NN

(nearest neighbor) shows the new string added to ρ paired with its most similar neighbor.
M̂ = 2 | NN = ⟨ϵ, ł1901ž⟩ ρ = {ł1901ž, ϵ}
M̂ = 3 | NN = ⟨ł?ž, ł1901ž⟩ ρ = {ł?ž, ł1901ž, ϵ}
M̂ = 4 | NN = ⟨ł1875?ž, ł1901ž⟩ ρ = {ł1875?ž, ł?ž, ł1901ž, ϵ}
M̂ = 5 | NN = ⟨ł1817ž, ł1875?ž⟩ ρ = {ł1817ž, ł1875?ž, ł?ž, ł1901ž, ϵ}
M̂ = 6 | NN = ⟨ł1898ž, ł1817ž⟩ ρ = {ł1898ž, ł1817ž, ł1875?ž, ł?ž, ł1901ž, ϵ}

3.3 Dissimilarity Approximation

Now we present our technique for completing a dissimilarity matrix over a dataset S, using the
patterns sampled from the previous step. Note that, for a large enough value of the pattern sampling

factor, i.e. θ ⩾
|S|

M
, we would sampled all pairwise dissimilarities and no approximation would be

necessary. For smaller values of θ , we use the patterns learned while computing η over ρ × S to
approximate the remaining pairwise dissimilarities in S × S. The key observation here is that,
testing whether a pattern describes a string is typically much faster than learning a new pattern.

func ApproxDMatrix ⟨L,C⟩(S : String[],
D : String × String 7→ Pattern × Real)

output: A matrix A of all pairwise dissimilarities over strings in S

1 · A← {}

2 · for all x ∈ S do

3 · for all y ∈ S do

4 · if x = y then A[x ,y] ← 0
5 · else if ⟨x ,y⟩ ∈ D then A[x ,y] ← D[x ,y].Cost
6 · else

▶ Select the least cost pattern that describes x and y.
7 · V ←

{
P
�� ⟨Pattern: P ,Cost: ·⟩ ∈ D

∧
P(x)

∧
P(y)

}

8 · if V , {} then A[x ,y] ← minP ∈ V C
(
P , {x ,y}

)

9 · else

▶ Compute η (s,y), and store the learned pattern.
10 · D[x ,y] ← LearnBestPattern⟨L,C⟩({x ,y})

11 · A[x ,y] ← D[x ,y].Cost

12 · return A

Fig. 10. Approximating a complete dissimilarity matrix

The ApproxDMatrix procedure, listed
in Fig. 10, uses the dictionary D of patterns
from SampleDissimilarities to generate a
matrix A of all pairwise dissimilarities over
S. Lines 7 and 8 show the key approxima-
tion steps for a pair {x ,y}. In line 7, we test
the patterns inD, and select a setV of them
containing only those which describe both
x and y. We then compute their new costs
relative to {x ,y}, in line 8, and select the
least cost as an approximation of η (x ,y).
If V turns out to be empty, i.e. no sampled
pattern describes both x and y, then, in line
10, we call LearnBestPattern to compute
η (x ,y). We also add the new pattern to D

for use in future approximations.
Although θ = 1.0 ensures that we pick a seed string from each final cluster, in practice we use a

θ that is slightly greater than 1.0. This allows us to sample a few more seed strings, and ensures a
better distribution of patterns in D at the cost of a negligible performance overhead. In practice, it
rarely happens that no sampled pattern describes a new pair (at line 9, Fig. 10), since seed patterns
for inter-cluster string pairs are usually overly general, as we show in the example below.

Example 3.4. Consider a dataset S = {ł07-junž, łaug-18ž, ł20-febž, ł16-junž, ł20-junž}. Assuming

M = 2 and θ = 1.0 (i.e. M̂ = 2), suppose we start with the string ł20-junž. Then, following the
SampleDissimilarities algorithm shown in Fig. 9, we would select ρ = { ł20-junž, łaug-18ž }, and
would sample the following seed patterns into D based on patterns defined over our default atoms
(listed in Fig. 6) and constant string literals:

(a) D[ł20-junž,ł07-junž] 7→ Digit×2 ⋄ ł-junž, and

(b) D[ł20-junž,ł20-febž] 7→ ł20-ž ⋄ Lower×3,

(c) D[ł20-junž,ł16-junž] 7→ Digit×2 ⋄ ł-junž, and

(d) D[ł20-junž,łaug-18ž], D[łaug-18ž,ł07-junž], D[łaug-18ž,ł20-febž], D[łaug-18ž,ł16-junž] 7→
AlphaDigit+ ⋄ ł-ž ⋄ AlphaDigit+.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:12 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

Next, we estimate η (ł16-junž, ł20-febž) using these patterns. None of (a) Ð (c) describe the pair,
but (d) does. However, it is overly general compared to the least-cost pattern, Digit×2 ⋄ ł-ž ⋄ Lower×3.

As in the case above, depending on the expressiveness of the pattern language, for a small
θ the sampled patterns may be too specific to be useful. With a slightly higher θ = 1.25, i.e.

M̂ = ⌈θM⌉ = 3, we would also select ł07-junž as a seed string in ρ, and sample the desired while
computing D[ł07-junž,ł20-febž]. We evaluate the impact of θ on performance and accuracy in ğ5.2.

3.4 Hierarchy Construction and Splitting func AHC(S : String[],A : String × String 7→ Real)
output: A hierarchy over S using dissimilarity matrix A

1 · H ←
{
{ s } | s ∈ S

}

2 · while |H | > 1 do
3 · ⟨X ,Y ⟩ ← argminX ,Y ∈H η̂ (X ,Y | A)

4 · H ←
(
H \ {X ,Y }

)
∪
{
{X ,Y }

}

5 · return H

Fig. 11. A standard algorithm for AHC

Once we have a dissimilarity matrix, we use a
standard agglomerative hierarchical clustering
(AHC) (Xu and Wunsch II 2005, Section IIB) al-
gorithm, as outlined in Fig. 11. Note that AHC is
not parameterized by L and C, since it does not
involve learning or scoring of patterns any more.

We start with each string in a singleton set (leaf nodes of the hierarchy). Then, we iteratively join
the least-dissimilar pair of sets, until we are left with a single set (root of the hierarchy). AHC relies
on a linkage criterion to estimate dissimilarity of sets of strings. We use the classic complete-linkage
(also known as further-neighbor linkage) criterion (Sùrensen 1948), which has been shown to be
resistant to outliers, and yield useful hierarchies in practical applications (Jain et al. 1999).

Definition 3.5. Complete-Linkage Ð For a set S and a dissimilarity matrix A defined on S, given
two arbitrarily-nested clusters X and Y over a subset of entities in S, we define the dissimilarity

between their contents (the flattened sets X ,Y ⊆ S, respectively) as:

η̂ (X ,Y | A)
def
= max

x ∈X ,y∈Y

A[x ,y]

Once a hierarchy has been constructed, our Profile algorithm (in Fig. 4) invokes the Partition
method (at line 2) to extract k clusters within the provided bounds [m,M]. Ifm , M , we use a
heuristic based on the elbow (also called knee) method (Halkidi et al. 2001): between the topmth and
theM th nodes, we split the hierarchy till the knee Ð a node below which the average intra-cluster
dissimilarity does not vary significantly. A user may requestm = k = M , in which case Partition
simply splits the top k nodes of the hierarchy to generate k clusters.

3.5 Profiling Large Datasets

To scale our technique to large datasets, we now describe a second round of sampling. Recall that
in SampleDissimilarities, we sample dissimilarities forO(θM |S|) pairs. However, although θM is
very small, | S | is still very large for real-life datasets. In order to address this, we run our Profile
algorithm from Fig. 4 on small chunks of the dataset, and combine the generated profiles.

func BigProfile⟨L,C⟩(S : String[],m : Int,M : Int,
θ : Real, µ : Real)

output: A profile P̃ that satisfiesm ⩽ | P̃ | ⩽ M

1 · P̃ ← {}

2 · while | S | > 0 do
3 · X ← SampleRandom(S, ⌈µM⌉)

4 · P̃ ′← Profile⟨L,C⟩(X ,m,M,θ)

5 · P̃ ← CompressProfile⟨L,C⟩(P̃ ∪ P̃
′
,M)

6 · S ← RemoveMatchingStrings(S, P̃)

7 · return P̃

Fig. 12. Profiling large datasets

We outline our BigProfile algorithm in Fig. 12. This
algorithm accepts a new string sampling factor µ ⩾ 1,
which controls the size of chunks profiled in each itera-
tion, until we have profiled all the strings inS. In ğ5.3, we
evaluate the impact of µ on performance and accuracy.

We start by selecting a random subset X of size ⌈µM⌉

from S in line 3. In line 4, we obtain a profile P̃ ′ ofX , and

merge it with the global profile P̃ in line 5. We repeat this
loop with the remaining strings in S that do not match

the global profile. While merging P̃ and P̃ ′ in line 5, we
may exceed the maximum number of patternsM , and may need to compress the profile.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:13

func CompressProfile⟨L,C⟩(P̃ : ref Profile,M : Int)

output: A compressed profile P̃ that satisfies | P̃ | ⩽ M

1 · while | P̃ | > M do

▶ Compute the most similar partitions in the profile so far.
2 · ⟨X ,Y ⟩ ← argmin

X ,Y ∈P̃

[
LearnBestPattern⟨L,C⟩(X .Data∪Y .Data)

]
.Cost

▶ Merge partitions ⟨X ,Y ⟩, and update P̃ .
3 · Z ← X .Data ∪ Y .Data
4 · P ← LearnBestPattern⟨L,C⟩(Z).Pattern

5 · P̃ ← (P̃ \ {X ,Y }) ∪ { ⟨Data: Z ,Pattern: P⟩ }

6 · return P̃

Fig. 13. Limiting the number of patterns in a profile

For brevity, we elide the details of
SampleRandom and RemoveMatch-

ingStrings, which have straightfor-
ward implementations. In Fig. 13 we
outline CompressProfile. It accepts

a profile P̃ and shrinks it to at mostM
patterns. The key idea is to repeatedly
merge themost similar pair of patterns

in P̃ . However, we cannot compute the
similarity between patterns. Instead,
we estimate it using syntactic similar-

ity of the associated data partitions. The profile P̃ must be of the same type as returned by Profile,
i.e. a set of pairs, each containing a data partition and its pattern. In line 2, we first identify the
partitions ⟨X ,Y ⟩ which are the most similar, i.e. require the least cost pattern for describing them

together. We then merge X and Y to Z , learn a pattern describing Z , and update P̃ by replacing X
and Y with Z and its pattern. This process is repeated until the total number of patterns falls toM .

Theorem 3.6 (Termination). Over an arbitrary language L of patterns, assume an arbitrary

learner L : 2 S → 2L and a cost function C : L × 2 S → R≥ 0, such that for any finite dataset S ⊂ S,

we have: (1) L(S) terminates and produces a finite set of patterns, and (2) C(P ,S) terminates for all

P ∈ L . Then, the BigProfile procedure (Fig. 12) terminates on any finite dataset S ⊂ S, for arbitrary

valid values of the optional parametersm,M , θ and µ.

Proof. We note that in BigProfile, the loop within lines 2 ś 6 runs for at most
|S|

⌈µM⌉
iterations,

since at least ⌈µM⌉ strings are removed from S in each iteration. Therefore, to prove termination
of BigProfile, it is sufficient to show that Profile and CompressProfile terminate.

First, we note that termination of LearnBestPattern immediately follows from (1) and (2). Then,
it is easy to observe that CompressProfile terminates as well: (1) the loop in lines 1 ś 5 runs for at

most |P̃ | −M iterations, and (2) LearnBestPattern is invoked O(|P̃ |2) times in each iteration.
The Profile procedure (Fig. 4) makes at most O

(
(µM)2

)
calls to LearnBestPattern (Fig. 7) to

profile the ⌈µM⌉ strings sampled in to X Ð at mostO
(
(µM)2

)
calls within BuildHierarchy (Fig. 8),

and O(M) calls to learn patterns for the final partitions. Depending on θ , BuildHierarchy may
make many fewer calls to LearnBestPattern. However, it makes no more than 1 such call per
pair of strings in X , to build the dissimilarity matrix. Therefore, Profile terminates as well. □

4 PATTERN SYNTHESIS

We now describe the specific pattern language, leaning technique and cost function used to instan-
tiate our profiling technique as FlashProfile. We begin with a brief description our pattern language
in ğ4.1, present our pattern synthesizer in ğ4.2, and conclude with our cost function in ğ4.3.

4.1 The Pattern Language LFP

Fig. 14(a) shows the formal syntax for our pattern language LFP. Each pattern P ∈ LFP is a predicate
defined on strings, i.e. a function P : String → Bool, which embodies a set of constraints over
strings. A pattern P describes a given string s , i.e. P(s) = True, iff s satisfies all constraints imposed
by P . Patterns in LFP are composed of atomic patterns:

Definition 4.1. Atomic Pattern (or Atom) Ð An atom, α : String→ Int is a function, which given
a string s , returns the length of the longest prefix of s that satisfies its constraints. Atoms only
match non-empty prefixes. α(s) = 0 indicates match failure of α on s .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:14 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

Pattern P [s] := Empty(s)

| P [SuffixAfter(s,α)]

Atom α := Classzc | RegExr

| Functf | Consts

c ∈ power set of characters
f ∈ functions String→ Int
r ∈ regular expressions
s ∈ set of strings S
z ∈ non-negative integers

(a) Syntax of LFP patterns.

Empty(ϵ) ⇓ true

s = s0 ◦ s1 α(s) = |s0 | > 0

SuffixAfter(s,α) ⇓ s1

Functf (s) ⇓ f (s)

|s | > 0 s0 = s ◦ s1

Consts (s0) ⇓ |s |

L = {n ∈ N | r ▷ s[0 ::: n]}

RegExr (s) ⇓ maxL

s = s0 ◦ s1 ∀x ∈ s0 : x ∈ c
s1 = ϵ ∨ s1[0] < c

Class0c (s) ⇓ |s0 |

s = s0 ◦ s1 ∀x ∈ s0 : x ∈ c

|s0 | = z > 0 s1 = ϵ ∨ s1[0] < c

Classzc (s) ⇓ z

(b) Big-step semantics for LFP patterns: We use the judgement E ⇓ v
to indicate that the expression E evaluates to a value v .

Fig. 14. Formal syntax and semantics of our DSL LFP for defining syntactic patterns over strings9

We allow the following four kinds of atoms in LFP:

(a) Constant Strings: A Consts atom matches only the string s as the prefix of a given string. For
brevity, we denote Constłstrž as simply łstrž throughout the text.

(b) Regular Expressions: A RegExr atom returns the length of the longest prefix of a given string,
that is matched by the regex r .

(c) Character Classes: A Class0c atom returns the length of the longest prefix of a give string,
which contains only characters from the set c . A Classzc atom with z > 0 further enforces a
fixed-width constraint Ð the match Classzc (s) fails if Class0c (s), z, otherwise it returns z.

(d) Arbitrary Functions: A Functf atom uses the function f that may contain arbitrary logic, to
match a prefix p of a given string and returns |p |.

Note that, although both constant strings and character classes may be expressed as regular
expressions, having separate terms for them has two key benefits:
• As we show in the next subsection, we can automatically infer all constant strings, and some
character class atoms (namely, those having a fixed-width). This is unlike regular expression or
function atoms, which we do not infer and they must be provided a priori.
• These atoms may leverage more efficient matching logic and do not require regular expression
matching in its full generality. Constant string atoms use equality checks for characters, and
character class atoms use set membership checks.

We list the default set of atoms provided with FlashProfile, in Fig. 6. Users may extend this set with
new atoms from any of the aforementioned kinds.

Example 4.2. The atom Digit is Class1D with D = {0, . . . , 9}. We write Class0D as Digit+, and ClassnD
as Digit×n for clarity. Note that, Digit×2 matches ł04/23ž but not ł2017/04ž, although Digit+ matches
both, since the longest prefix matched, ł2017ž, has length 4 , 2.

Definition 4.3. Pattern Ð A pattern is simply a sequence of atoms. The pattern Empty denotes
an empty sequence, which only matches the empty string ϵ . We use the concatenation operator
ł ⋄ ž for sequencing atoms. For k > 1, the sequence α1 ⋄ α2 ⋄ . . . ⋄ αk of atoms defines a pattern
that is realized by the LFP expression:

Empty(SuffixAfter(· · · SuffixAfter(s,α1) · · · ,αk)),

which matches a string s , iff

s , ϵ
∧

∀i ∈ {1, ...,k} : αi (si) > 0
∧

sk+1 = ϵ,

where s1
def
= s and si+1

def
= si [αi (si) :::] is the remaining suffix of the string si after matching atom αi .

9 a ◦b denotes the concatenation of strings a and b , and r ▷ x denotes that the regex r matches the string x in its entirety.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:15

Throughout this section, we use s[i] to denote the ith character of s , and s[i ::: j] denotes the
substring of s from the ith character, until the jth. We omit j to indicate a substring extending until
the end of s . In LFP, the SuffixAfter(s,α) operator computes s[α(s) :::], or fails with an error if
α(s) = 0. We also show the formal semantics of patterns and atoms in LFP, in Fig. 14(b).

Note that, we explicitly forbid atoms from matching empty substrings. This reduces the search
space by an exponential factor, since an empty string may trivially be inserted between any two
characters within a string. However, this does not affect the expressiveness of our final profiling
technique, since a profile uses a disjunction of patterns. For instance, the strings matching a pattern
α1 ⋄ (ϵ | α2) ⋄ α3 can be clustered into those matching α1 ⋄ α3 and α1 ⋄ α2 ⋄ α3.

4.2 Synthesis of LFP Patterns

Our pattern learner LFP uses inductive program synthesis (Gulwani et al. 2017) for synthesizing
patterns that describe a given dataset S using a specified set of atoms 0. For the convenience of
end users, we automatically enrich their specified atoms by including: (1) all possible Const atoms,
and (2) all possible fixed-width variants of all Class atoms specified by them. Our learner LFP is

instantiated with these enriched atoms derived from 0, denoted as 0̂:

0̂
def
= 0 ∪ {Consts | s ∈ S}

∪ {Classzc | Class0c ∈ 0
∧

z ∈ N}
(1)

Although 0̂ is very large, as we describe below, our learner LFP efficiently explores this search

space, and also provides a completeness guarantee on patterns possible over 0̂.
We build on PROSE (Microsoft 2017d), a state-of-the-art inductive program synthesis library,

which implements the FlashMeta (Polozov and Gulwani 2015) framework. PROSE uses deductive
reasoning Ð reducing a problem of synthesizing an expression to smaller synthesis problems for its
subexpressions, and provides a robust framework with efficient algorithms and data-structures for
this. Our key contribution towards LFP are efficient witness functions (Polozov and Gulwani 2015,
ğ5.2) that enable PROSE to carry out the deductive reasoning over LFP.
An inductive program synthesis task is defined by: (1) a domain-specific language (DSL) for the

target programs, which in our case is LFP, and (2) a specification (Polozov and Gulwani 2015, ğ3.2)
(spec) that defines a set of constraints over the output of the desired program. For learning patterns
over a collectionS of strings, we define a spec φ, that simply requires a learned pattern P to describe
all given strings, i.e. ∀s ∈ S : P(s) = True. We formally write this as:

φ
def
=

∧

s ∈ S

[s ⇝ True]

We provide a brief overview of the deductive synthesis process here, and refer the reader
to FlashMeta (Polozov and Gulwani 2015) for a detailed discussion. In a deductive synthesis
framework, we are required to define the logic for reducing a spec for an expression to specs for
its subexpressions. The reduction logic for specs, called witness functions (Polozov and Gulwani
2015, ğ5.2), is domain-specific, and depends on the semantics of the DSL. Witness functions are
used to recursively reduce the specs to terminal symbols in the DSL. PROSE uses a succinct data
structure (Polozov and Gulwani 2015, ğ4) to track the valid solutions to these specs at each reduction
and generate expressions that satisfy the initial spec. For LFP, we describe the logic for reducing
the spec φ over the two kinds of patterns: Empty and P [SuffixAfter(s,α)]. For brevity, we elide the
pseudocode for implementing the witness functions Ð their implementation is straightforward,
based on the reductions we describe below.
For Empty(s) to satisfy a spec φ, i.e. describe all strings s ∈ S, each string s must indeed be ϵ .

No further reduction is possible since s is a terminal. We simply check, ∀s ∈ S : s = ϵ , and reject
Empty(s) if S contains at least one non-empty string.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:16 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

The second kind of patterns for non-empty strings, P [SuffixAfter(s,α)], allows for complex
patterns that are a composition of an atom α and a pattern P . The pattern P [SuffixAfter(s,α)]

contains two unknowns: (1) an atom α that matches a non-empty prefix of s , and (2) a pattern P

that matches the remaining suffix s[α(s) :::]. Again, note that this pattern must match all strings
s ∈ S. Naïvely considering all possible combinations of α and P leads to an exponential blow up.

First we note that, for a fixed α the candidates for P can be generated recursively by posing a
synthesis problem similar to the original one, but over the suffix s[α(s) :::] instead of each string s .
This reduction style is called a conditional witness function (Polozov and Gulwani 2015, ğ5.2), and
generates the following spec for P assuming a fixed α :

φα
def
=

∧

s ∈ S

[
s[α(s) :::]⇝ True

]
(2)

However, naïvely creating φα for all possible values of α is infeasible, since our set 0̂ of atoms
is unbounded. Instead, we consider only those atoms (called compatible atoms) that match some
non-empty prefix for all strings in S, since ultimately our pattern needs to describe all strings. Prior
pattern-learning approaches (Raman and Hellerstein 2001; Singh 2016) learn complete patterns for
each individual string, and then compute their intersection to obtain patterns consistent with the
entire dataset. In contrast, we compute the set of atoms that are compatible with the entire dataset
at each step, which allows us to generate this intersection in an incremental manner.

Definition 4.4. Compatible Atoms Ð Given a universe 0 of atoms, we say a subset A ⊆ 0 is
compatible with a dataset S, denoted as A ∝ S, if all atoms in Amatch each string in S, i.e.

A ∝ S iff ∀α ∈ A : ∀ s ∈ S : α(s) > 0

We say that a compatible set A of atoms is maximal under the given universe 0, denoted as
A = max0

∝ [S] iff ∀X ⊆ 0 : X ∝ S ⇒ X ⊆ A.

Example 4.5. Consider a dataset with Canadian postal codes: S = { łV6E3V6ž, łV6C2S6ž, łV6V1X5ž,

łV6X3S4ž }. With 0 = the default atoms (listed in Fig. 6), we obtain the enriched set 0̂ using

Equation (1). Then, the maximal set of atoms compatible with S under 0̂, i.e. max0̂
∝ [S] contains 18

atoms, such as łV6ž, łVž, Upper, Upper+, AlphaSpace, AlphaDigit×6, etc.

func GetMaxCompatibleAtoms(S : String[],0 : Atom[])
output: The maximal set of atoms that are compatible with S

1 · C ← {} ; Λ← 0

2 · for all s ∈ S do

3 · for all α ∈ Λ do

▶ Remove incompatible atoms.
4 · if α(s) = 0 then Λ.Remove(α) ; C .Remove(α)
5 · else if α ∈ Class then

▶ Check if character class atoms maintain a fixed width.
6 · if α < C then C[α] ← α(s)

7 · else if C[α] , α(s) then C .Remove(α)

▶ Add compatible fixed-width Class atoms.
8 · for all α ∈ C do Λ.Add(RestrictWidth(α ,C[α]))

▶ Add compatible Const atoms.
9 · L← LongestCommonPrefix(S)

10 · Λ.Add(ConstL[0 : 1], ConstL[0 : 2], . . . , ConstL)
11 · return Λ

Fig. 15. Computing the maximal set of compatible atoms

For a given universe 0 of atoms and a
dataset S, we invoke the GetMaxCompat-

ibleAtoms method outlined in Fig. 15 to

efficiently compute the set Λ = max0̂
∝ [S],

where 0̂ denotes the enriched set of atoms
based on 0 given by Equation (1). Start-
ing with Λ = 0, in line 1, we iteratively
remove atoms from Λ, that are not compat-
ible with S, i.e. fail to match at least one
string s ∈ S, at line 4. At the same time, we
maintain a hashtable C , which maps each
Class atom to its width at line 6. C is used
to enrich 0 with fixed-width versions of
Class atoms that are already specified in 0.
If the width of a Class atom is not constant
over all strings in S, we remove it from our
hashtable C , at line 7. For each remaining Class atom α in C , we add a fixed-width variant for α to
Λ. In line 8, we invoke RestrictWidth to generate the fixed-width variant for α with width C[α].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:17

Finally, we also enrich Λ with Const atoms Ð we compute the longest common prefix L across
all strings, and add every prefix of L to Λ, at line 12. Note that, GetMaxCompatibleAtoms does

not explicitly compute the entire set 0̂ of enriched atoms, but performs simultaneous pruning and

enrichment on 0 to ultimately compute their maximal compatible subset, Λ = max0̂
∝ [S].

In essence, the problem of learning an expression P [SuffixAfter(s,α)] with spec φ is reduced to��max0̂
∝ [S]

�� subproblems for P with specs {φα | α ∈ max0̂
∝ [S]}, where φα is as given by Equation (2),

and 0̂ denotes the enriched set of atoms derived from0 by Equation (1). Note that these subproblems
are recursively reduced further, until we match all characters in each string, and terminate with
Empty. Given this reduction logic as witness functions, PROSE performs these recursive synthesis
calls efficiently, and finally combines the atoms to candidate patterns. We conclude this subsection
with a comment on the soundness and completeness of LFP.

Definition 4.6. Soundness and 0-Completeness Ð We say that a learner for LFP patterns is sound
if, for any dataset S, every learned pattern P satisfies ∀s ∈ S : P(s) = True.
We say that a learner for LFP, instantiated with a universe 0 of atoms is 0-complete if, for any

dataset S, it learns every possible pattern P ∈ LFP over 0 atoms that satisfy ∀s ∈ S : P(s) = True.

Theorem 4.7 (Soundness and 0̂-Completeness of LFP). For an arbitrary set 0 of user-specified

atoms, FlashProfile’s pattern learner LFP is sound and 0̂-complete, where 0̂ denotes the enriched set

of atoms obtained by augmenting 0 with constant-string and fixed-width atoms, as per Equation (1).

Proof. Soundness is guaranteed since we only compose compatible atoms. 0̂-completeness

follows from the fact that we always consider the maximal compatible subset of 0̂. □

Due to the 0̂-completeness of LFP, once the set LFP(S) of patterns over S has been computed, a
variety of cost functions may be used to select the most suitable pattern for S amongst all possible

patterns over 0̂, without having to invoke pattern learning again.

4.3 Cost of Patterns in LFP

Our cost function CFP assigns a real-valued score to each pattern P ∈ LFP over a given dataset S,
based on the structure of P and its behavior over S. This cost function is used to select the most
desirable pattern that represents the dataset S. Empty is assigned a cost of 0 regardless of the dataset,
since Empty can be the only pattern consistent with such datasets. For a pattern P = α1 ⋄ . . . ⋄ αk ,
we define the cost CFP(P ,S) with respect to a given dataset S as:

CFP(P ,S) =

k∑

i=1

Q(αi) ·W (i,S | P)

CFP balances the trade-off between a pattern’s specificity and complexity. Each atom α in LFP

has a statically assigned cost Q(α) ∈ (0,∞], based on a priori bias for the atom. Our cost function
CFP computes a sum over these static costs after applying a data-driven weightW (i,S | P) ∈ (0, 1):

W (i,S | α1 ⋄ . . . ⋄ αk) =
1

|S|
·
∑

s ∈ S

αi (si)

|s |
,

where s1
def
= s and si+1

def
= si [αi (si) :::] denotes the remaining suffix of si after matching with αi , as in

Definition 4.3. This dynamic weight is an average over the fraction of length matched by αi across
S. It gives a quantitative measure of how well an atom αi generalizes over the strings in S. With a
sound pattern learner, an atomic match would never fail andW (i,S | P) > 0 for all atoms αi .

Example 4.8. Consider S = { łMalež, łFemalež }, that are matched by P1 = Upper ⋄ Lower+, and
P2 = Upper ⋄ Hex ⋄ Lower+. Given FlashProfile’s static costs: {Upper 7→ 8.2, Hex 7→ 26.3, Lower+ 7→

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:18 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

9.1}, the costs for these two patterns shown above are:

CFP(P1,S) = 8.2 ×
1/4 + 1/6

2
+ 9.1 ×

3/4 + 5/6

2
= 8.9

CFP(P2,S) = 8.2 ×
1/4 + 1/6

2
+ 26.3 ×

1/4 + 1/6

2
+ 9.1 ·

2/4 + 4/6

2
= 12.5

P1 is chosen as best pattern, since CFP(P1,S) < CFP(P2,S).

Note that although Hex is a more specific character class compared to Upper and Lower, we
assign it a higher static cost to avoid strings like łfacež being described as Hex×4 instead of Lower×4.
Hex×4 would be chosen over Lower×4 only if we observe some other string in the dataset, such as
łf00dž, which cannot be described using Lower×4.

Static Cost (Q) for Atoms. Our learner LFP automatically assigns the static cost of a Consts atom

to be proportional to 1/|s |, and the cost of a Classzc atom, with width z ⩾ 1, to be proportional to
Q (Class0c)

z
. However, static costs for other kinds of atoms must be provided by the user.

Static costs for our default atoms, listed in Fig. 6, were seeded with the values based on their
estimated size Ð the number of strings the atom may match. Then they were penalized (e.g. the
Hex atom) with empirically decided penalties to prefer patterns that are more natural to users. We
describe our quality measure for profiles in ğ5.2, which we have used to decide the penalties for
the default atoms. In future, we plan to automate the process of penalizing atoms by designing a
learning procedure which tries various perturbations to the seed costs to optimize profiling quality.

5 EVALUATION

We now present experimental evaluation of the FlashProfile tool which implements our technique,
focusing on the following key questions:

(ğ5.1) How well does our syntactic similarity measure capture similarity over real world entities?

(ğ5.2) How accurate are the profiles? How do sampling and approximations affect their quality?

(ğ5.3) How fast is FlashProfile, and how does its performance depend on the various parameters?

(ğ5.4) Are the profiles natural and useful? How do they compare to those from existing tools?

Implementation. We have implemented FlashProfile as a cross-platform C# library built using
Microsoft PROSE (Microsoft 2017d). It is now publicly available as part of the PROSE NuGet
package.10 All of our experiments were performed with PROSE 2.2.0 and .NET Core 2.0.0, on an
Intel i7 3.60GHz machine with 32GB RAM running 64-bit Ubuntu 17.10.

Fig. 16. Number and length of strings across datasets11

Test Datasets. We have collected 75 datasets
from public sources,11 spanning various do-
mains such as names, dates, postal codes,
phone numbers, etc. Their sizes and the dis-
tribution of string lengths is shown in Fig. 16.
We sort them into three (overlapping) groups:

• Clean (25 datasets): Each of these datasets,
uses a single format that is distinct from
other datasets. We test syntactic similarity
over them Ð strings from the same dataset
must be labeled as similar.

10 FlashProfile has been publicly released as the Matching.Text module within the PROSE library. For more information,

please see: https://microsoft.github.io/prose/documentation/matching-text/intro/.
11 All public datasets are available at: https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://microsoft.github.io/prose/documentation/matching-text/intro/
https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests

FlashProfile: A Framework for Synthesizing Data Profiles 150:19

• Domains (63 datasets): These datasets belong to mutually-distinct domains but may exhibit
multiple formats. We test the quality of profiles over them Ð a profile learned over fraction of a
dataset should match rest of it, but should not be too general as to also match other domains.
• All (75 datasets): We test FlashProfile’s performance across all datasets.

5.1 Syntactic Similarity

We evaluate the applicability of our dissimilarity measure from Definition 3.1, over real-life entities.
From our Clean group, we randomly pick two datasets and select a random string from each.
A good similarity measure should recognize when the pair is drawn from the same dataset by
assigning them a lower dissimilarity value, compared to a pair from different datasets. For example,
the pair { łA. Einsteinž, łI. Newtonž } should have a lower dissimilarity value than { łA. Einsteinž,

ł03/20/1998ž }. We instantiated FlashProfile with only the default atoms listed in Fig. 6 and tested
240400 such pairs. Fig. 17 shows a comparison of our method against two simple baselines: (1) a
character-wise edit-distance-based similarity measure (JarW), and (2) a machine-learned predictor
(RF) over intuitive syntactic features.

For evaluation, we use the standard precision-recall (PR) (Manning et al. 2008) measure. In our
context, precision is the fraction of pairs that truly belongs to the same dataset, out of all pairs that
are labeled to be łsimilarž by the predictor. Recall is the fraction of pairs retrieved by the predictor,
out of all pairs truly drawn from same datasets. By varying the threshold for labelling a pair as
łsimilarž, we generate a PR curve and measure the area under the curve (AUC). A good similarity
measure should exhibit high precision and high recall, and therefore have a high AUC.

(a) Precision-Recall curves

∆[len]

∆[cnt⟨Digit⟩]

∆[cnt⟨Lower⟩]

∆[cnt⟨Upper⟩]

∆[cnt⟨ ␣ ⟩]

∆[cnt⟨ł.ž⟩]

∆[cnt⟨ł,ž⟩]

∆[cnt⟨ł-ž⟩]

begin⟨Upper⟩

begin⟨Lower⟩

begin⟨Digit⟩

(b) Features12

Predictor FP JarW RF1 RF2 RF3

AUC 96.28% 35.52% 91.73% 98.71% 76.82%

Fig. 17. Similarity prediction accuracy of FlashProfile
(FP) vs. a character-based measure (JarW), and random
forests (RF1...3) trained on different distributions

First, we observed that character-based mea-
sures (Gomaa and Fahmy 2013) show poor AUC,
and are not indicative of syntactic similarity.
Levenshtein distance (Levenshtein 1966), used
for string clustering by OpenRefine (Google
2017), a popular data-wrangling tool, exhibits a
negligible AUC over our benchmarks. Although
the Jaro-Winkler distance (Winkler 1999), in-
dicated as JarW in Fig. 17(a), shows a better
AUC, it is quite low compared to both our and
machine-learned predictors.
Our second baseline is a standard random

forest (Breiman 2001) model RF using the syn-
tactic features listed in Fig. 17(b), such as differ-
ence in length, number of digits, etc. We train

RF 1 using ∼ 80, 000 pairs with
(
1/25

)2
= 0.16% pairs drawn from same datasets. We observe from

Fig. 17(a) that the accuracy of RF is quite susceptible to changes in the distribution of the training
data. RF 2 and RF 3 were trained with 0.64% and 1.28% pairs from same datasets, respectively. While
RF 2 performs marginally better than our predictor, RF 1 and RF 3 perform worse.

5.2 Profiling Accuracy

We demonstrate the accuracy of FlashProfile along two dimensions:

• Partitions: Our sampling and approximation techniques preserve partitioning accuracy
• Descriptions: Profiles generated using LFP and CFP are natural, not overly specific or general.

For these experiments, we used FlashProfile with only the default atoms.

12 len returns string length, begin⟨X ⟩ checks if both strings begin with a character in X , cnt⟨X ⟩ counts occurrences of

characters from X in a string, and ∆[f] computes |f (s1) − f (s2) |
2 for a pair of strings s1 and s2.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:20 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

Fig. 18. FlashProfile’s partitioning accuracy with different ⟨µ,θ⟩-configurations

Partitioning. For each c ∈ {2, . . . , 8}, we measure FlashProfile’s ability to repartition 256c strings
Ð 256 strings collected from each of c randomly picked datasets from Clean. Over 10 runs for each
c , we pick different sets of c files, shuffle the 256c strings, and invoke FlashProfile to partition them
into c clusters. For a fair distribution of strings across each run, we ignore one dataset from the
Clean group which had much longer strings (> 1500 characters) compared to other datasets (10 ś
100 characters). We experiment with different values of 1.0 ⩽ µ ⩽ 5.0 (string-sampling factor, which
controls the size of chunks given to the core Profile method), and 1.0 ⩽ θ ⩽ 3.0 (pattern-sampling

factor, which controls the approximation during hierarchical clustering).
Wemeasure the precision of clustering using symmetric uncertainty (Witten et al. 2017), which is a

measure of normalizedmutual information (NMI). AnNMI of 1 indicates the resulting partitioning to
be identical to the original clusters, and an NMI of 0 indicates that the final partitioning is unrelated
to the original one. For each ⟨µ,θ⟩-configuration, we show the mean NMI of the partitionings over
10c runs (10 for each value of c), in Fig. 18. The NMI improves with increasing θ , since we sample
more dissimilarities, resulting in better approximations. However, the NMI drops with increasing µ,
since more pairwise dissimilarities are approximated. Note that the number of string pairs increases
quadratically with µ, but reduces only linearly with θ . This is reflected in Fig. 18 ś for µ > 4.0,
the partitioning accuracy does not reach 1.0 even for θ = 3.0. FlashProfile’s default configuration
⟨µ = 4.0,θ = 1.25⟩, achieves a median NMI of 0.96 (mean 0.88) (indicated by a circled point). The
dashed line indicates the median NMIs with µ = 4.0. The median NMI is significantly higher than
the mean, indicating our approximations were accurate in most cases. As we explain below in ğ5.3,
with ⟨µ = 4.0,θ = 1.25⟩, FlashProfile achieves the best performance vs. accuracy trade-off.

Descriptions. We evaluate the suitability of the automatically suggested profiles, by measuring
their overall precision and recall. A natural profile should not be too specific ś it should generalize
well over the dataset (high true positives), but not beyond it (low false positives).

Fig. 19. Quality of descriptions at ⟨µ = 4.0,θ = 1.25⟩

For each dataset in our Domains, we profile a
randomly selected 20% of its strings, and mea-
sure: (1) the fraction of the remaining dataset
described by it, and (2) the fraction of an equal
number of strings from other datasets, matched
by it. Fig. 19 summarizes our results. The lighter
and darker shades indicate the fraction of true
positives and false positives respectively. The
white area at the top indicates the fraction of false negatives ś the fraction of the remaining 80%
of the dataset that is not described by the profile. We observe an overall precision of 97.8%, and a
recall of 93.4%. The dashed line indicates a mean true positive rate of 93.2%, and the dotted line
shows a mean false positive rate of 2.3%; across all datasets.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:21

(a) Microsoft SSDT (Microsoft 2017c) (b) Ataccama One (Ataccama 2017)

Fig. 20. Quality of descriptions from current state-of-the-art tools

We also perform similar quality measurements for profiles generated by Microsoft SSDT (Mi-
crosoft 2017c) and Ataccama One (Ataccama 2017). We use łColumn Pattern Profiling Tasksž with
PercentageDataCoverageDesired = 100 within SSDT, and łPattern Analysisž feature within the
Ataccama One platform. We summarize the per-dataset description quality for SSDT in Fig. 20(a),
and for Ataccama One in Fig. 20(b). We observe a low overall F1 score for both tools.
While SSDT has a very high false positive rate, Ataccama One has a high failure rate. For 27

out of 63 datasets, SSDT generates ł.*ž as one of the patterns, and it fails to profile one dataset
that has very long strings (up to 1536 characters). On the other hand, Ataccama One fails to profile
33 datasets. But for the remaining 30 datasets, the simple atoms (digits, numbers, letters, words)
used by Ataccama One seem to work well Ð the profiles exhibit high precision and recall. Note
that, this quantitative measure only captures the specificity of profiles, but not their readability. We
present a qualitative comparison of profiles generated by these tools in ğ5.4.

5.3 Performance

Wemeasure the mean profiling time with various ⟨µ,θ⟩-configurations, and summarize our findings
in Fig. 21(a). The dotted lines indicate profiling time without pattern sampling, i.e. θ → ∞, for
different values of the µ factor. The dashed line shows the median profiling time for different values
of θ with our default µ = 4.0. We also show the performance-accuracy trade off in Fig. 21(b) by
measuring the mean speed up of each configuration w.r.t. ⟨µ = 1.0,θ = 1.0⟩. We select the Pareto
optimal point ⟨µ = 4.0,θ = 1.25⟩ as FlashProfile’s default configuration. It achieves a mean speed
up of 2.3× over ⟨µ = 1.0,θ = 1.0⟩, at a mean NMI of 0.88 (median = 0.96).
As one would expect, the profiling time increases with θ , due to sampling more patterns and

making more calls to LFP. The dependence of profiling time on µ however, is more interesting.
Notice that with µ = 1, the profiling time is higher than any other configurations, when pattern
sampling is enabled, i.e. θ , ∞ (solid lines). This is due to the fact that FlashProfile learns very
specific profiles with µ = 1 with very small samples of strings, which do not generalize well over
the remaining data. This results in many Sample−Profile−Filter iterations. Also note that with

(a) Mean Profiling Time (b) Performance ∼ Accuracy

Fig. 21. Impact of sampling on performance (using the same colors and markers as Fig. 18)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:22 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

Fig. 22. Performance over real-life datasets

Zip Code

99518

61021-9150

2645

83716
.
.
.

K0K 2C0

14480

S7K7K9

(a) Dataset

LDL DLD

LDLDLD

N-N

N

(b) A1

\w\w\w \w\w\w

\d\d\d\d\d

\d\d\d\d

.*

(c) SSDT

U D U ␣ D U D

ł61ž D 3 ł-ž D 4

łS7K7K9ž

D+

ϵ

(d) FP

U D U ␣ D U D

ł61ž D 3 ł-ž D 4

łS7K7K9ž

D 5

D 4

ϵ

(e) FP6
Most frequent pattern from Potter’s Wheel = int

Fig. 23. Profiles for a dataset with zip codes13

pattern-sampling enabled, the profiling time decreases with µ until µ = 4.0 as, and then increases
as profiling larger samples of strings becomes expensive.
Finally, we evaluate FlashProfile’s performance on end-to-end real-life profiling tasks on all

75 datasets, that have a mixture of clean and dirty datasets. Over 153 tasks ś 76 for automatic
profiling, and 77 for refinement, we observe a median profiling time of 0.7 s. With our default
configuration, 77% of the requests are fulfilled within 2 seconds ś 70% of automatic profiling tasks,
and 83% of refinement tasks. In Fig. 22 we show the variance of profiling times w.r.t. size of the
datasets (number of strings in them), and the average length of the strings in the datasets (all axes
being logarithmic). We observe that the number of string in the dataset doesn’t have a strong
impact on the profiling time. This is expected, since we only sample smaller chunks of datasets,
and remove strings that are already described by the profile we have learned so far. We repeated
this experiment with 5 dictionary-based custom atoms: ⟨DayName⟩, ⟨ShortDayName⟩, ⟨MonthName⟩,

⟨ShortMonthName⟩, ⟨US_States⟩, and noticed an increase of ∼ 0.02 s in the median profiling time.

5.4 Comparison of Learned Profiles

We compare the profiles learned by FlashProfile to the outputs from 3 state-of-the-art tools:
(1) Ataccama One (Ataccama 2017): a dedicated profiling tool, (2) Microsoft’s SSDT (Microsoft
2017c) a feature-rich IDE for database applications, and (3) Potter’s Wheel (Raman and Hellerstein
2001): a tool that detects the most frequent data pattern and predicts anomalies in data. Fig. 23 and
Fig. 24 show the observed outputs. We list the output of Ataccama One against A1, the suggested
profile from FlashProfile against FP, and the one generated on requesting k patterns against FPk . For
brevity, we (1) omit the concatenation operator ł ⋄ ž between atoms, and (2) abbreviate Digit 7→ D,
Upper 7→ U, AlphaSpace 7→ Π, AlphaDigitSpace 7→ Σ.
First, we observe that SSDT generates an overly general ł.*ž pattern in both cases. Ataccama

One generates a very coarse grained profile in both cases, which although explains the pattern of
special characters, does not say much about other syntactic properties, such as common prefixes,
or fixed-length patterns. With FlashProfile, one can immediately notice in Fig. 23(d), that łS7K7K9ž
is the only Canadian zip code which does not have a space in the middle, and that some US zip
codes have 4 digits instead of 5 (probably the leading zero was lost while interpreting it as a
number). Similarly, one can immediately observe that in Fig. 24(d), ł12348 N CENTERž is not a route.
Similarly the pattern łUS 26(ž Π+ ł)ž indicates that it is the only entry with a space instead of a
dash between the łUSž and ł26ž.
13 Dataset collected from a database of vendors across US and Canada: https://goo.gl/PGS2pL

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://goo.gl/PGS2pL

FlashProfile: A Framework for Synthesizing Data Profiles 150:23

Routes

OR-213

I-5 N

I-405 S

OR-141
.
.
.

OR-99E

US-26 E

12348 N CENTER

US-217 S
.
.
.

I-84 E

US 26(SUNSET)

OR-224

(a) Dataset

N L W

W N (W)

W N (W W W)

W-N

W-NW

W-N W

(b) A1

US-26 E

US-26 W

I-5 N

I-5 S

I-84 E

I-84 W

I-\d\d\d N

I-\d\d\d S

.*

(c) SSDT

ł12348 N CENTERž

łUS 26(ž Π+ ł)ž

U+ ł-ž Σ+

ϵ

(d) FP

ł12348 N CENTERž

łUS 26(SUNSET)ž

łUS 26(MT HOOD HWY)ž

U+ ł-ž D+

U 2 ł-ž D 2 U+

U+ ł-ž D+ ␣ U+

ϵ

(e) FP7

łUS-30BYž ł12348 N CENTERž

ϵ łUS 26(SUNSET)ž

U+ ł-ž D+ łOR-99ž U 1

łI-ž D+ ␣ U+ U 2 ł-2ž D+ ␣ U 1

łUS 26(MT HOOD HWY)ž

(f) FP9

łUS-30BYž ł12348 N CENTERž

łI-5ž łUS-26ž ␣ U 1

łUS-30ž łUS 26(SUNSET)ž

łOR-ž D+ łOR-99ž U 1

łI-5ž ␣ U+ łI-ž D+ ␣ U 1

ϵ łOR-217ž ␣ U 1

łUS 26(MT HOOD HWY)ž

(g) FP13

Most frequent pattern from Potter’s Wheel = IspellWord int space AllCapsWord

Fig. 24. Profiles for a dataset containing US routes14

In many real-life scenarios, simple statistical profiles are not enough for data understanding or
validation. FlashProfile allows users to gradually drill into the data by requesting profiles with a
desired granularity. Furthermore, they may also provide custom atoms for domain-specific profiling.

6 APPLICATIONS IN PBE SYSTEMS

In this section, we discuss how syntactic profiles can improve programming-by-example (PBE) (Gul-
wani et al. 2017; Lieberman 2001) systems, which synthesize a desired program from a small set of
input-output examples. For instance, given an example łAlbert Einsteinž⇝ łA.E.ž, the system
should learn a program that extracts the initials for names. Although many PBE systems exist
today, most share criticisms on low usability and confidence in them (Lau 2009; Mayer et al. 2015).

Examples are an inherently under-constrained form of specifying the desired program behavior.
Depending on the target language, a large number of programs may be consistent with them. Two
major challenges faced by PBE systems today are: (1) obtaining a set of examples that accurately
convey the desired behavior to limit the space of synthesized programs, and (2) ranking these
programs to select the ones that are natural to users.
In a recent work, Ellis and Gulwani (2017) address (2) using data profiles. They show that

incorporating profiles for input-output examples significantly improves ranking, compared to
traditional techniques which only examine the structure of the synthesized programs. We show
that data profiles can also address problem (1). Raychev et al. (2016) have presented representative

data samplers for synthesis scenarios, but they require the outputs for all inputs. In contrast, we
show a novel interaction model for proactively requesting users to supply the desired outputs for
syntactically different inputs, thereby providing a representative set of examples to the PBE system.

Significant Inputs. Typically, users provide outputs for only the first few inputs of target dataset.
However, if these are not representative of the entire dataset, the system may not learn a program
that generalizes over other inputs. Therefore, we propose a novel interaction model that requests
the user to provide the desired outputs for significant inputs, incrementally. A significant input is
one that is syntactically the most dissimilar with all previously labelled inputs.

14 Dataset collected from https://portal.its.pdx.edu/fhwa

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://portal.its.pdx.edu/fhwa

150:24 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

We start with a syntactic profile P̃ for the input dataset and invoke the OrderPartitions

function, listed in Fig. 25, to order the partitions identified in P̃ based on mutual dissimilarity, i.e.
each partition Si must be as dissimilar as possible with (its most-similar neighbor within) the
partitions {S1, . . . ,Si−1}. It is a simple extension of our SampleDissimilarities procedure (Fig. 9)
to work with sets of strings instead of strings. We start with the partition that can be described with
the minimum-cost pattern. Then, from the remaining partitions, we iteratively select the one that
is most dissimilar to those previously selected. We define the dissimilarity between two partitions
as the cost of the best (least-cost) pattern required to describe them together.

func OrderPartitions⟨L,C⟩(P̃ : Profile)
output: A sequence of partitions ⟨S1, . . . ,S |P̃ |⟩ over S

▶ Select with the partition that has the minimum cost.
1 · ρ ←

〈(
argminX ∈P̃ C(X .Pattern,X .Data)

)
.Data

〉

2 · while | ρ | < | P̃ | do

▶ Pick the most dissimilar partition w.r.t. those in ρ.
3 · T ← argmaxZ ∈P̃ minX ∈ρ
4 ·

(
LearnBestPattern⟨L,C⟩(Z .Data ∪ X)

)
.Cost

5 · ρ .Append(T .Data)

6 · return ρ

Fig. 25. Ordering partitions by mutual dissimilarity

Once we have an ordered set of partitions,
⟨S1, . . . ,S |P̃ |⟩, we request the user to provide

the desired output for a randomly selected in-
put from each partition in order. Since PBE sys-
tems like Flash Fill are interactive, and start
synthesizing programs right from the first ex-
ample, the user can inspect and skip over in-
puts for which the output is correctly predicted
by the synthesized program. After one cycle
through all partitions, we restart from partition
S1, and request the user to provide the output
for a new random string in each partition.

Fig. 26. Examples needed with and without FlashProfile

We evaluate the proposed interaction
model over 163 Flash Fill benchmarks15

that require more than one example to
learn the desired string-transformation
program. Fig. 26 compares the number of
examples required originally, to that using
our interaction model. Seven cases that
timeout due to the presence of extremely long strings have been omitted.
Over the remaining 156 cases, we observe that, Flash Fill (1) requires a single example per

partition for 131 (= 80%) cases, and (2) uses the minimal set16 of examples to synthesize the desired
program for 140 (= 86%) cases Ð 39 of which were improvements over Flash Fill. Thus, (1) validates
our hypothesis that our partitions indeed identify representative inputs, and (2) further indicates
that our interaction model is highly effective. Selecting inputs from partitions ordered based
on mutual syntactic dissimilarity helps Flash Fill converge to the desired programs with fewer
examples. Note that, these results are based on the default set of atoms. Designing custom atoms
for string-transformation tasks, based on Flash Fill’s semantics is also an interesting direction.
Although the significant inputs scenario is similar to active learning, which is well-studied in

machine-learning literature (Hanneke 2014), typical active-learning methods require hundreds of
labeled examples. In contrast, PBE systems deal with very few examples (Mayer et al. 2015).

7 RELATED WORK

There has been a line of work on profiling various aspects of datasets Ð Abedjan et al. (2015) present
a recent survey. Traditional techniques for summarizing data target statistical profiles (Cormode
et al. 2012), such as sampling-based aggregations (Haas et al. 1995), histograms (Ioannidis 2003),
and wavelet-based summaries (Karras and Mamoulis 2007). However, pattern-based profiling

15 These benchmarks are a superset of the original set of Flash Fill (Gulwani 2011) benchmarks, with many more real-world

scenarios collected from customers using products powered by PROSE (Microsoft 2017d).
16 By minimal, we mean that there is no smaller set of examples with which Flash Fill can synthesize the desired program.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

FlashProfile: A Framework for Synthesizing Data Profiles 150:25

is relatively underexplored, and is minimally or not supported by state-of-the-art data analysis
tools (Ataccama 2017; Google 2017; Microsoft 2017c; Trifacta 2017).

To our knowledge, no existing approach learns syntactic profiles over an extensible language and
allows refinement of generated profiles. We present a novel dissimilarity measure which is the key to
learning refinable profiles over arbitrary user-specified patterns. Microsoft’s SQL Server Data Tools
(SSDT) (Microsoft 2017c) learns rich regular expressions but is neither extensible not comprehensive.
A dedicated profiling tool Ataccama One (Ataccama 2017) generates comprehensive profiles over
a very small set of base patterns. Google’s OpenRefine (Google 2017) does not learn syntactic
profiles, but it allows clustering of strings using character-based similarity measures (Gomaa and
Fahmy 2013). In ğ5 we show that such measures do not capture syntactic similarity. While Potter’s
Wheel (Raman and Hellerstein 2001) does not learn a complete profile, it learns the most frequent
data pattern over arbitrary user-defined domains that are similar to our atomic patterns.

Application-Specific Structure Learning. There has been prior work on learning specific structural
properties aimed at aiding data wrangling applications, such as data transformations (Raman and
Hellerstein 2001; Singh 2016), information extraction (Li et al. 2008), and reformatting or text
normalization (Kini and Gulwani 2015). However, these approaches make specific assumptions
regarding the target application, which do not necessarily hold when learning general purpose
profiles. Although profiles generated by FlashProfile are primarily aimed at data understanding,
in ğ 6 we show that they may aid PBE applications, such as Flash Fill (Gulwani 2011) for data
transformation. Bhattacharya et al. (2015) also utilize hierarchical clustering to group together
sensors used in building automation based on their tags. However, they use a fixed set of domain-
specific features for tags and do not learn a pattern-based profile.

Grammar Induction. Syntactic profiling is also related to the problem of learning regular expres-
sions, or more generally grammars from a given set of examples. De la Higuera (2010) present a
recent survey on this line of work. Most of these techniques, such as L-Star (Angluin 1987) and
RPNI (Oncina and García 1992), assume availability of both positive and negative examples, or a
membership oracle. Bastani et al. (2017) show that these techniques are either too slow or do not
generalize well and propose an alternate strategy for learning grammars from positive examples.
When a large number of negative examples are available, genetic programming has also been
shown to be useful for learning regular expressions (Bartoli et al. 2012; Svingen 1998). Finally,
LearnPADS (Fisher et al. 2008; Zhu et al. 2012) also generates a syntactic description, but does not
support refinement or user-specified patterns.

Program Synthesis. Our techniques for sampling-based approximation and finding representative
inputs relate to prior work by Raychev et al. (2016) on synthesizing programs from noisy data.
However, they assume a single target program and the availability of outputs for all inputs. In
contrast, we synthesize a disjunction of several programs, each of which returns True only on a
specific partition of the inputs, which is unknown a priori.

FlashProfile’s pattern learner uses the PROSE library (Microsoft 2017d), which implements the
FlashMeta framework (Polozov and Gulwani 2015) for inductive program synthesis, specifically
programming-by-examples (PBE) (Gulwani et al. 2017; Lieberman 2001). PBE has been leveraged by
recent works on automating repetitive text-processing tasks, such as string transformation (Gulwani
2011; Singh 2016), extraction (Le and Gulwani 2014), and format normalization (Kini and Gulwani
2015). However, unlike these applications, data profiling does not solicit any (output) examples
from the user. We demonstrate a novel application of a supervised synthesis technique to solve an
unsupervised learning problem.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

150:26 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

8 CONCLUSION

With increasing volume and variety of data, we require powerful profiling techniques to enable
end users to understand and analyse their data easily. Existing techniques generate a single profile
over pre-defined patterns, which may be too coarse grained for a user’s application. We present a
framework for learning syntactic profiles over user-defined patterns, and also allow refinement of
these profiles interactively. Moreover, we show domain-specific approximations that allow end users
to control accuracy vs. performance trade-off for large datasets, and generate approximately correct
profiles in realtime on consumer-grade hardware. We instantiate our approach as FlashProfile, and
present extensive evaluation on its accuracy and performance on real-life datasets. We also show
that syntactic profiles are not only useful for data understanding and manual data analysis tasks,
but can also help existing PBE systems.

ACKNOWLEDGMENTS

The lead author is thankful to the PROSE team at Microsoft, especially to Vu Le, Danny Simmons,
Ranvijay Kumar, and Abhishek Udupa, for their invaluable help and support. We also thank the
anonymous reviewers for their constructive feedback on earlier versions of this paper.
This research was supported in part by an internship at Microsoft, by the National Science

Foundation (NSF) under Grant No. CCF-1527923, and by a Microsoft Research Ph.D. Fellowship.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the NSF or of the Microsoft Corporation.

REFERENCES

Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling Relational Data: A Survey. VLDB J. 24, 4 (2015),

557ś581. https://doi.org/10.1007/s00778-015-0389-y

Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75, 2 (1987), 87ś106.

https://doi.org/10.1016/0890-5401(87)90052-6

David Arthur and Sergei Vassilvitskii. 2007. k-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, Nikhil

Bansal, Kirk Pruhs, and Clifford Stein (Eds.). SIAM, 1027ś1035. http://dl.acm.org/citation.cfm?id=1283383.1283494

Ataccama. 2017. Ataccama One Platform. https://www.ataccama.com/.

Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Marco Mauri, Eric Medvet, and Enrico Sorio. 2012. Automatic

Generation of Regular Expressions from Examples with Genetic Programming. In Genetic and Evolutionary Computation

Conference, GECCO ’12, Philadelphia, PA, USA, July 7-11, 2012, Companion Material Proceedings, Terence Soule and Jason H.

Moore (Eds.). ACM, 1477ś1478. https://doi.org/10.1145/2330784.2331000

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing program input grammars. In Proceedings of

the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,

June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 95ś110. https://doi.org/10.1145/3062341.3062349

Arka Aloke Bhattacharya, Dezhi Hong, David E. Culler, Jorge Ortiz, Kamin Whitehouse, and Eugene Wu. 2015. Automated

Metadata Construction to Support Portable Building Applications. In Proceedings of the 2nd ACM International Conference

on Embedded Systems for Energy-Efficient Built Environments, BuildSys 2015, Seoul, South Korea, November 4-5, 2015, David

Culler, Yuvraj Agarwal, and Rahul Mangharam (Eds.). ACM, 3ś12. https://doi.org/10.1145/2821650.2821667

Christopher M. Bishop. 2016. Pattern Recognition and Machine Learning. Springer New York. http://www.worldcat.org/

oclc/1005113608

Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5ś32. https://doi.org/10.1023/A:1010933404324

Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. 2012. Synopses for Massive Data: Samples,

Histograms, Wavelets, Sketches. Foundations and Trends in Databases 4, 1-3 (2012), 1ś294. https://doi.org/10.1561/

1900000004

Colin De la Higuera. 2010. Grammatical inference: learning automata and grammars. Cambridge University Press.

Xin Luna Dong and Divesh Srivastava. 2013. Big Data Integration. PVLDB 6, 11 (2013), 1188ś1189. http://www.vldb.org/

pvldb/vol6/p1188-srivastava.pdf

Kevin Ellis and Sumit Gulwani. 2017. Learning to Learn Programs from Examples: Going Beyond Program Structure. In

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://doi.org/10.1007/s00778-015-0389-y
https://doi.org/10.1016/0890-5401(87)90052-6
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://www.ataccama.com/
https://doi.org/10.1145/2330784.2331000
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/2821650.2821667
http://www.worldcat.org/oclc/1005113608
http://www.worldcat.org/oclc/1005113608
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1561/1900000004
https://doi.org/10.1561/1900000004
http://www.vldb.org/pvldb/vol6/p1188-srivastava.pdf
http://www.vldb.org/pvldb/vol6/p1188-srivastava.pdf

FlashProfile: A Framework for Synthesizing Data Profiles 150:27

August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, 1638ś1645. https://doi.org/10.24963/ijcai.2017/227

Kathleen Fisher, David Walker, and Kenny Qili Zhu. 2008. LearnPADS: automatic tool generation from ad hoc data. In

Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,

June 10-12, 2008, Jason Tsong-Li Wang (Ed.). ACM, 1299ś1302. https://doi.org/10.1145/1376616.1376759

Wael H Gomaa and Aly A Fahmy. 2013. A survey of text similarity approaches. International Journal of Computer Applications

68, 13 (April 2013), 13ś18. https://doi.org/10.5120/11638-7118

Google. 2017. OpenRefine: A free, open source, powerful tool for working with messy data. http://openrefine.org/.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1994. Concrete Mathematics - A Foundation for Computer Science,

2nd Edition). Addison-Wesley. http://www.worldcat.org/oclc/992331503

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings of the

38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January

26-28, 2011. 317ś330. https://doi.org/10.1145/1926385.1926423

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends in Programming

Languages 4, 1-2 (2017), 1ś119. https://doi.org/10.1561/2500000010

Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. 1995. Sampling-Based Estimation of the Number of Distinct

Values of an Attribute. In VLDB’95, Proceedings of 21th International Conference on Very Large Data Bases, September 11-15,

1995, Zurich, Switzerland., Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio (Eds.). Morgan Kaufmann, 311ś322.

http://www.vldb.org/conf/1995/P311.PDF

Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. 2001. On Clustering Validation Techniques. J. Intell. Inf. Syst.

17, 2-3 (2001), 107ś145. https://doi.org/10.1023/A:1012801612483

Steve Hanneke. 2014. Theory of Disagreement-Based Active Learning. Found. Trends Mach. Learn. 7, 2-3 (June 2014),

131ś309. https://doi.org/10.1561/2200000037

Yannis E. Ioannidis. 2003. The History of Histograms (abridged). In VLDB 2003, Proceedings of 29th International Conference

on Very Large Data Bases, September 9-12, 2003, Berlin, Germany, Johann Christoph Freytag, Peter C. Lockemann,

Serge Abiteboul, Michael J. Carey, Patricia G. Selinger, and Andreas Heuer (Eds.). Morgan Kaufmann, 19ś30. http:

//www.vldb.org/conf/2003/papers/S02P01.pdf

Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. 1999. Data Clustering: A Review. ACM Comput. Surv. 31, 3 (1999),

264ś323. https://doi.org/10.1145/331499.331504

Panagiotis Karras and Nikos Mamoulis. 2007. The Haar+ Tree: A Refined Synopsis Data Structure. In Proceedings of

the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20,

2007, Rada Chirkova, Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis (Eds.). IEEE Computer Society, 436ś445.

https://doi.org/10.1109/ICDE.2007.367889

Dileep Kini and Sumit Gulwani. 2015. FlashNormalize: Programming by Examples for Text Normalization. In Proceedings of

the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,

2015, Qiang Yang and Michael Wooldridge (Eds.). AAAI Press, 776ś783. http://ijcai.org/Abstract/15/115

Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons Learned for Usable AI. AI Magazine 30, 4

(2009), 65ś67. https://doi.org/10.1609/aimag.v30i4.2262

Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction by examples. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael

F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 542ś553. https://doi.org/10.1145/2594291.2594333

Vladimir I Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. In Soviet Physics

Doklady, Vol. 10. 707ś710. http://adsabs.harvard.edu/abs/1966SPhD...10..707L

Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and H. V. Jagadish. 2008. Regular

Expression Learning for Information Extraction. In 2008 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2008, Proceedings of the Conference, 25-27 October 2008, Honolulu, Hawaii, USA, A meeting of SIGDAT, a Special

Interest Group of the ACL. ACL, 21ś30. http://www.aclweb.org/anthology/D08-1003

Henry Lieberman. 2001. Your wish is my command: Programming by example. Morgan Kaufmann.

Steve Lohr. 2014. For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights. New York Times 17 (2014). https:

//www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

James MacQueen et al. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the

fifth Berkeley symposium on mathematical statistics and probability, Vol. 1. Oakland, CA, USA., 281ś297.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to information retrieval. Cambridge

University Press.

Arkady Maydanchik. 2007. Data Quality Assessment. Technics Publications. https://technicspub.com/

data-quality-assessment/

Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin G. Zorn,

and Sumit Gulwani. 2015. User Interaction Models for Disambiguation in Programming by Example. In Proceedings of the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://doi.org/10.24963/ijcai.2017/227
https://doi.org/10.1145/1376616.1376759
https://doi.org/10.5120/11638-7118
http://openrefine.org/
http://www.worldcat.org/oclc/992331503
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1561/2500000010
http://www.vldb.org/conf/1995/P311.PDF
https://doi.org/10.1023/A:1012801612483
https://doi.org/10.1561/2200000037
http://www.vldb.org/conf/2003/papers/S02P01.pdf
http://www.vldb.org/conf/2003/papers/S02P01.pdf
https://doi.org/10.1145/331499.331504
https://doi.org/10.1109/ICDE.2007.367889
http://ijcai.org/Abstract/15/115
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1145/2594291.2594333
http://adsabs.harvard.edu/abs/1966SPhD...10..707L
http://www.aclweb.org/anthology/D08-1003
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://technicspub.com/data-quality-assessment/
https://technicspub.com/data-quality-assessment/

150:28 S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein

28th Annual ACM Symposium on User Interface Software & Technology, UIST 2015, Charlotte, NC, USA, November 8-11, 2015,

Celine Latulipe, Bjoern Hartmann, and Tovi Grossman (Eds.). ACM, 291ś301. https://doi.org/10.1145/2807442.2807459

Microsoft. 2017a. Azure Machine Learning By-Example Data Transform. https://www.youtube.com/watch?v=9KG0Sc2B2KI.

Microsoft. 2017b. Data Transformations "By Example" in the Azure ML Workbench. https://blogs.technet.microsoft.com/

machinelearning/2017/09/25/by-example-transformations-in-the-azure-machine-learning-workbench/.

Microsoft. 2017c. Microsoft SQL Server Data Tools (SSDT). https://docs.microsoft.com/en-gb/sql/ssdt.

Microsoft. 2017d. Program Synthesis using Examples SDK. https://microsoft.github.io/prose/.

José Oncina and Pedro García. 1992. Identifying regular languages in polynomial time. Advances in Structural and Syntactic

Pattern Recognition 5, 99-108 (1992), 15ś20.

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.).

ACM, 107ś126. https://doi.org/10.1145/2814270.2814310

Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Interactive Data Cleaning System. In VLDB

2001, Proceedings of 27th International Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Peter

M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard T. Snodgrass (Eds.).

Morgan Kaufmann, 381ś390. http://www.vldb.org/conf/2001/P381.pdf

Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause. 2016. Learning programs from noisy data. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,

St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 761ś774. https:

//doi.org/10.1145/2837614.2837671

Rishabh Singh. 2016. BlinkFill: Semi-supervised Programming By Example for Syntactic String Transformations. PVLDB 9,

10 (2016), 816ś827. http://www.vldb.org/pvldb/vol9/p816-singh.pdf

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

sketching for finite programs. In Proceedings of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, John Paul Shen and Margaret

Martonosi (Eds.). ACM, 404ś415. https://doi.org/10.1145/1168857.1168907

Thorvald Sùrensen. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of

species and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5 (1948), 1ś34.

Borge Svingen. 1998. Learning Regular Languages using Genetic Programming. Proc. Genetic Programming (1998), 374ś376.

Andrei N Tikhonov. 1963. Solution of Incorrectly Formulated Problems and the Regularization Method. In Dokl. Akad.

Nauk., Vol. 151. 1035ś1038.

Trifacta. 2017. Trifacta Wrangler. https://www.trifacta.com/products/wrangler/.

William E Winkler. 1999. The State of Record Linkage and Current Research Problems. http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.39.4336

Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2017. Data Mining: Practical Machine Learning Tools and

Techniques, 4th Edition. Elsevier Science & Technology. http://www.worldcat.org/oclc/1007085077

Rui Xu and Donald C. Wunsch II. 2005. Survey of Clustering Algorithms. IEEE Trans. Neural Networks 16, 3 (2005), 645ś678.

https://doi.org/10.1109/TNN.2005.845141

Kenny Qili Zhu, Kathleen Fisher, and David Walker. 2012. LearnPADS++ : Incremental Inference of Ad Hoc Data Formats.

In Practical Aspects of Declarative Languages - 14th International Symposium, PADL 2012, Philadelphia, PA, USA, January

23-24, 2012. Proceedings (Lecture Notes in Computer Science), Claudio V. Russo and Neng-Fa Zhou (Eds.), Vol. 7149. Springer,

168ś182. https://doi.org/10.1007/978-3-642-27694-1_13

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 150. Publication date: November 2018.

https://doi.org/10.1145/2807442.2807459
https://www.youtube.com/watch?v=9KG0Sc2B2KI
https://blogs.technet.microsoft.com/machinelearning/2017/09/25/by-example-transformations-in-the-azure-machine-learning-workbench/
https://blogs.technet.microsoft.com/machinelearning/2017/09/25/by-example-transformations-in-the-azure-machine-learning-workbench/
https://docs.microsoft.com/en-gb/sql/ssdt
https://microsoft.github.io/prose/
https://doi.org/10.1145/2814270.2814310
http://www.vldb.org/conf/2001/P381.pdf
https://doi.org/10.1145/2837614.2837671
https://doi.org/10.1145/2837614.2837671
http://www.vldb.org/pvldb/vol9/p816-singh.pdf
https://doi.org/10.1145/1168857.1168907
https://www.trifacta.com/products/wrangler/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4336
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4336
http://www.worldcat.org/oclc/1007085077
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1007/978-3-642-27694-1_13

	Abstract
	1 Introduction
	2 Overview
	2.1 Pattern-Specific Clustering
	2.2 Pattern Learning via Program Synthesis

	3 Hierarchical Clustering
	3.1 Syntactic Dissimilarity
	3.2 Adaptive Sampling of Patterns
	3.3 Dissimilarity Approximation
	3.4 Hierarchy Construction and Splitting
	3.5 Profiling Large Datasets

	4 Pattern Synthesis
	4.1 The Pattern Language Lₚ
	4.2 Synthesis of LₚPatterns
	4.3 Cost of Patterns in Lₚ

	5 Evaluation
	5.1 Syntactic Similarity
	5.2 Profiling Accuracy
	5.3 Performance
	5.4 Comparison of Learned Profiles

	6 Applications in PBE Systems
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

