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Abstract

We consider the problem of latent bandits with
cluster structure where there are multiple users,
each with an associated multi-armed bandit prob-
lem. These users are grouped into latent clusters
such that the mean reward vectors of users within
the same cluster are identical. At each round, a
user, selected uniformly at random, pulls an arm
and observes a corresponding noisy reward. The
goal of the users is to maximize their cumula-
tive rewards. This problem is central to practical
recommendation systems and has received wide
attention of late Gentile et al. [2014], Maillard
and Mannor [2014]. Now, if each user acts inde-
pendently, then they would have to explore each
arm independently and a regret of Ω(

√
MNT) is

unavoidable, where M,N are the number of arms
and users, respectively. Instead, we propose LAT-
TICE (Latent bAndiTs via maTrIx ComplEtion)
which allows exploitation of the latent cluster
structure to provide the minimax optimal regret
of Õ(

√
(M + N)T), when the number of clusters

is Õ(1). This is the first algorithm to guarantee
such strong regret bound. LATTICE is based on
a careful exploitation of arm information within
a cluster while simultaneously clustering users.
Furthermore, it is computationally efficient and
requires only O(logT) calls to an offline matrix
completion oracle across all T rounds.

1 INTRODUCTION

Bandit optimization is a very general framework for sequen-
tial decision making when the dynamics of the underlying
environment are unknown a priori. It has been well studied
over the past few decades, and has shown great empirical
success in areas including ad placement, clinical trials [Lat-
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timore and Szepesvári, 2020, Mate et al., 2022]. Such stan-
dard bandit methods often assume the decision maker has
access to the entire user context or user state. However,
this assumption rarely holds in practice. For example, in
movie-recommendation scenarios, users can be clustered
according to their taste in movies, but the observed features
like user’s demographic information might only be a noisy
indicator of their taste. Similarly, in educational settings,
the true cognitive state of a user is unknown. Instead we
only get to observe a noisy estimate of the cognitive state
through assessments. This shows that in practice, we need
to optimize reward in the presence of observed as well as
unobserved/latent context. Naturally, one option is to com-
pletely ignore the latent context as it can be thought of as
part of the reward structure itself, but that generally leads to
a significant increase in the sample complexity compared to
the scenario when the latent structure is known a priori.

Several recent works have considered bandit optimization
frameworks that explicitly factor in the latent data, and
designed algorithms to maximize the cumulative rewards
provided by the environment [Maillard and Mannor, 2014,
Hong et al., 2020, Zhou and Brunskill, 2016]. However, as
detailed below, even for simple latent structure like cluster
of users, these papers either require strong assumptions
or require additional side information, both of which are
impractical.

In this work, we consider the problem of multi-user multi-
armed bandits with latent clusters (MAB-LC). This is a
simple yet powerful setting that captures several practically
important multi-user scenarios like recommendation sys-
tems, and was introduced in Maillard and Mannor [2014].
Let there be N users, M arms and T rounds (N,M ≈ 106

in recommendation systems such as Youtube). The N users
can be partitioned into C latent clusters where users in the
same cluster have identical reward distributions; in other
words, users in the same cluster have similar preferences for
arms. In every round, one of the users, sampled uniformly
at random, pulls one of the arms and obtains certain feed-
back. The goal of the decision maker is to maximize the
cumulative reward of all the users. This problem was first
introduced and studied in Maillard and Mannor [2014] who
provided theoretical guarantees for certain special settings
(such as known cluster rewards or known cluster assign-
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ments) but not for the general problem. Gentile et al. [2014],
Li et al. [2016, 2019], Gentile et al. [2017], Qi et al. [2022]
considered a contextual bandit variant of MAB-LC, which
is a generalization of our setting. But, most of the existing
methods either provide sub-optimal regret bounds, or re-
quire strong assumptions on context vectors that might not
hold in practice. Hong et al. [2020] considered more general
latent structures than the cluster structure we consider in
this work, but required access to offline data for estimating
the latent states. In another line of related work, Jain and Pal
[2022] studied the online low rank matrix completion prob-
lem (a generalization of our setting). Jain and Pal [2022]
could only obtain minimax optimal regret bounds in the
special case of rank-1 setting. Obtaining optimal regret for
the general rank-r problem is still an open problem [Jain
and Pal, 2022]. To summarize, while the MAB-LC prob-
lem has been widely studied, to the best of our knowledge,
designing an efficient method with nearly optimal regret
bound is open.

Before moving ahead, it is instructive to consider two hypo-
thetical scenarios that illustrate the complexity of MAB-LC.
If the cluster assignment (i.e., mapping between users and
clusters) is known, we could have treated users within a
cluster as a single super-user and solved a separate multi-
armed bandit for each super-user. This leads to a regret of
Õ(
√
MCT), which is minimax optimal. On the other hand,

suppose the cluster assignment is unknown but the reward
distributions of arms in a cluster are known. Then we could
have played a separate multi-armed bandit problem for each
user with the best arm from each cluster as a candidate
arm. This leads to a regret of Õ(

√
NCT), which is minimax

optimal. However, in MAB-LC, both cluster assignment
and reward distributions are unknown. Consequently, the
reference regret guarantee that one can hope to achieve is
O(
√

(M + N)CT).

In this work, we propose a novel algorithm (LATTICE) for
the problem of MAB-LC that achieves the above reference
regret bound. The key challenge in solving this problem
is to simultaneously cluster users, and quickly identify the
optimal arms within each cluster. LATTICE addresses these
problems using two key insights: (a) (user clustering) it
uses low-rank matrix completion as an algorithmic tool to
cluster users, and (b) (arm elimination) within each iden-
tified cluster, it discards sub-optimal arms by a careful ex-
ploitation of the accrued arm information. LATTICE runs
in phases and performs both user clustering and arm elim-
ination in each phase. Computationally, our algorithm is
efficient and requires onlyO(logT) calls to an offline matrix
completion oracle across all T rounds. Furthermore, under
certain incoherence assumptions on the user-arm matrix,
we show that our algorithm achieves the minimax optimal
regret of Õ(

√
(M + N)T), when C = Õ(1). We note the

incoherence assumptions seems unavoidable for statistical
recovery with partial observations. In addition to minimax

optimal bounds, we also derive distribution-dependent re-
gret bounds for our algorithm that inversely depend on the
minimum gap between mean rewards of arms thus obtaining
the optimal scaling with respect to gaps.

We also consider a more general and practical setting where
we relax the cluster definition as follows: (a) for any two
users in the same cluster, we let their reward vectors be ν
entry-wise close to each other, and (b) for any two users
from different clusters, their respective best arm rewards are
separated by more than cν, for some c > 1. Note that, we
don’t require large separation between users in the mean
rewards of sub-optimal arms across clusters. We show that
a modification of LATTICE obtains similar regret bounds
as before in this general setting.

1.1 Other Related Work

Contextual Bandits with Latent Structure. An extensive
line of work [Gentile et al., 2014, Li et al., 2019, Gentile
et al., 2017, Li et al., 2016, Qi et al., 2022] studies a variant
of MAB-LC where every arm is associated with a context
vector of dimension d and expected arm reward for any user
in a fixed cluster is a unknown linear function (depending
only on the cluster and has unit norm) of the context vector.
Importantly, in our setting, the arm contexts are not observed
i.e. the context is hidden. In theory, one could apply the
results in these works to MAB-LC by associating standard
basis vectors to the arms and converting it into a contextual
bandit problem. However, such a trivial conversion results
in a highly sub-optimal regret of Õ(

√
M2CT + M3N) due

to a strong singular value assumption (see Appendix B for a
detailed discussion). In other words, the guarantees in this
line of work is only useful when the dimension d is much
smaller than the number of arms. Furthermore, these papers
also assume that the unknown parameter vectors correspond-
ing to the clusters are significantly separated - this makes
clustering easy with a few initial rounds. Importantly, our
results/algorithm do not need such a condition - Assump-
tion 1 allows the unknown cluster parameters to be as close
as possible. In a similar line of work, Zhou and Brunskill
[2016] proposed an explore-then-commit style algorithm,
but with sub-optimal regret bound, which in some cases is
linear in T.

Online Low rank Matrix Completion (O-LRMC). This
is a more general problem than MAB-LC, but the exist-
ing results are significantly sub-optimal. As mentioned
earlier, Jain and Pal [2022]’s result applies to only rank-1
case. For the general rank-r case, which corresponds to
our C clusters, the algorithm can be significantly subopti-
mal in terms of dependence on T. In a related work, Sen
et al. [2017] studied an epsilon-greedy algorithm, and de-
rived sub-optimal distribution-dependent bounds scaling
inversely in the square of the gap between mean rewards.
In addition, their distribution-free regret bounds have sub-
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optimal dependence in T; T2/3 instead of
√
T provided by

our method. Dadkhahi and Negahban [2018] provided an
online alternating minimization heuristic for the general
rank-r problem, but do not provide any regret bounds. In
a separate line of work, [Kveton et al., 2017, Trinh et al.,
2020, Katariya et al., 2017, Hao et al., 2020, Jun et al., 2019,
Huang et al., 2020, Lu et al., 2021] study a similar low-rank
reward matrix setting but they consider a significantly easier
objective of identifying the largest entry in the entire reward
matrix/tensor instead of finding the most rewarding arms
for each user/agent.

Online Collaborative Filtering. A closely related line of
work studies the user-based online Collaborative Filtering
(CF) Bresler et al. [2014, 2016], Heckel and Ramchandran
[2017], Bresler and Karzand [2019], Huleihel et al. [2021].
These works study the MAB-LC problem with the addi-
tional constraint that the same arm cannot be pulled by any
particular user more than once. While this model is strictly
more restricted than MAB-LC, no theoretical bounds are
known on the regret in this setting. Instead, these works
minimize pseudo-regret: assuming the mean rewards or
arms lie in [0, 1], these works aim to maximize the number
of arms pulled with reward more than 1/2. We note that
this is a simpler metric than cumulative regret because max-
imizing the latter requires identifying the best arm, whereas
maximizing the former only requires identifying arms with
reward more than 1/2.

2 PROBLEM FORMULATION

Notations: We write [n] to denote the set {1, 2, . . . , n}. For
a matrix A ∈ Rm×n, we will write Ai,A|i to denote the
ith row and column of matrix A respectively. We will write
Aij to denote the entry of the matrix A in the ith row and
jth column. We will write ||A||∞ = maxij |Aij | to denote
the largest entry of the matrix A. For a subset S ⊆ [m]
of indices, we will write AS and A|S to denote the sub-
matrix of A restricted to the rows in S and columns in S
respectively. Extending the above notations, Ai|S denotes
the ith row of A restricted to the columns in S; AS,S′

denotes the sub-matrix of A restricted to the rows in S and
columns in S ′. We write ei to denote the ith standard basis
vector that is zero everywhere except in the ith position
where it has a 1. Õ(·) notation hides logarithmic factors.

Consider a multi-user multi-armed bandit (MAB) problem
where we have a set of M arms (denoted by the set [M]), N
users (denoted by the set [N]) and T rounds. In each round,
a user u(t) is sampled independently from a distribution
PN over [N] (for much of the paper, we assume PN is the
uniform distribution). The sampled user u(t) pulls an arm
ρ(t) from the set [M] and receives a reward R(t), s.t.,

R(t) = Pu(t)ρ(t) + η(t) (1)

where η(t) denotes the additive noise that is added to

each observation. We will assume that the noise sequence
{η(t)}t∈[T] is composed of i.i.d zero-mean sub-Gaussian
random variables with variance proxy at most σ2 > 0. Also,
P ∈ RN×M is the user-arm reward matrix. We study the
MAB-LC problem under two assumptions on the reward
matrix P.

Cluster Structure (CS). Here, we assume the set of
N users can be partitioned into C unknown clusters
C(1), C(2), . . . , C(C). Furthermore, in a particular cluster
C(i) for any i ∈ [C], each user u ∈ C(i) has an identical
reward vector Pu. Let X ∈ RC×M be the sub-matrix of
P that has the distinct rows of P corresponding to each
cluster. τ := maxi,j∈[C] |C(i)|/|C(j)| denotes the ratio of
the maximum and minimum cluster size. For each user u,
πu : [M]→ [M] denotes a permutation that sorts the arms in
descending order of their reward for user u, i.e., Puπu(i) ≥
Puπu(j) for i ≤ j. Also, πu(1) , argmaxj∈[M]Puj is the
arm with the highest reward for user u ∈ [N].

Relaxed Cluster Structure (RCS): Here, we relax the clus-
ter definition so that the users in the same cluster might
not have identical reward vectors. That is, the assumption
is that the set of N users can be partitioned into C clus-
ters C(1), C(2), . . . , C(C) s.t. the following holds for some
known ν > 0: 1) For any two users u, v in the same clus-
ter, πu(1) = πv(1) and ||Pu −Pv||∞ ≤ ν, 2) For any
two users u, v in different clusters, we will have either∣∣Puπu(1) −Pvπu(1)

∣∣ > 20ν or
∣∣Puπv(1) −Pvπv(1)

∣∣ >
20ν. Note that the CS structure is a special case of RCS
with ν = 0.

Remark 1. The constant 20 in RCS model formulation is
arbitrary and can be replaced by any constant > 1.

Thus, in the RCS model formulation, users in the same
cluster have the same best arm and the reward vectors are
entry-wise close; users in different cluster have rewards
corresponding to one of the best arms to be separated.

Now, the goal is to minimize the regret assuming either CS
or RCS structure on the reward matrix P:

Reg(T) , E
( ∑
t∈[T]

Pu(t)πu(t)(1) −
∑
t∈[T]

Pu(t)ρ(t)

)
. (2)

Here the expectation is over the randomness in the algorithm
and the sampled users.

Remark 2. Note that a trivial approach is to treat each
user as a separate multi-armed bandit problem. Such a
strategy does not utilize the low rank structure and leads to a
regret of O(

√
MNT) assuming ||P||∞ , σ = O(1). Another

trivial approach is to recommend random arms to each
user (exploration) and subsequently use low rank matrix
completion guarantees to estimate P and exploit. This will
lead to a regret guarantee of O((M + N)

1/3T2/3) [Jain
and Pal, 2022]. The goal is to obtain a significantly smaller
regret guarantee of O(

√
(M + N)T) with C = O(1).
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3 PRELIMINARIES

As mentioned earlier, the key algorithmic tool that we use
is low rank matrix completion - a statistical estimation prob-
lem where the goal is to recover a low rank matrix from
partially observed randomly sampled entries. Since the re-
ward matrix P in MAB-LC is low rank, our strategy is to
call the offline matrix completion oracle for relevant sub-
matrices of P after we accumulate a sufficient number of
random observations in each sub-matrix. In this work, we
are interested in low rank matrix completion with non-trivial
entry-wise guarantees that has been studied recently in Chen
et al. [2019], Abbe et al. [2020]. Below, we state a low rank
matrix completion result that is adapted from Jain and Pal
[2022] which is in turn obtained with minor modifications
from Chen et al. [2019][Theorem 1] and is more suited to
our setting:
Lemma 1 (Lemma 2 in Jain and Pal [2022]). Con-
sider rank C = O(1) reward matrix P ∈ RN×M with
SVD decomposition P = ŪΣV̄T satisfying ‖Ū‖2,∞ ≤√
µC/N, ‖V̄‖2,∞ ≤

√
µC/M and condition number κ =

O(1). Let d1 = max(N,M), d2 = min(N,M), and let
p be such that 1 ≥ p ≥ cµ2d−1

2 log3 d1 for some con-
stant c > 0. For any positive integer s > 0 satisfy-

ing σ√
s

= O
(√

pd2
µ3 log d2

‖P‖∞
)

, Algorithm 5 with input

s, p, σ that uses m = Õ
(
spMN

)
observations to output

P̂ ∈ RN×M for which, with probability at least 1 − Õ(δ),
we have

‖P− P̂‖∞ = O

(
σ
√
µ3 log d1√
spd2

)
= Õ

(
σ
√

MNµ3

√
md2

)
.

We now introduce a definition characterizing a nice subset
of users that we often use in the analysis.
Definition 1. A subset of users S ⊆ [N] will be called

“nice" if S ≡
⋃
j∈A C(j) for some A ⊆ [C]. In other words,

S can be represented as the union of some subset of clusters.

4 LATTICE ALGORITHM FOR CS

4.1 Algorithm and Proof Overview

LATTICE runs in phases of exponentially increasing length.
In each phase, the goal is to divide the set of users into
nice subsets. Moreover, for each subset of users, we have
an active subset of arms that must contain the best arm
for all users in the corresponding subset. That is, at the
start of `th phase, we aim to create a list (of size a` ≤ C)
of nice subsets of users M(`) ≡ {M(`,i)}i∈[a`] and the
corresponding subsets of arms N (`) ≡ {N (`,i)}i∈[a`], s.t.
∪i∈[a`]M(`,i) = [N], N (`,i) ⊇ {πu(1) | u ∈M(`,i)}, and∣∣∣∣Puπu(1) − min

j∈N (`,i)
Puj

∣∣∣∣ ≤ ε`, ∀ u ∈M(`,i). (3)

Above, ε` is a fixed exponentially decreasing sequence in
`. As we eliminate arms at each phase, the number of user
subsets with more than γC active arms goes on shrinking
with each phase. Since LATTICE is random, we define
event E(`) to be true if LATTICE maintains a list of user
subsets and arm subsets satisfying the above properties.

Now, in round t, the sampled user u(t) pulls arm ρ(t) where
ρ(t) is sampled fromN (`,i) assuming |N (`,i)| ≥ γC, where
i is the index of subsetM(`,i) to which u(t) belongs. If,
|N (`,i)| < γC, then the cluster structure is ignored and
arm ρ(t) is selected from the active set of arms (N (`,i)) as
determined by the Upper Confidence Bound (UCB) algo-
rithm. Conditioned on E(`) being true, our goal is to ensure
E(`+1) with high probability. Due to the arm pull strategy
described above, for each subset of usersM(`,i) inM(`)

and their corresponding subset of active arms N (`,i) (such
that |N (`,i)| ≥ γC) we observe random noisy entries from
the sub-matrix PM(`,i),N (`,i) . Subsequently, we use low
rank matrix completion (Step 4 in Alg. 1) and Lemma 1 to
obtain P̃ ∈ RN×M such that P̃M(`,i),N (`,i) is an entry-wise
good estimate of PM(`,i),N (`,i) , i.e.,∣∣∣∣∣∣P̃M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 (4)

with high probability where ∆`+1 = ε`+1/40C. We define
the event E(`)

2 to be true if eq. (4) is satisfied for all relevant
sub-matrices.

Next, conditioning on E(`)
2 , consider a subset of usersM(`,i)

for which the corresponding subset of active arms is large
|N (`,i)| ≥ γC. For next phase, the intuitive goal is to further
partitionM(`,i) into subsets {M(`,i,j)}j , each of which is
nice and find a list of corresponding subsets of active arms
{N (`,i,j)}j ⊆ N (`,i) such that all arms in N (`,i,j) have
high reward (as in eq. 3) for all users inM(`,i,j). To do
so, for each user in the setM(`,i), we find a subset of good
arms among the active arms T (`)

u ⊆ N (`,i) such that

T (`)
u ≡ {j ∈ N (`,i) | max

j′∈N (`,i)
P̃

(`)

uj′ − P̃
(`)
uj ≤ 2∆`+1} (5)

i.e. arms which have a high estimated reward for user u.

Subsequently, we design a graph whose nodes are users
inM(`,i) and an edge is drawn between two users u, v ∈
M(`,i) if the following conditions are satisfied:

T (`)
u ∩ T (`)

v 6= Φ,
∣∣∣P̃(`)

ux − P̃(`)
vx

∣∣∣ ≤ 2∆`+1∀x ∈ N (`,i) (6)

In other words, eq. (6) defines an edge between two users
in the same subset if reward estimates of active arms for
the two users are close; secondly, there are common arms
in their respective set of good arms as defined in eq. (5).
We partition the set of usersM(`,i) into smaller nice sets
{M(`,i,j)} by considering the connected components of
the aforementioned graph and for users in each component
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M(`,i,j), the updated trimmed common subset of arms

N (`,i,j) ≡
⋃

u∈M(`,i,j)

T (`)
u (7)

with high reward is the union of set of good arms for all
users in the connected component (see Step 8 in Alg. 1).
We can show the following crucial and interesting lemma:

Lemma. Fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Con-
sider two users u, v ∈ M(`,i) having a path in the con-
structed graph. Conditioned on E(`), E(`)

2 , we have

max
x∈T (`)

u ,y∈T (`)
v

|Pux −Puy| ≤ 32C∆`+1

and max
x∈T (`)

u ,y∈T (`)
v

|Pvx −Pvy| ≤ 32C∆`+1.

This lemma shows that good arms for one user is good
for another if they are connected by a path. If the number
of active arms for a subset of users become less than γC,
then we start UCB (Upper Confidence Bound Lattimore
and Szepesvári [2020][Ch. 7]) for each user in that subset
with the active arms until end of algorithm. Therefore,
conditioned on E(`), E(`)

2 , the event E(`+1) is true w.h.p.
Hence, conditioned on E(`), we can bound the regret in
each round of the `th phase by ε`; roughly speaking, the
number of rounds in the `th phase is 1/ε2` and therefore the
regret is 1/ε`. By setting ∆` as in Step 3 of Alg. 1 (and
ε` = ∆`/64C), we can bound the regret of LATTICE and
achieve the guarantee in Theorems 1 and 2.

Remark 3. The low rank matrix completion oracle is ob-
tained with slight modifications from Jain and Pal [2022].
In line 6 of Algorithm 1, we require the matrix completion
oracle (Algorithm 5) to be stateful (wait appropriately). This
is because vanilla low rank matrix completion results work
under the assumption of Bernoulli sampling i.e. each entry
in the matrix is observed once with some probability p. So
to mimic Bernoulli sampling, we require a stateful version
of the algorithm. We create a Bernoulli mask at the begin-
ning of the phase and pull arms to observe only the masked
entries in sequence. We also make multiple observations
corresponding to the same mask and take the average in
each of the mask indices to reduce the variance; similarly,
we also compute several estimates of the same matrix with
independently sampled mask and take an entry-wise median
to reduce error probability. Using these tricks appropri-
ately (see Appendix D for a detailed proof and discussion)
can allow us to obtain the guarantee in Lemma 1. In be-
tween subsequent arrivals of users belonging to a cluster,
the algorithm remains stateful and waits at line 8.

4.2 Theoretical Guarantees

To obtain regret bounds, we first make the following assump-
tions on the matrix X ∈ RC×M whose rows correspond to
cluster reward vectors in the CS setting:

Assumption 1 (Assumptions on X). Let X = UΣVT be
the SVD of X. Also, let X satisfy the following: 1) Condition
number: X is full-rank and has non zero singular values
λ1 > · · · > λC with condition number λ1/λC = O(1),
2) µ-incoherence: ||V||2,∞ ≤

√
µC/M, 3) Subset Strong

Smoothness: For some α = O(1), γ = Õ(1), for any subset
of indices S ⊆ [M], |S| = γC, we must have xTVT

SVSx ≥
αγC/M for all unit norm vectors x ∈ RC.

Feasibility of Assumption 1. Assuming C � M, one can
show that Assumption 1 is satisfied by a large subset of
matrices. That is, suppose each entry of X is generated ac-
cording to N (0, 1). Then, it is easy to show that X satisfies
Assumption 1 (see Appendix).

Justification of Assumption 1. Note that the assumption is
similar to the assumptions required by standard low-rank
matrix completion methods Candès and Recht [2009], Bho-
janapalli and Jain [2014]. Intuitively, these assumptions
are necessary to obtain small regret because to get small
regret we require an arm pull for i-th user to provide good
information for j-th user. That is, the matrix X should
have information "well-spread" out instead of information
being concentrated in a few entries or in a few directions
only. To see this, consider an extreme example (when these
assumptions are not satisfied) when X = [IC×C 0]. In
that case, most of the arms will give no information when
pulled; all the arms need to be sampled for all users to get
a good estimate of the reward matrix. Further exploration
into necessity of Assumption 1 is left for future work.

Assumption 2. We will assume that τ,C = O(1) and does
not scale with the number of rounds T.

Note that the above assumption is just for simplicity of
exposition. Our algorithm is indeed polynomial in C and
τ , so we can incorporate more general τ and C. But for
simplicity, we ignore these factors by assuming them to be
constants.

Next, we characterize some properties namely the condition
number and incoherence of sub-matrices of P restricted to
a nice subset of users in the CS setting

Lemma 2. Suppose Assumption 1 is true. Consider a
sub-matrix Psub of P having non-zero singular values
λ′1 > · · · > λ′C′ (for C′ ≤ C). Then, if the rows of Psub

correspond to a nice subset of users, we have λ′1
λ′
C′
≤ λ1

λC

√
τ .

Lemma 3. Suppose Assumption 1 is true. Consider a sub-
matrix Psub ∈ RN′×M′ (with SVD decomposition Psub =
ŨΣ̃Ṽ) of P whose rows correspond to a nice subset of

users. Then,
∣∣∣∣∣∣Ũ∣∣∣∣∣∣

2,∞
≤
√

Cτ
N′ and

∣∣∣∣∣∣Ṽ∣∣∣∣∣∣
2,∞
≤
√

µC
αM′ .

Lemmas 2 and 3 allow us to apply low rank matrix com-
pletion (Lemma 1) to relevant sub-matrices of the reward
matrix P. Now, we are ready to present our main theorem:

Theorem 1. Consider the MAB-LC problem in CS frame-
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Algorithm 1 LATTICE (Latent bAndiTs via maTrIx ComplEtion )

Require: Number of users N, arms M, clusters C, rounds T, noise σ2 > 0, γ ≥ 1 and constant C ′ ≥ 0.
1: SetM(1) ≡ [M(1,1)] whereM(1,1) = [N] and N (1) ≡ [N (1,1)] where N (1,1) = [M]. Set round index t to be a global

parameter; initialize t = 0.
2: for ` = 1, 2, . . . , do
3: Set ∆`+1 = C ′2−` for some appropriate C ′ > 0. InitializeM(`+1) = [] and N (`+1) = [] to be empty lists.
4: Collect data by running Alg. 2 i.e. Alg. COLLECT DATA AND COMPUTE ESTIMATE(C, γ, σ2,∆`+1,M(`),N (`),T)

for the `th phase. Subsequently, forM(`,i) ∈M(`) such that
∣∣N (`,i)

∣∣ ≥ γC, compute an estimate P̃M(`,i),N (`,i) of

matrix PM(`,i),N (`,i) from the data such that with high probability
∣∣∣∣∣∣P̃M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1.

5: for i : |N (`,i)| ≥ γC do
6: For every user u ∈M(`,i), compute T (`)

u ≡ {j ∈ N (`,i) | maxj′∈N (`,i) P̃
(`)
uj′ − P̃

(`)
uj ≤ 2∆`+1}.

7: Construct graph G(`,i) whose nodes are users inM(`,i) and an edge exists between two users u, v ∈ M(`,i) if
T (`)
u ∩ T (`)

v 6= Φ and
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 for all arms x ∈ N (`,i).

8: For each connected componentM(`,i,j) (∪jM(`,i,j) ≡ M(`,i)), compute N (`,i,j) ≡ ∪u∈M(`,i,j)T (`)
u . Append

M(`,i,j) intoM(`+1) and N (`,i,j) into N (`+1).
9: end for

10: For each pair of sets (M(`,i),N (`,i)) such that |N (`,i)| ≤ γC , appendM(`,i) toM(`+1) and N (`,i) to N (`+1).
11: end for

work with M arms, N users, C clusters and T rounds such
that at every round t ∈ [T], we observe reward R(t) as
defined in eq. (1) with noise variance proxy σ2 > 0. Let
P ∈ RN×M be the expected reward matrix and X ∈ RC×M

be the sub-matrix of P with distinct rows. Suppose Assump-
tion 1 is satisfied by X and Assumption 2 is true. Then Alg. 1
with C ′ = cC−1 min

(
‖P‖∞,

σ
√
µ

log M

)
for some appropriate

constant c > 0 guarantees the regret Reg(T) to be:

Õ(σ
√
µ3T(M + N)) + σ

√
NT).

To better understand the theorem, let’s remove the scaling
factors. Dividing the regret by σ gives us a scale-free re-
gret of

√
T(M + N). Now, even if we know the clustering

structure apriori, the regret would be
√
TM, so we are only

paying an additive factor of
√
NT for the latent cluster struc-

ture, which is tight.

Also, dividing the the regret by N we get per-user regret

of
√

(1 + M
N )
√
T′ where T′ = T/N is the average number

of arm-pulls for each user. That is, when N � M, we
need only log(M + N) arm pulls to get reasonable estimate.
Hence, per user, the number of arms that needs to be pulled
decreases exponentially from Ω(M) to log(M + N). On
the other hand, when the number of users is small, each
user has to explore at least M/N arms to collaboratively
provide information about all the arms. This also matches
the intuition, especially when the number of users is 1 where
the bound matches the standard single-user MAB bound.

We would like to add the following two remarks:

Remark 4 (Generalization). Our results can be general-
ized to the setting when the users are sampled according

to a known non-uniform distribution in different ways. We
can simulate the uniform distribution in each phase of the
Alg. 1 by ignoring several observations; this approach is
disadvantageous since users with very low probability of
getting sampled will increase the number of sufficient obser-
vations significantly. Another approach is to partition the
set of users into disjoint buckets such that the probabilities
of getting sampled for users in the same bucket are within a
factor of 2 of each other. Now, in each bucket, we can run
Alg. 1 separately and simulate the uniform distribution in
each phase. Since the number of buckets will be logarithmic
in [N], the regret remains same up to logarithmic factors.
Remark 5 (Generalization Continued). We can generalize
our results to the setting where τ,C, κ = λ1/λC scales
with the number of rounds T by modifying Thm. 2 in
Chen et al. [2019] appropriately. This will lead to the
first term of regret guarantee in Thm. 1 being

√
VT where

V = Õ
(
poly(r, τ,C, κ)

(
N + M

))
; hence we will have a

poly(r, τ,C, κ) additional multiplicative factor in the regret.
See Appendix H for details on this generalization.

In the CS framework, we can also provide instance-
dependent regret bounds that are sharper than worst case
guarantees in Theorem 1. Let us introduce some definitions:
for every cluster c ∈ [C], define the subset of arms Gc,` for
all users u ∈ C(c) and for all ` > 1 as

Gc,` ≡ {j ∈ [M] | ε` ≤
∣∣Puj −Puπu(1)

∣∣ ≤ ε`−1}

and Gc,1 ≡ {j ∈ [M] | ε1 ≤
∣∣Puj −Puπu(1)

∣∣} for ` = 1;
Gc,` (Gc,1) corresponds to the subset of arms having a sub-
optimality gap that is between ε`−1 and ε` (greater than
ε1 respectively) for all users belonging to the cluster C(c).
There is no ambiguity in the definition since all users in the
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Algorithm 2 COLLECT DATA AND COMPUTE ESTIMATE

Require: Number of clusters C, parameter γ > 0, noise variance σ2 > 0, desired error guarantee ∆`+1 > 0, partition of
usersM(`) comprising nice subsets of users, corresponding list of sets of arms N (`), rounds T.

1: for the ith set of usersM(`,i) ∈M(`) and ith set of arms N (`,i) ∈ N (`) do
2: if N (`,i) ≥ γC then
3: Create a stateful instance of Algorithm LOW RANK MATRIX ESTIMATE with parameters - { V = N (`,i) for users,

U =M(`,i) (whenever a user u ∈ U is sampled to pull an arm), desired error ∆`+1 in estimate, noise σ2 and total
rounds T}. {All instances of Algorithm 5 will wait until entire data is collected (Line 5 in Alg. 6) or finish.}

4: else
5: For each u ∈M(`,i), if not created already, create a stateful instance of Algorithm UCB(u) with arm set N (`,i)

6: end if
7: end for
8: while There exists an instance of Algorithm 5 that waits (i.e. Alg. 6 invoked by Alg. 5 waits at Line 5.) do
9: Sample a user u(t) from the environment. Determine it ← {i : u(t) ∈M(`,i)}.

10: if Algorithm 5’s instance with U =M(`,it) is still waiting then
11: Execute one step of the DATACOLLECTIONSUBROUTINE (Line 5 of Alg. 6 with u(t)) invoked by Algorithm 5’s

instance (with U =M(`,it))
12: else if Instance of Algorithm UCB(u(t)) (i.e. Alg. 7) exists then
13: Invoke one time step of Algorithm UCB(u(t)).
14: else
15: pull a random arm from N (`,it).
16: end if
17: t← t+ 1. Stop the Algorithm when t = T.
18: end while
19: for the ith set of usersM(`,i) ∈M(`) and ith set of arms N (`,i) ∈ N (`) do
20: if N (`,i) ≥ γC then
21: Store estimate P̃M(`,i),N (`,i) obtained as output from Algorithm LOW RANK MATRIX ESTIMATE for users

U =M(`,i) and arms V = N (`,i).
22: end if
23: end for
24: Return all stored estimates P̃M(`,i),N (`,i) for i :

∣∣N (`,i)
∣∣ ≥ γC.

same cluster C(c) have the same mean rewards over all arms.
Let us also defineHc ≡

⋃
`>1

argminj∈Gc,`
∣∣Puj −Puπu(1)

∣∣
with the understanding that whenever Gc,` = Φ, there is
no argmin to be counted in the set. For brevity of notation,
let Ψc,a , Puπu(1) −Pua be the sub-optimality gap in the
reward of arm a for any user u in cluster c.
Theorem 2. Consider the setting in Theorem 1 and the sets
{Gc,`,Hc}c,` as defined above. Then Alg. 1 with C ′ =

cC−1 min
(
‖P‖∞,

σ
√
µ

log M

)
for some appropriate constant

c > 0 guarantees the regret Reg(T) to be

Õ
( ||P||∞ V

C ′2
1[Gc,1 6= ∅] +

∑
c∈[C],a∈Hc

Ψc,aT
−2

C
+

CV

Ψc,a

)
+ N−1Õ

( ∑
c∈[C]

a∈{πc(s)}γCs=1

∣∣∣C(c)
∣∣∣ ( σ

Ψc,a
+ 3Ψc,a

))
.

where V = Õ
(
σ2µ3

(
N + M

))
, {πc(s)}γCs=1 are the γC

arms for cluster c with the smallest sub-optimality gap.

Loosely speaking, the regret bound in Thm. 2 scales as

Õ((M + N)/Ψ) where Ψ is the minimum sub-optimality
gap across all the N users involved. This is because arms
with large sub-optimality gaps are quickly eliminated by
LATTICE in the initial phases itself; therefore if most com-
peting arms for a user has large sub-optimality gaps, then
the user will end up pulling high reward arms more often .
Again, this guarantee improves over the Õ((MN)/Ψ) regret
trivially obtained without collaboration across users.

4.2.1 Lower Bounds

Theorem 3 (Distribution-free). Let C ≤ min{M,N}. Sup-
pose the distributions of arm rewards are Bernoulli and
suppose the user at round t is sampled independently from
a distribution PN. Moreover, suppose the weighted fraction
of users in the ith cluster is τi. Let sup be the supremum
over all problem instances and inf be the infimum over all
algorithms with knowledge of M,N,C. Then

inf supReg(T) ≥ 0.02(R1 +R2),

where R1 =
∑
n∈[N] E

[
min{

√
CTn,Tn}

]
, R2 =∑

c∈[C] E
[
min{

√
MTc,Tc}

]
. Here, Tn ∼ Bin(T, PN(n)),
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Algorithm 3 LATTICE ALGORITHM FOR GCS

Require: Number of users N, arms M, clusters C, rounds T,
noise σ2, separation ν > 0, parameters γ ≥ 1, C′ ≥ 0.

1: Initialize as in Step 1 of Alg. 1.
2: for ` = 1, 2, . . . , do
3: Run Steps 3-4 as in Algorithm 1.
4: if ∆`+1 ≥ 2ν and

∣∣M(`)
∣∣ < C then

5: Run Steps 5-9 as in Algorithm 1
6: else
7: For each pair of sets (M(`,i),N (`,i)) s.t.

|N (`,i)| ≥ γC, append M(`,i) to M(`+1) and
its corresponding set of arms

⋂
u∈M(`,i) T (`)

u to
N (`+1).

8: end if
9: Run Step 10 in Algorithm 1.

10: end for

Tc ∼ Bin(T, τc) are binomial random variables.

We now specialize the above result to the case where PN is
a uniform distribution, and the cluster sizes are uniform.

Corollary 1. Consider the setting of Theorem 3. Suppose
T ≥ 10(M + N)C, PN is the uniform distribution, and
suppose each cluster has the same number of users. Then
inf supReg(T) = Ω(

√
(M + N)CT)

Together with Theorem 1, the above result shows that LAT-
TICE achieves minimax optimal regret when C = O(1),
and the reward matrix X satisfies the incoherence condition.

Theorem 4 (Distribution-dependent). Consider the setting
of Theorem 3. Suppose there is a unique best arm for
each cluster. Moreover, suppose our algorithm is uniformly
efficient, i.e., for any sub-optimal arm a of any user u,
E[Na,u(T )] = o(Tα) for all α ∈ (0, 1). Then

lim
T→∞

Reg(T)

logT
≥
∑
c∈[C]

∑
a

Pu(c)πu(c)(1)(1−Pu(c)πu(c)(1))

Ψc,a
,

where the inner summation is over the set of all sub-optimal
arms in cluster c. Here, u(c) is any user in cluster c, and
Pu(c)πu(c)(1) is the mean reward of the best arm in cluster
c, and Ψc,a = Pu(c)πu(c)(1) −Pu(c)a.

The lower bound in Theorem 4 can be tightened a bit more,
albeit at the expense of readability. We provide this im-
proved bound in the Appendix.

5 LATTICE ALGORITHM FOR RCS

LATTICE for RCS (Alg. 3) is very similar to Alg. 1 with
the main novelty being cluster-wise elimination of arms in
Steps 7 that needs a more aggressive approach. In essence,
Alg. 3 has three components:

• Joint Arm Elimination: As in Algorithm 1, we run a
phased algorithm where in the `th phase, we maintain a
partition of usersM(`) and a family of subsets of active
arms N (`) having a one-to-one mapping. For any set of
users inM(`) that has more than γC active arms, we use
Matrix Completion techniques to jointly shrink their set
of active arms and partition them even further. We stop
this component if we end up with C groups of users for
the first time or if ∆`+1 ≤ 2ν. In essence, in each phase,
we eliminate arms for multiple clusters of users together.
• Cluster-wise Arm Elimination: In the second part, we

no longer seek to partition each subset of users any further
since users in the same subset provably correspond to
the same cluster. Here, for elimination of bad arms, we
pursue an intersection-based approach of good arms over
all users in the same subset (Step 7 in Alg. 3); this is
more aggressive elimination as compared to the union-
based approach (Step 8 in Alg. 1) that was pursued in the
previous component.

• Upper Confidence Bound: If number of active arms∣∣N (`,i)
∣∣ for users in a subsetM(`,i) ∈M(`) falls below

γC, then we start/continue the Upper Confidence Bound
(UCB) algorithm for each user inM(`,i) separately with
their subset of active arms N (`,i) (Step 10 in Alg. 1).

Theoretical guarantees: We make similar assumptions on
the reward matrix P ∈ RN×M as in the CS framework:

Assumption 3 (Assumptions on reward matrix P). We
assume that P with SVD decomposition P = UΣVT

satisfies the following properties 1) (Condition Number)
P has rank C and has non zero singular values λ1 >
λ2 > · · · > λC with λ1/λC = O(1) 2) (µ-incoherence)
||U||2,∞ ≤

√
µC/N and ||V||2,∞ ≤

√
µC/M. 3) (Subset

Strong Smoothness (a)) For some constant β > 0 and for
any subset of indices S ⊆ [N],S = C(j) (corresponding to
some cluster of users), we must have xTUT

SUSx ≥ βτ/C
for all unit norm vectors x ∈ RC. 4) (Subset Strong
Smoothness (b)) For some α = O(1) and γ = Õ(1), for
any subset of indices S ⊆ [M], |S| = γC, we must have
xTVT

SVSx ≥ αγC/M for all unit norm vectors x ∈ RC.

Remark 6. Note that the Subset Strong Smoothness (a) of
Assumption 3 (used for proving incoherence guarantees of
relevant sub-matrices of P-Lemma 5) will be satisfied only if
the separation ν is bounded from below (since for S = C(j),
US loses rank when ν = 0). However, when ν = 0, RCS
reduces to the CS framework; here, we do not need (Subset
Strong Smoothness (a)) since we have a different analysis
for proving incoherence guarantees (Lemma 3) of relevant
sub-matrices. For extremely small ν, we can combine the
two analyses to obtain similar sufficient guarantees (by
using triangle inequality for instance).

As before, we characterize the condition number and the
incoherence of the relevant sub-matrices of P that will allow
us to apply low rank matrix completion techniques and
provide theoretical guarantees (see Lemma 1).
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(a) Movielens dataset (b) Netflix dataset (c) Jester dataset

Figure 1: Cumulative Regret of the Alternating Minimization (AM) algorithm in Dadkhahi and Negahban [2018], LATTICE (Alg. 3)
and Upper Confidence Bound (UCB) algorithm with T = 60000 rounds for 3 datasets a) Movielens 10m dataset: N = 200 users and
M = 200 arms b) Netflix dataset: N = 200 users and M = 200 arms c) Jester dataset: N = 100 users and M = 100 arms.

Lemma 4. Suppose Assumption 3 is true. Consider a sub-
matrix Psub of P having non-zero singular values λ′1 >
· · · > λ′C′ (for C′ ≤ C). Then, provided Psub is non-zero,
we have λ′1

λ′
C′
≤ λ1

λC
.

Lemma 5. Suppose Assumption 3 is true. Consider a sub-
matrix Psub ∈ RN′×M′ (with SVD decomposition Psub =
ŨΣ̃Ṽ) of P whose rows correspond to a nice subset of

users. Then,
∣∣∣∣∣∣Ũ∣∣∣∣∣∣

2,∞
≤
√

µC
βN′ and

∣∣∣∣∣∣Ṽ∣∣∣∣∣∣
2,∞
≤
√

µC
αM′ .

Now, we are ready to state our main theorems

Theorem 5. Consider the MAB-LC problem in RCS frame-
work with M arms, N users, C clusters and T rounds such
that at every round t ∈ [T], we observe reward R(t) as
defined in eq. (1) with noise variance proxy σ2 > 0. Let
P ∈ RN×M be the expected reward matrix such that As-
sumption 3 is satisfied by P. Moreover, suppose Assumption
2 is true. Then Alg. 3 with C ′ = cC−1 min

(
‖P‖∞,

σ
√
µ

log M

)
for some appropriate constant c > 0 guarantees the regret
Reg(T) to be:

Õ(σ
√
µ3T(M + N)) + σ

√
NT). (8)

Note that the regret bound above is similar to that of
Theorem 1, despite the stricter setting. Here again, the
"scale-free" regret is

√
T(M + N) which as discussed in re-

marks below Theorem 1, is intuitive, is practical in realistic
regimes, and is nearly optimal.

Remark 7. Note that the generalization remarks 4,5 in Sec.
4.2 also extend to Theorem 5. Also, recall the definitions of
Hc,Gc,` for clusters c ∈ [C] and phases indexed by ` ≥ 1
depending on the sub-optimality gap from Section 4.2. With
equivalent definitions for the RCS setting, the gap dependent
regret bounds in Theorem 2 can be achieved by Algorithm 3
as well provided Assumptions 2 and 3 are true.

6 EXPERIMENTS

We have provided detailed experiments on synthetic datasets
(deferred to Appendix A) and popular real world recommen-
dation data-sets namely 1) Movielens 10m dataset 2) Netflix

dataset and 3) Jester dataset. For simplicity, we implement
a significantly simplified version of our algorithm (Alg. 4
in Appendix A). In addition, we have also compared with
a highly competitive heuristic - the Alternating Minimiza-
tion (AM) algorithm described in Dadkhahi and Negahban
[2018] and the standard Upper Confidence Bound (see Latti-
more and Szepesvári [2020]) algorithm individually for each
user. However, we stress that the AM algorithm does not
have any theoretical guarantees. For the Movielens dataset,
we restricted ourselves to the 200 users (N) who have rated
most movies and 200 movies (M) that have been rated the
most. For Netflix and Jester, with a similar pre-processing,
the values of N,M are (200, 200) and (100, 100) respec-
tively. We compared the performance of our algorithm
LATTICE (for GCS - i.e. after a few phases, we run UCB
individually for each user with their active items) with the
AM algorithm in Dadkhahi and Negahban [2018] (with
the hyper-parameters provided in Dadkhahi and Negahban
[2018] for Movielens and Jester datasets; for Netflix dataset,
we used the hyperparameters provided for Movielens). In
Figures 1a,1b and 1c, we have shown the cumulative regret
of the three algorithms -clearly, LATTICE outperforms the
other baselines empirically as well. In particular, LATTICE
successfully removes large chunks of bad items for large
groups of users jointly in few rounds. Further details about
implementation are deferred to Appendix A.

7 CONCLUSION

For the multi-user multi-armed latent bandit problem intro-
duced in Maillard and Mannor [2014] we provided a novel,
computationally efficient algorithm LATTICE. Ours is the
first algorithm to obtain Õ(

√
(M + N)T) regret guarantee

in this challenging and practically important setting, as la-
tent cluster structure in users/agents is commonplace and is
a standard modeling tool for practitioners. Our work also
resolves open problems posed in Jain and Pal [2022] and
Sen et al. [2017] for online low rank matrix completion
in certain special case. Finally, it would be interesting to
optimize the regret dependence on other factors such as
the number of clusters (C), RCS-gap (ν), as well as other
parameters incoherence and condition number.
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Algorithm 4 Simplified LATTICE

Require: Number of users N, arms M, clusters C, rounds T, noise σ2 > 0, phase lengths {∆`}`≥1 satisfying
∑
` ∆` = T.

Gap Parameters {ν`}`≥1. Parameter λ ≥ 0 for nuclear norm minimization. Phase parameter L ≥ 0 and robust
intersection parameter 0 ≤ ρ ≤ 1.

1: Partition entire time period into phases [1,∆1], [∆1 + 1,∆1 + ∆2], . . . .
2: SetM(1) ≡ [M(1,1)] whereM(1,1) = [N] and N (1) ≡ [N (1,1)] where N (1,1) = [M].
3: for t = 1, 2, . . . ,T do
4: Sample user u(t) from [N], determine phase ` in which round t belongs
5: Determine the setM(`,i) inM(`) in which u(t) belongs.
6: User u(t) pulls an arm ρ(t) uniformly at random from N (`,i) and observes feedback R(t.
7: if last round of phase and ` ≤ L then
8: InitializeM(`+1) = [],N (`+1) = []
9: for each setM(`,i) ∈M(`) do

10: Consider Matrix Q ∈ RN×M. Fill entries in the sub-matrix QM(`,i),N (`,i) by assigning Qij = mean{R(t) | t ∈
phase `, i = u(t), j = ρ(t), i ∈M(`,i)}.

11: Let Ω be the filled entries in QM(`,i),N (`,i) . Complete the matrix QM(`,i),N (`,i) by solving the convex program

min
T∈RN×M

1

2

∑
(i,j)∈Ω

(
Qij −Tij

)2

+ λ‖TM(`,i),N (`,i)‖?, (9)

12: if ` ≤ L then
13: Solve k-means for users inM(`,i) using the vector embedding formed by the rows in TM(`,i),N (`,i) . Choose

best k ≤ C by using ELBOW method. Denote the cluster of users by {M(`,i,j)}j .
14: for each cluster of usersM(`,i,j) do
15: Compute N (`,i,j) as {s ∈ N (`,i) | |Tus −maxs′∈N (`,i) Tus′ | ≤ ν` for some u ∈M(`,i,j)}.
16: AppendM(`,i,j) toM(`+1) and N (`,i,j) to N (`+1).
17: end for
18: else
19: Compute set of active arms N (`,i) as {s ∈ N (`,i) | |Tus − maxs′∈N (`,i) Tus′ | ≤

ν` for at least ρ-fraction of users inM(`,i)}.
20: AppendM(`,i) toM(`+1) and N (`,i) to N (`+1). #Instead of Steps 20,21, we can also start running UCB

individually for each user inM(`,i) with the set of active items N (`,i) for the remaining rounds. This can be
more practical since cluster structures are not always satisfied exactly.

21: end if
22: end for
23: end if
24: end for

Organization: The Appendix is organized as follows: in Section A, we provide detailed synthetic experiments with
a simplified version of the LATTICE algorithm. In Section B, we provide a more detailed comparison with the online
clustering line of work. In Section C, we provide detailed proof for feasibility of Assumption 1. In Section D, we provide
details on proofs of results presented in Section 3. In Section E, we provide detailed proof of Theorems 1 and 2. In Section
F, we provide detailed proofs of the lower bounds on cumulative regret. In Section G, we provide detailed proof of Theorem
5. Finally in Section H, we provide a proof of a general version of Lemma 1 and the regret guarantee claimed in Remark 5.

A Further Experiments

A.1 Synthetic Datasets

For experimentation, we will run Algorithm 4 that involves the following simplifications of a) for each matrix completion
step in Algorithm 1 - every user randomly pulls arms in the active set of arms (see Step 7 in Alg. 4) and subsequently, a
single optimization problem with nuclear norm minimizer is solved at Step 12 b) the clustering step using graphs in Steps
7-8 of Alg. 1 - we use k-means to cluster the users (see Step 14) where the vector embedding of each user is the row in the
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(a) V has entries distributed according to standard normal. (b) V has entries generated according to a uniform distribution

Figure 2: Cumulative Regret of the Alternating Minimization (AM) algorithm in Dadkhahi and Negahban [2018] and
LATTICE (Alg. 4) with N = 200 users, M = 200 arms, C = 4 clusters and T = 60000 rounds. The reward matrix
P = UVT is generated in the following way: each row of U is a standard basis vector while each entry of V is sampled
independently from a standard normal distributionN (0, 1) in (a) and each entry of V is sampled independently from U [0, 5]
in (b). Notice that LATTICE becomes superior to AM as the number of rounds increase.

sub-matrix estimate that we computed by completing the sub-matrix corresponding to the subset of users (that the said user
belongs to) and its active subset of arms.

Next we perform detailed experiments with Algorithm 4 on synthetic datasets that are generated as described below. Note
that we compare against the Alternating Minimization (AM) algorithm presented in Dadkhahi and Negahban [2018] for
solving the online multi-user multi-armed bandit problem when the reward matrix is of low-rank. Note that the AM algorithm
is a very strong baseline in practice for our problem setting. In Dadkhahi and Negahban [2018], it was experimentally
demonstrated for both synthetic and real datasets that the AM algorithm outperforms previously designed algorithms in the
literature that can be applied to our problem setting (Sen et al. [2017] and Kawale et al. [2015]) by a significant margin.

Dataset Generation: We take N = 200 users, M = 200 arms, C = 4 clusters and the number of rounds T = 60000. We
generate the ground truth matrix P = UVT where U ∈ RN×C, V ∈ RM×C in the following manner: in the ith row of
U, the (i%C)th entry is set to be 1 while the other entries are 0, each entry of V is sampled uniformly at random from
(a) standard normal distribution N (0, 1) (b) uniform distribution [0, 5]. For (a), we assume that the noise added to each
observed entry is sampled independently from N (0, 0.5). For (b), we assume that the noise added is uniformly distributed
in [−0.5, 0.5].

Algorithm Details: We tune both the AM and the LATTICE algorithm (Alg. 4). The AM algorithm Dadkhahi and
Negahban [2018] has two hyper-parameters λ1, λ2 which are set to be 0.5 and 0.01 respectively for both data-sets generated
according to (a) and (b). Alg. 4 has several hyperparameters - we set the phase length ∆` = 1500 + 500 ∗ (`− 1), the gap
parameters ν` = ||P||∞ /6 · 8` and L = 5. We also take λ = 5

√
∆`/200 for the convex relaxation problem in 9. In Step

14 of Alg. 4, we choose the best k using the following heuristic: we go on increasing k by 1 if the objective function of
k-means reduces by a factor of at least 0.6; also if the objective is less than 100, we do not split the cluster anymore. Again,
these hyperparameters remain same for both datasets generated according to (a) and (b).

Results and Insights: The cumulative regret (averaged over 5 independent runs) is plotted for both the AM and LATTICE
algorithms (Alg. 4) in Figures 2a (Gaussian) and 2b (Uniform) respectively. Notice that for both synthetic datasets (Gaussian
and Uniform), in the initial periods, AM has a better performance while in latter stages LATTICE improves significantly and
eventually beats it. The reason is that the AM algorithm starts creating confidence sets for arm pulls for every user from the
first few rounds itself. However, in almost all the runs, the AM algorithm fails to converge to the best arm for many users
(although it does converge to arms with very small sub-optimality gap for each user). On the other hand, LATTICE, in the
initial few phases mimics pure exploration but it converges to the best arm for most users almost always. Therefore, the
cumulative regret of LATTICE hardly increases after a certain number of rounds whereas the cumulative regret of AM goes
on increasing. Therefore, we can conclude that in synthetic datasets where our assumptions namely the cluster structure is
satisfied, LATTICE is not only competitive with the AM algorithm but also has superior performance when the number of
rounds is large. One disadvantage of the AM algorithm that it is quite sensitive to the choice of hyperparameters - a slightly
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incorrect choice leads to diverging of the regret guarantees from the first few rounds itself; in comparison, LATTICE is
much more stable with respect to the choice of hyperparameters.

A.2 Real-world datasets (Implementation details)

For all three datasets 1) Movielens 10m 2) Netflix and 3) Jester, we set the phase length in Algorithm 4 to be ∆` =
2000 + 500 ∗ (`− 1), the gap parameters ν` = ||P||∞ /4 · 2` and L = 5 for Movielens and Netflix; for Jester dataset, we
took ν` = ||P||∞ /6 · 8` and L = 5. After five phases, instead of Steps 20,21 in Alg. 4, we start running standard UCB for
each user with the set of active items for the remaining rounds. We also take λ = 5

√
∆`/200 for the convex relaxation

problem in 9. In Step 14 of Alg. 4, we choose the best k using the following heuristic: we go on increasing k by 1 if the
objective function of k-means reduces by a factor of at least 0.6; also if the objective is less than 50, we do not split the
cluster anymore.

B Detailed comparison with Online Clustering

Gentile et al. [2014, 2017], Li et al. [2019] study the contextual version of the MAB-LC problem considered in our work. In
their set up, a random user u ∈ U arrives at time t, the online algorithm is presented with an action space At where each
action a ∈ At has a feature vector xa. If the action chosen is kt, then the mean rewards obtained is xTktβc(u) where βc are
the model parameters for cluster c. All users u such that c(u) = c have an identical reward model.

We can map our problem to this problem by presenting a fixed action set in every slot, i.e. xi = ei for all i ∈ [M] where
{ei} is the canonical basis in RM, and At = {x}Mi=1 for all t. However, such a conversion results in highly sub-optimal
regret of Õ(

√
M2CT + M3N). There are two main reasons for this. One is that this conversion leads to extremely high

feature vector dimension of M. The other is that the algorithms in Gentile et al. [2014, 2017], Li et al. [2019] crucially
depend on the assumption that for a fixed a at time t, the feature vector xa is sampled i.i.d from a distribution on the unit
sphere such that minimum singular value of E[xax

T
a ] is at least a constant. Based on our conversion above, it is easy to see

that E[xax
T
a ] = 1

M for MAB-LC. Since M is very large, the minimum singular value in our setting is quite small which
leads to poor regret. This assumption is crucial to the analysis of Gentile et al. [2014, 2017], Li et al. [2019], and removing
it is non-trivial. Consider a user u in the system and the Gram matrix Su,t =

∑
s<t:us=u

xksx
T
ks

formed for user u based
on feature vectors xks of actions chosen at times when the user u arrived in the system. Crucial property that is needed
for online clustering to proceed in the works of Gentile et al. [2014, 2017], Li et al. [2019] is that the minimum singular
value of Su,t is Ω(Tu,t) where Tu,t is the number of time slots user u arrived till time t with very high probability (see for
instance Claim 1 in Gentile et al. [2014], Lemma 4 in Li et al. [2019]). This is ensured through the randomness assumption
for xa. In our case with mapping to canonical basis vectors, minimum singular value of Su,t will scale sub-linearly (o(Tu,t)
for large Tu,t ) if the algorithm is doing well on user u in terms of regret, i.e. focusing on arms close to the best arm.

Note that this can be seen as a motivation for our elimination style algorithm, since we only rely on the overlap in the set of
‘good arms’ of every user for clustering, while in Gentile et al. [2014, 2017], Li et al. [2019], the authors use the estimate of
the entire mean reward vector to cluster. This requires the estimation error to be low in ’all directions’ for the Gram matrix.

C Feasibility of Assumptions

In this section, we are going to show that Assumption 1 is feasible for a large ensemble of matrices. In particular when the
entries of X ∈ RC×M with SVD decomposition X = UΣVT are sampled according to N (0, 1), we prove that Assumption
1 is going to be true with high probability.

Lemma 6. If xTX|SX
T
|Sx ≥ αγCλ2

1/M for a subset S ⊆ [M], |S| = γC for all unit vectors x ∈ RC, then the minimum
eigenvalue of VT

SVS ≥ αγC/M. In other words, Subset Strong Smoothness (SSS) of X with SVD decomposition
X = UΣVT implies SSS of V.

Proof. If xTX|SX
T
|Sx ≥ αγCλ2

1/M for a subset S ⊆ [M], |S| = γC for all unit vectors x ∈ RC, then the minimum
eigenvalue of VT

SVS ≥ αγC/M. To see this, note X|S = UΣVT
S implying that VT

S = (UΣ)−1X|S . Hence, VT
SVS =

(UΣ)−1X|SX
T
|S(UΣ)−T implying that (VT

SVS)−1 = (UΣ)T(X|SX
T
|S)−1(UΣ). Taking the operator norm on both

sides, we have λmin(VT
SVS) ≥ λ−2

1 λmin(X|SX
|T
S ) implying that xTVT

SVSx ≥ αγC/M.

Lemma 7. Suppose C� M and further, the entries of X are generated independently according to N (0, 1).
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Proof. We must have
√
M−

√
C− t ≤ λC ≤ λ1 ≤

√
M +

√
C + t w.p. at least 1− 2e−t

2/2 implying that
√
M/2 ≤ λC ≤

λ1 ≤ 2
√
M; hence we must have λ1/λC = O(1) w.p. at least 1−O(e−M). Moreover, we have XTX = VΣ2VT. Clearly,

we must have ||X||∞,2 λ
−1
C ≤ ||V||2,∞ ≤ ||X||∞,2 λ

−1
1 . For any column X|i, we have

∣∣∣∣X|i∣∣∣∣22 is a chi-squared random
variable with C degrees of freedom. Using standard concentration inequalities for chi-squared random variables, we have∣∣∣∣X|i∣∣∣∣2 ≤ 8

√
C logM w.p. at least 1−M−2. By taking a union bound over all i ∈ [M], we have ||X||∞,2 ≤ 8

√
C logM

w.p. at least 1 −M−1. Hence ||V||2,∞ ≤ 16
√

C log M
M . Therefore, when X is a random gaussian matrix, the first part of

Assumption 1 holds true and the second part holds true with µ = O(logM) with high probability.

On the other hand, for a subset S ⊆ [M], |S| = γC, we must have the minimum singular value of X|S to be at least√
C(
√
γ − 1)− t w.p. at least 1− 2e−t

2/2. Taking γ = 16 logM and t =
√

4C logM, we must have the minimum singular
value of X|S to be at least

√
Cγ/2 w.p. at least 1− 2e−2c log M. Taking a union bound over all such subsets S of [M] with

size |S| = γC, we must have for all unit norm vectors x ∈ RC

xTX|SX
T
|Sx ≥

Cγ

4
=

Cγ · 4M
16M

≥ Cγλ2
1

16M

w.p. at least 1−O(e−M) implying that α ≥ 1/16. Combining with Lemma 6, we can conclude that with high probability
for γ = O(logM), the third part of Assumption 1 is satisfied for α = 1/16 if X is a random gaussian matrix. These results
can also be extended to matrices X whose columns are independent.

D Missing Details in Section 3

Low Rank Matrix Completion algorithm. Algorithm 5 describes the low-rank matrix completion algorithm we use in
our work. This algorithm is adapted from Jain and Pal [2022], with minor modifications that are necessary for our setting.
At its core, the algorithm solves a nuclear norm regularized convex objective to complete the matrix (equation (10)). This
procedure is repeated f = O(logNMT) times, and the final estimate of the matrix is computed as the entry-wise median of
the f solutions.

Algorithm 6 collects the data needed for matrix completion in Equation (10). At a high level, this subroutine randomly
selects entries in the matrix (each entry is selected with probability p). It then computes an estimate of each of the selected
entries by pulling the arm corresponding to the entry multiple times (b times) and taking an average of the obtained rewards.
The collected data is then shared with Algorithm 5 for matrix completion. The main difficulty in implementing this algorithm
is that in MAB-LC, the users arrive randomly in each iteration. Consequently, one has to wait for the required users to
arrive to collect the necessary data. The question now is, how long does the algorithm wait to collect all the necessary data?
By mapping this problem to the popular Coupon Collector Problem, it can be show that the the sample complexity of the
algorithm increases atmost by log factors.

D.1 Proof of Lemma 3

Proof of Lemma 3. Suppose the reward matrix P has the SVD decomposition UΣVT. We are looking at a sub-matrix
of P denoted by Psub ∈ RN′×M′ which can be represented as UsubΣVT

sub where Usub,Vsub are sub-matrices of U,V
respectively and are not necessarily orthogonal. Here, the rows in Psub corresponds to some cluster of users C(a) for a ∈ C
and the columns in Psub corresponds to the trimmed set of arms in [M]. Suppose the rows of the sub-matrix Psub correspond
to the users in C′ ≤ C clusters. Note that Usub can be further represented as U

(1)
subU

(2)
sub where U

(1)
sub ∈ RN′×C′ is a binary

matrix with orthonormal columns and 1-sparse rows (the non-zero index with value 1/
√

cluster size in the row indicates the
cluster of the user). U

(2)
sub ∈ RC′×C′ indicate the distinct rows of Usub corresponding to each of the C’ clusters (multiplied

by
√

cluster size).

Hence we can write (provided Vsub is invertible)

Psub = U
(1)
subU

(2)
subΣ(VT

subVsub)
1/2(VT

subVsub)
−1/2VT

sub = U
(1)
subÛΣ̂V̂T(VT

subVsub)
−1/2VT

sub

where ÛΣ̂V̂T is the SVD of the matrix U
(2)
subΣ(VT

subVsub)
1/2. Since Û is orthogonal, U

(1)
subÛ is orthogonal as well. Simi-

larly, V̂T(VT
subVsub)

−1/2VT
sub is orthogonal as well whereas Σ̂ is diagonal. Hence U

(1)
subÛΣ̂V̂T(VT

subVsub)
−1/2VT

sub

indeed corresponds to the SVD of Psub and we only need to argue about the incoherence of U
(1)
subÛ and
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Algorithm 5 LOW RANK MATRIX ESTIMATE (Adapted with slight modifications from Jain and Pal [2022])

Require: users U ⊆ [N], arms V ⊆ [M], rank r, incoherence µ of reward matrix PU,V , total rounds T, noise variance σ2,
desired error in estimate ζ.

1: Set d2 = min(|U| , |V|), sampling probability p = Cµ2d−1
2 log3 d2, variance reduction factor b =

⌈(
cσr
√
µ

ζ log d2

)2⌉
,

number of repetitions of algorithm f = O(logMNT), regularization parameter λ = Cλσ
√
d2p for suitable constants

c, C,Cλ > 0.
2: for k = 0, 1, 2, . . . , f do
3: Z← DATACOLLECTIONSUBROUTINE(U ,V, p, b)
4: Without loss of generality, assume |U| ≤ |V| (if |U| ≥ |V|, we simply swap rows and columns). Randomly partition

the columns into k = d|V|/|U|e sets. Precisely, for each i ∈ V , independently set δi to be a value in the set {1, 2 . . . k}
uniformly at random. Partition indices in V into V(1),V(2), . . . ,V(k) where V(q) = {i ∈ V | δi = q} for each q ∈ [k].
Set Ω(q) ← Ω ∩ (U × V(q)) for all q ∈ [k].

5: for q ∈ [k] do
6: Solve convex program

min
Q(q)∈R|U|×|V(q)|

1

2

∑
(i,j)∈Ω(q)

(
Q

(q)
iπ(j) − Zij

)2

+ λ‖Q(q)‖?, (10)

where ‖Q(q)‖? denotes nuclear norm of matrix Q(q) and π(j) is index of j in set V(q).
7: end for
8: Compute matrix P̃(k) ∈ RN×M such that P̃

(k)

U,V(q) = Q(q) for all q ∈ [k] and for every index (i, j) 6∈ U ×V , P̃
(k)
ij = 0.

#We combine the estimates of each of the smaller matrices to form an estimate of the larger matrix i.e. without
partitioning the columns. Moreover, {P̃(k)

U,V}
f
k=1 correspond to f independent estimates of PU,V .

9: end for
10: return entry-wise median of {P̂(1), P̂(2), . . . , P̂(f)}.

Algorithm 6 DATACOLLECTIONSUBROUTINE

Require: users U ⊆ [N], arms V ⊆ [M], sampling probability p, variance reduction factor b.
1: For each tuple (u, v) ∈ U × V , independently set δuv = 1 with probability p and δuv = 0 with probability 1− p. Let

Ω ⊆ U × V to be the set of indices with δuv = 1.
2: for ` = 1, 2, . . . , b do
3: For all (i, j) ∈ Ω, set Maskij = 0.
4: while there exists (i, j) ∈ Ω such that Maskij = 0 do
5: WAIT UNTIL next round t such that some u(t) ∈ U is sampled.
6: For user u(t) ∈ U , pull arm ρ(t) in {j ∈ V | (u(t), j) ∈ Ω,Masku(t)j = 0} and set Masku(t)ρ(t) = 1. If not

possible then pull any arm ρ(t) in V such that (u(t), ρ(t)) 6∈ Ω. Observe R(t).
7: end while
8: end for
9: Initialize a matrix Z of size |U| × |V| to 0’s.

10: For each tuple (i, j) ∈ Ω, set Zij to be average of rewards collected for that entry.
11: return Z

(V̂T(VT
subVsub)

−1/2VT
sub)

T. Notice that maxi ‖(U(1)
subÛ)Tei‖2 ≤ ‖(U(1)

sub)
Tei‖2 ≤ 1/

√
Jmin where Jmin is the mini-

mum cluster size. Since τ = Jmax

Jmin
and CJmax ≥ N′, we must have Jmin ≥ N′

Cτ . Hence maxi ‖(U(1)
sub)

Tei‖2 ≤
√

Cτ
N′ .

Similarly, we have

max
i
‖V̂(VT

subVsub)
−1/2VT

subei‖ ≤ max
i
‖(VT

subVsub)
−1/2VT

subei‖

≤ ‖Vsub‖2,∞√
λmin(VT

subVsub)
≤

||V||2,∞√
λmin(VT

subVsub)
≤
√

µC

αM′

where the last line follows from the fact that minx∈RC xTVT
subVsubx = minx∈RC

∑
i∈S xTViV

T
i x where S, |S| = M′ is

the set of rows in V represented in Vsub. Hence we can partition the set S into |S|/(γC) disjoint sets, each of size γC; from
Assumption 1, we get that the minimum over each of those sets is αγC/M and therefore, the conclusion follows.
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Algorithm 7 UPPER CONFIDENCE BOUND (UCB) Bubeck et al. [2012]

Require: user u ∈ [N], set of arms V ⊆ [M], error ζ, noise σ2, total rounds T.
1: WAIT UNTIL round t when user u(t) is sampled.
2: Choose arm jt ∈ V according to jt = argmaxj∈VUCBj(s− 1,T−3) where s− 1 is the number of rounds ran in this

instantiation of the UCB algorithm so far and (suppose tj(s− 1) is the number of times arm j ∈ V has been pulled by u
in the previous s−1 rounds and µ̂j(s−1) is the empirical mean of the arm j due to the previous tj(s−1) observations)

UCBj(s− 1,T−3) =

{
∞ if arm j has not been played before

µ̂j(s− 1) + σ
√

6 log T
tj(s−1)

D.2 Proof of Lemma 2

Proof of Lemma 2. Suppose Psub has dimensions m′ × n′. We have that λ2
1 = supx∈Rn|||x||2=1 xTPTPx and (λ′1)2 =

supx∈Rn′ |||x||2=1 xTPT
subPsubx. Similarly, we can write λ′1 = supx∈Rn′ |||x||2=1 xT

∑
i∈S(PT

i|S′Pi|S′)x where Pi|S′ is the
ith row of the matrix P restricted to the column indices in S ′. Since xT(bbT)x > 0 for any vector x, we have

Jmaxλ
2
max ≥ Jmax sup

x∈Rn|||x||2=1

xT
∑
i∈[C]

(XT
i Xi)x

(a)

≥ sup
x∈Rn|||x||2=1

xT
∑
i∈[n]

(PT
i Pi)x

≥ sup
x∈Rn|||x||2=1

xT
∑
i∈S

(PT
i Pi)x ≥ sup

x∈Rn|||x||2=1,x|[n]\S′=0

xT
∑
i∈S

(PT
i Pi)x ≥ sup

x∈Rn′ |||x||2=1

xT
∑
i∈S

(PT
i|S′Pi|S′)x

implying that
√
Jmaxλmax ≥ λ′1. The inequality (a) follows from the fact that JmaxXT

i Xi ≥
∑
u∈[n]|u∈C(i) PT

i Pi. In order
to prove the inequality on λ′r, we need to do some more work. Let us denote the nullspace of the vectors {Pi}i∈[m] byK and
the subspace orthogonal to K by Kc. Let us denote the SVD of X = UΣVT where U ∈ RC×C,VT ∈ RC×M. Consider the
matrix P restricted to the rows in the set S denoted by PS . Notice that PT

SPS = VΣUTDUΣVT where D is a diagonal
matrix whose ith entry corresponds to the number of users in the set S belonging to the iT cluster. If the set S is a union
of clusters, then the minimum diagonal entry in D must be Jmin. Let us denote the nullspace of the matrix PS by K. We
can write the minimum non-zero eigenvalue of PT

SPS as minx∈Kc|||x||2=1 xTVΣUTDUΣVTx. Let us write the vector
z = ΣVTx; z must belong to the sub-space T spanned by the rows of U corresponding to the non-zero diagonal indices of
D as otherwise x will have non-zero projection on the null-space of PS . Note that the rows of U are orthonormal as well
(since U is a square matrix i.e. UT = U−1). Hence, minz∈T zTUTDUz = Jmin ||z||22 ≥ Jminλ

2
min. Next, we have that

inf
x∈Kc|||x||2=1

xT
∑
i∈S

(PT
i Pi)x

(b)

≤ inf
x∈Kc|||x||2=1,x|[n]\S′=0

xT
∑
i∈S

(PT
i Pi)x ≤ inf

x∈(K′)c|||x||2=1
xT
∑
i∈S

(PT
i|S′Pi|S′)x.

where K′ is the null-space of the matrix P restricted to the columns in S ′. Note that the step (b) follows as long as the there
exists a vector with non-zero entries only on S ′ in the row space which implies that the sub-matrix is non-zero.

Therefore λ′|C|′ ≥
√
Jminλmin. Using the fact that τ = Jmax/Jmin, the lemma is proved.

E Proofs of Theorems 1 and 2

E.1 Proof Overview

For any phase indexed by `, we are going to prove that conditioned on the events E(`), the event E(`+1) is also going to be true
with high probability with proper choice of ∆`+1, ε`+1. First, inspired by low rank matrix completion techniques, conditioned
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on E(`) and by using Lemmas 2, 3 along with the fact that each set of users inM(`) is nice, we can show with Lemma 1 that
in phase `, by using m` = O(V/∆2

`+1) (where V = Õ(σ2µ3(N + M))) rounds, E(`)
2 is true with high probability (see Alg.

5 in Appendix D). Next, we can show the following series of lemmas (let B(`) =
⋃
i∈[a`]||N (`,i)|≥γCM

(`,i) denote the set

of users having more than γC active arms) regarding the sets T (`)
u of good arms obtained from the estimates of the relevant

reward sub-matrices (Step 6 in Alg. 5):

Lemma 8. Conditioned on E(`), E(`)
2 , for every u ∈ B(`), πu(1) ∈ T (`)

u and max
s,s′∈T (`)

u
|Pus −Pus′ | ≤ 4∆`+1.

Lemma 8 states that for every relevant user, the best arm always belongs to the set of good arms and characterizes how good
the remaining arms are.

Lemma 9. Fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Conditioned on the events E(`), E(`)
2 , nodes inM(`,i) corresponding

to the same cluster form a clique. Also, users in each connected component of the graph G(`,i) form a nice subset.

Recall that we draw a graph G(`,i) with nodes corresponding to users inM(`,i) and edges drawn according to eq. (6). Lemma
9 says that users in same cluster always form a clique; however, this does not rule out inter-cluster edges. Nevertheless, if
two users have an edge, then the next lemma shows that good arms for one are good for the other:

Lemma 10. Fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Consider two users u, v ∈M(`,i) having an edge in the graph G(`,i).

Conditioned on the events E(`), E(`)
2 , we must have

max
x∈T (`)

u ,y∈T (`)
v

|Pux −Puy| ≤ 16∆`+1

and max
x∈T (`)

u ,y∈T (`)
v

|Pvx −Pvy| ≤ 16∆`+1

We can extend Lemma 10 to the case when two users have a path joining them in the constructed graph:

Lemma 11. Fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Consider two users u, v ∈M(`,i) having a path in the graph G(`,i).

Conditioned on the events E(`), E(`)
2 , we must have

max
x∈T (`)

u ,y∈T (`)
v

|Pux −Puy| ≤ 32C∆`+1

and max
x∈T (`)

u ,y∈T (`)
v

|Pvx −Pvy| ≤ 32C∆`+1.

Thus we can create the new sets of nice users as the connected components of the graph and the corresponding set of arms
that are good for all is constructed by the union of the set of good arms (eq. 7). If the number of active arms for a set of users
become less than γC, then we start a UCB algorithm for each of them until the end of the number of rounds. Therefore,
conditioned on the events E(`), E(`)

2 , the event E(`) is also going to be true. Hence, conditioned on the event E(`), we can
bound the regret in each round of the `th phase by ε`; roughly speaking, the number of rounds in the `th phase is 1/ε2` and
therefore the regret is 1/ε`. By setting ∆` as in Step 3 of Alg. 1 (and ε` = ∆`/64C), we can bound the regret of LATTICE
and achieve the guarantee in Theorems 1 and 2.

E.2 Detailed Proof

LATTICE is run in phases indexed by ` = 1, 2, . . . . In the beginning of each phase `, we have the following set of desirable
properties:

1. Maintain a list of groups of users M(`) ≡ {M(`,1),M(`,2), . . . ,M(`,a`)} and arms N (`) ≡
{N (`,1),N (`,2), . . . ,N (`,a`)} where a` ≤ C such that ∪i∈[a`]M(`,i) = [N] and ∪i∈[a`]N (`,i) ⊆ [M].

2. Moreover, for all i ∈ [a`], we will haveM(`,i) =
⋃
j∈G(`,i) C(j) where the sets {G(`,1),G(`,2), . . . ,G(`,a`)} form a

partition of the set [C]. This implies that every set of users in the familyM(`) is nice and the sets of users inM(`)

form a partition of [N].

3. For each group M(`,i) in the list M(`), we will have an active set of arms denoted by N (`,i) such that N (`,i) ⊇
{argmaxjPuj | u ∈ M(`,i)} i.e. for each user u in the set M(`,i), their best arm must belong to the set N (`,i).
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Furthermore, for all i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC, the set N (`,i) must also satisfy the following:∣∣∣∣ max
j∈N (`,i)

Puj − min
j∈N (`,i)

Puj

∣∣∣∣ ≤ ε` for all u ∈M(`,i) (11)

where ε` is a fixed exponentially decreasing sequence in ` (in particular, we choose ε1 = ||P||∞ and ε` =

C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
for ` > 1 for some constant C ′ > 0).

4. Let B(`) ⊆ [N] be a subset of users satisfying B(`) =
⋃
i∈[a`]||N (`,i)|≥γCM

(`,i) i.e. B(`) corresponds to the set of

users which belong to a groupM(`,i) at the beginning of the `th phase having more than C active arms. We will also
maintain that B(i) ⊇ B(j) for any phase i ≤ j i.e. the set of users with more than C active arms goes on shrinking.

Since LATTICE is random, we will say that our algorithm is ε`−good at the beginning of the `th phase if the algorithm can
maintain a list of users and arms satisfying the above properties at the start of phase `. Let us also define the event E(`) to be
true if properties (1 − 4) are satisfied at the beginning of phase ` by the phased elimination algorithm. We are going to
prove inductively that the phased elimination algorithm is ε`-good for all phases indexed by ` for our choice of {ε`} with
high probability as long as the number of phases are small.

Base Case: For ` = 1 (the first phase), we initializeM(1,1) = [N], N (1,1) = [M] and therefore, we have∣∣∣∣ max
j∈N (`,1)

Puj − min
j∈N (`,1)

Puj

∣∣∣∣ ≤ ||P||∞ for all u ∈ [M].

Hence, we also have B(1) = [N]. Moreover, the set of users [N] satisfies [N] = ∪j∈G(1,1)C(j) where G(1,1) = [C] and finally
for every user u ∈ [N], the best arm argmaxjPuj belongs to the entire set of arms. Thus for ` = 1, our initialization makes
the algorithm ||P||∞-good.

Inductive Argument: Suppose, at the beginning of the phase `, we condition on the event E(`) that Algorithm is
ε`−good. Next, our goal is to run Matrix completion in order to estimate each of the sub-matrices corresponding to
{(M(`,i),N (`,i))}i∈[C]. Fix the quantity ∆`+1 > 0. We can show the following lemma:

Lemma 12. Let us fix ∆`+1 > 0 and condition on the event E(`). Suppose Assumptions 1 and 2 are satisfied. In that case,
in phase `, by using

m` = O
(σ2C2(C

∨
µα−1)3 logM

∆2
`+1

(
N
∨

MC
)

log2(MNCδ−1)
))

rounds, we can compute an estimate P̃(`) ∈ RN×M such that with probability 1 − δ, we have for a nice subset of users
M(`,i) ∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 for all i ∈ [a`] satisfying

∣∣∣N (i,`)
∣∣∣ ≥ γC. (12)

Proof of Lemma 12. We are going to use Lemma 1 in order to compute an estimate P̃
(`)

M(`,i),N (`,i) of the sub-matrix

PM(`,i),N (`,i) satisfying
∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1. From Lemma 1, we know that by using m` =

O
(
sN log2(MNδ−1)(

∣∣N (`,i)
∣∣ p +

√∣∣N (`,i)
∣∣ p logNδ−1)

)
rounds (see Lemma 1) restricted to users inM(`,i) such that

with probability at least 1− δ,∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ O

( σr√
sd2

√
µ̃3 log d2

p

)
.

where d2 = min(|M(`,i)|, |N (`,i)|), µ̃ is the incoherence factor of the matrix PM(`,i),N (`,i) and r is the rank of the
matrix bounded from above by the number of clusters. In order for the right hand side to be less than ∆`+1, we can set
sp = O

(
σ2r2µ̃3 log d2

∆2
`+1d2

)
. Since the event E(`) is true, we must have that

∣∣M(`,i)
∣∣ ≥ N/(κC) (κ = O(1) is the ratio of the

sizes of maximum cluster and minimum cluster); hence d2 ≥ min
(

N
κC ,
∣∣N (`,i)

∣∣ ). Therefore, we must have that

m` = O
(σ2C2µ̃3 logM

∆2
`+1

max
(
N,MC

)
log2(MNCδ−1)

))
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where we take a union bound over all sets comprising the partition of the users [N] (at most C of them). Finally, from Lemma
3, we know that µ̃ can be bounded from above by max(C, 2µ/α) which we can use to say that

m` = O
(σ2C2(C

∨
µα−1)3 logM

∆2
`+1

(
N
∨

MC
)

log2(MNCδ−1)
))

to complete the proof of the lemma.

In the following part of the analysis, we will repeatedly condition on the events E(`), E(`)
2 which are described/reiterated

below:

1. The event E(`) is true when the properties (1− 4) described at the beginning of Section E are satisfied by the algorithm.

2. We will denote the event described in Lemma 12 equation 21 to be E(`)
2 . In other words, if E(`)

2 is true, then the
algorithm has successfully computed an estimate P̃(`) ∈ RN×M such that∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 for all i ∈ [a`] satisfying

∣∣∣N (i,`)
∣∣∣ ≥ γC.

Fix any i ∈ [a`]. For each user u ∈ M(`,i), let us denote a set of good arms for the user u by T (`)
u ≡ {j ∈ N (`,i) |

maxj′∈N (`,i) P̃
(`)
uj′ − P̃

(`)
uj ≤ 2∆`+1}. If we condition on the event E(`)

2 , then we can show the following statements to be
true:

Lemma (Restatement of Lemma 8). Condition on the events E(`), E(`)
2 being true. In that case, for every user u ∈ B(`), the

arm with the highest reward Puπu(1) must belong to the set T (`)
u . Moreover, max

s,s′∈T (`)
u
|Pus −Pus′ | ≤ 4∆`+1.

Proof. Let us fix a user u ∈ M(`,i) with active set of arms N (`,i). Recall that πu(1) = argmaxjPuj and let us denote

t1 = argmaxj∈N (`,i)P̃
(`)
uj for brevity of notation. Now, we will have

P̃ut1 − P̃
(`)
uπu(1) = P̃

(`)
ut1 −Put1 + Put1 −Puπu(1) + Puπu(1) − P̃

(`)
uπu(1) ≤ 2∆`+1

which implies that πu(1) ∈ T (`)
u . Here we used the fact that P̃

(`)
ut1 − Put1 ≤ ∆`+1, Puπu(1) − P̃

(`)
uπu(1) ≤ ∆`+1 and

Put1 −Puπu(1) ≤ 0.

Next, notice that for any s, s′ ∈ T (`)
u

Pus −Pus′ = Pus − P̃(`)
us + P̃(`)

us − P̃
(`)
ut1 + P̃

(`)
ut1 − P̃

(`)
us′ + P̃

(`)
us′ −Pus′ ≤ 4∆`+1.

Again, fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Consider a graph G(`,i) whose nodes are given by the users inM(`,i). Now,

we draw an edge between two users u, v ∈M(`,i) if T (`)
u ∩ T (`)

v 6= Φ and
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 for all arms x ∈ N (`,i).

Lemma (Restatement of Lemma 9). Fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Conditioned on the events E(`), E(`)
2 , nodes

inM(`,i) corresponding to the same cluster form a clique. Also, users in each connected component of the graph G(`,i)

form a nice subset.

Proof. For any two users u, v ∈M(`,i) belonging to the same cluster, consider an arm x ∈ N (`,i). We must have

P̃(`)
ux − P̃(`)

vx = P̃(`)
ux −Pux + Pux −Pvx + Pvx − P̃(`)

vx ≤ 2∆`+1.

In order to prove the next statement, consider two users u, v ∈M(`,i) that belongs to different clusters P,Q respectively.
Note that since the event E(`) is true,M(`,i) is a union of clusters comprisingP,Q. Furthermore, we have already established
that nodes in G(`,i) (users inM(`,i)) restricted to the same cluster form a clique. There every connected component of the
graph G(`,i) can be represented as a union of a subset of clusters.
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Lemma (Restatement of Lemma 10). Fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Consider two users u, v ∈M(`,i) having

an edge in the graph G(`,i). Conditioned on the events E(`), E(`)
2 , we must have

max
x∈T (`)

u ,y∈T (`)
v

|Pux −Puy| ≤ 16∆`+1 and max
x∈T (`)

u ,y∈T (`)
v

|Pvx −Pvy| ≤ 16∆`+1

Proof. From the construction of G(`,i), we know that users u, v ∈M(`,i) have an edge if
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 (implying

that |Pux −Pvx| ≤ 4∆`+1) for all x ∈ N (`,i) and Tu ∩ Tv 6= Φ. Suppose z ∈ Tu ∩ Tv. Now, for any pair of arms
x ∈ T (`)

u , y ∈ T (`)
v ; in that case, we have

Pux −Puy = Pux −Puz + Puz −Pvz + Pvz −Pvy + Pvy −Puy ≤ 16∆`+1

where we used Lemma 8.

Lemma (Restatement of Lemma 11). Fix any i ∈ [a`] such that
∣∣N (`,i)

∣∣ ≥ γC. Consider two users u, v ∈M(`,i) having a

path in the graph G(`,i). Conditioned on the events E(`), E(`)
2 , we must have

max
x∈T (`)

u ,y∈T (`)
v

|Pux −Puy| ≤ 32C∆`+1 and max
x∈T (`)

u ,y∈T (`)
v

|Pvx −Pvy| ≤ 32C∆`+1.

Proof. Consider 3 users u, v, w ∈M(`,i) such that u, v have an edge and similarly, v, w have an edge. From Lemma 8, we
have that

T (`)
u ∩ T (`)

v 6= Φ and |Pux −Pvx| ≤ 4∆`+1 for all x ∈ N (`,i)

T (`)
v ∩ T (`)

w 6= Φ and |Pvx −Pwx| ≤ 4∆`+1 for all x ∈ N (`,i)

Let z ∈ T (`)
u ∩ T (`)

v and z′ ∈ T (`)
v ∩ T (`)

w . Therefore, for any x ∈ T (`)
u , y ∈ T (`)

z , we must have

Pux −Puy = Pux −Puz + Puz −Pvz + Pvz −Pvz′ + Pvz′ −Pwz′ + Pwz′ −Pwy + Pwy −Pvy + Pvy −Puy

≤ 32∆`+1

Note that the shortest path between the two users u, v ∈M(`,i) must be a sequence of at most 2C nodes. Now, applying the
above analysis at most 2C times, we get statement of the Lemma. In other words, consider a path connecting two users u, v
as denoted by u = a1, a2, . . . , v = aL. Let us denote zi = T (`)

ai ∩ T
(`)
ai+1 (definition of edge). For x ∈ T (`)

u , y ∈ T (`)
v , we

will have

Pux −Puy = Pux −Puz1 +

L−1∑
i=1

(
Paizi −Pai+1zi + Pai+1zi −Pai+1zi+1

)
+ PvzL−1

−Pvz′ +

j=2∑
j=L

(
Pajz′ −Paj−1z′

)
≤ 16L∆`+1.

Since the path connecting the two users can be of length at most 2C− 1 (conditioned on the events E(`), E(`)
2 ), the proof of

our lemma is complete.

For the subsequent iteration indexed by ` + 1, we compute the updated groups of usersM(`+1) in the following way:
each set corresponds to the connected components of the graphs {G(`,i)} for those indices i ∈ [a`] where

∣∣N (`,i)
∣∣ ≥ γC

plus the groups of users M(`,i) where
∣∣N (`,i)

∣∣ ≤ C. More precisely, let T ⊆ [a`] be the subset of indices for which∣∣N (`,i)
∣∣ ≥ γC; {G(`,i,j)} be the connected components of the graph G(`,i) for i ∈ T . In that case,M(`+1) = {G(`,i,j) | i ∈

T ,G(`,i,j) is a connected component of graph G(`,i)}+ {M(`,i) | i ∈ [a`] \ T }. Similarly, we update the family of sets of
active arms as follows: for users corresponding to each connected componentM(`+1,s) = G(`,i,j) of some graph, we define
the active set of arms N (`+1,s) to be ∪u∈G(`,i,j)T (`)

u and for each group {M(`,i)}i∈[a`]\T , we keep the corresponding set of
active arms {N (`,i)}i∈[a`]\T same. With a`+1 =

∣∣M(`+1)
∣∣, we will also update B(`+1) =

⋃
i∈[a`+1]||N (`+1,i)|≥γCM

(`+1,i)

to be the set of users with more than C active arms.
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Lemma 13. Condition on the events E(`) being true. In that case, with probability 1 − T−4, with the groups of users
M(`+1) and their respective group of arms given by N (`+1) being updated as described above and ∆`+1 = ε`/64C, the
event E(`+1) is also going to be true with ε`+1 ≤ ε`/2.

Proof. Conditioned on the event E(`) being true, the event E(`)
2 holds true with probability with 1− T−4 (by substituting

δ = T−4 in Lemma 12). Now, conditioned on the event E(`), E(`)
2 being true, the properties (1−4) hold true at the beginning

of the (` + 1)th phase as well with our construction ofM(`+1),N (`+1). For the (` + 1)th phase from Lemma 11, we
know that for any pair of users u, v in the same clusterM(`+1,i) in the updated set of clustersM(`+1), we must have
max

x∈T (`)
u ,y∈T (`)

v
|Pux −Pvy| ≤ 32C∆`+1. From Lemma 8 we know that argmaxjPuj ∈ T (`)

u ⊆ N (`,i) where N (`,i) is

the active set of arms for users inM(`,i) in the updated setM. For ` > 1, we will set ∆`+1 = ε`/64C which would give us
that ε`+1 = ε`/2. Finally, also note that we maintain the set of users B(`+1) as stipulated in Property 4 for the beginning of
the (`+ 1)th phase.

Proof of Theorem 1. We condition on the events E(`), E(`)
2 being true for all `. The probability that there exists any ` such

that the events E(`), E(`)
2 is false is O(T−4) (by setting δ = T−4 in the proof of Lemma 12); hence the probability that

E(`), E(`)
2 is true for all ` is at least 1−O(T−3) (the total number of iterations can be at most T). Let us also denote the set of

rounds in phase ` by T` ⊆ [T] (therefore |T`| = m`). Let us compute the regret
∑
t∈T (`) Pu(t)πu(t)(1) −

∑
t∈T (`) Pu(t),ρ(t)

restricted to the rounds in T (`) conditioned on the events E(`), E(`)
2 being true for all `. We can bound the regret quantity

in the `th phase from above by the sum of two quantities: 1) the first quantity is the regret incurred by users in B(`) with
active arms more than C 2) the second quantity is the regret incurred by the UCB algorithm played separately for each
user u ∈ N \ [B(`)] with active arms less than γC. Let us denote the regret incurred by such an user u in the `th phase by
RegUCB(u, T (`)

u ) where T (`)
u is the number of rounds in the `th phase where user u pulled an arm.

The first quantity can be bounded from above by m`ε` while the second quantity can be bounded by using standard results
in the literature. Substituting from Lemma 12, we have that

E
( ∑
t∈T (`)

Pu(t)πu(t)(1) −
∑
t∈T (`)

Pu(t),ρ(t) |
⋂
`

E(`)
⋂
`

E(`)
2

)
= O

(ε`σ2C2(C
∨
µα−1)3 logM

∆2
`+1

(
N
∨

MC
)

log2(MNCδ−1)
))

+
∑

u∈[N]\[B(`)]

RegUCB(u, T (`)
u )

For simplicity, let us denote V = σ2C2(C
∨
µα−1)3

(
N
∨

MC
)

log3(ABCT). We can now bound the regret as follows

(after removing the conditioning on the events
⋂
` E(`)

⋂
` E

(`)
2 ):

E
( ∑
t∈[T]

Pu(t)πu(t)(1) −
∑
t∈[T]

Pu(t),ρ(t)

)
= E

(∑
`

( ∑
t∈T (`)

Pu(t)πu(t)(1) −
∑
t∈T (`)

Pu(t),ρ(t)

))
=
∑
`

O
(
ε`m` |

⋂
`

E(`)
⋂
`

E(`)
2

)
+O(T−3‖P‖∞) +

∑
`

∑
u∈N\[B(`)]

RegUCB(u, T (`)
u )

The last term of the regret can be bounded from above
∑
u∈[N] RegUCB(u,Tb) where Tb is the number of rounds user u pulled

an arm according to the UCB algorithm; hence,
∑
u∈[N] RegUCB(u,Tb) ≤

∑
u∈[N]

√
TbγC logT · σ ≤

√
γNCT logT · σ

by using the Cauchy Schwartz inequality. Moving on, we can decompose the first term regret as follows (we use ∆`+1 =
ε`/64C):

O
( ∑
`:ε`≤Φ

ε`m` | E(`), E(`)
2 is true for all `

)
+O

( ∑
`:ε`>Φ

ε`V∆−2
`+1 | E

(`), E(`)
2 is true for all `

)
= TΦ +O

( ∑
`:ε`>Φ

C2Vε−1
`

)

We choose ε` = C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
(so that the condition on σ > 0 in Lemma 1 is automatically satisfied for

all `) for some constant C ′ > 0, the maximum number of phases ` for which ε` > Φ can be bounded from above by
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J = O
(

log
(

1
Φ min

(
‖P‖∞,

σ
√
µ

log N

)))
. Moreover, the constraints on p, σ present in Lemma 1 can be satisfied with such a

choice of ε` for all `. Hence, with V = σ2C2(C
∨
µα−1)3

(
N
∨
MC
)

log3(ABCT), we have

Reg(T) ≤ O(T−3‖P‖∞) +O(TΦ) +O
(
JVC2Φ−1

)
+O(

√
NCT logT · σ)

= O(T−3‖P‖∞) +O(CJ
√
TV) +O(

√
NCT logT · σ)

where we substituted Φ =
√
VC2T−1 and hence J = O

(
log
(

1√
VC2T−1

min
(
‖P‖∞,

σ
√
µ

log N

)))
in the final step.

Proof of Theorem 2. For every cluster c ∈ [C], let us define the subset of arms Gc,` ≡ {j ∈ [M] | ε` ≤
∣∣Puj −Puπu(1)

∣∣ ≤
ε`−1 ∀ u ∈ C(c)} for all ` > 1 and Gc,1 ≡ {j ∈ [M] | ε1 ≤

∣∣Puj −Puπu(1)

∣∣ ∀ u ∈ C(c)}; Gc,` (Gc,1) corresponds to the
subset of arms having a sub-optimality gap that is between ε`−1 and ε` (greater than ε1) for all users belonging to the cluster
C(c). There is no ambiguity in the definition since all users in the same cluster C(c) have the same mean rewards over all
arms.

Let us also define Hc ≡
⋃
`>1

argminj∈Gc,`
∣∣Puj −Puπu(1)

∣∣ with the understanding that whenever Gc,` = Φ, there is no

argmin to be counted in the set. For brevity of notation, let Ψc,a , Puπu(1) −Pua be the sub-optimality gap in the reward
of arm a for any user u in cluster c, and T

(1)
c,a be the number of times arm a has been pulled by the users in cluster c during

the phases indexed by ` when the users in cluster c belonged to B(`); T(2)
u,a is the number of times arm a has been pulled by

the user u according to the UCB algorithm i.e. when users in cluster c belonged to [N] \ B(`).

Since the length of the phases increases exponentially with `, hence the total number of phases is Õ(1); hence the size ofHc
is at most Õ(1). Again, for all users u ∈ [N] who participated in the UCB algorithm, let us denote Ĥu to be the set of arms
(
∣∣∣Ĥu∣∣∣ ≤ C and Ĥu ⊇ πu(1); recall from Lemma 8 that the best arm πu(1) always belongs to the active set of arms) that

were used in the UCB algorithm; evidently, the regret incurred due to set Ĥu will be dominated by the set {πu(i)}Ci=1 which
corresponds to the best C arms for user u. We can decompose the regret by using the standard regret decomposition i.e.

Reg(T) = E

 ∑
c∈[C],a∈[M]

Ψc,aT
(1)
c,a

+
∑

u∈[N],a∈{πu(s)}γ|C|s=1

Ψu,aET(2)
u,a

≤ E

 ∑
c∈[C],a∈[M]

Ψc,aT
(1)
c,a

∣∣∣⋂
`

E(`)

+ Pr
(⋃

`

(E(`))c
)
E

 ∑
c∈[C],a∈[M]

Ψc,aT
(1)
c,a

∣∣∣⋃
`

(E(`))c


+

∑
u∈[N],a∈{πu(s)}γ|C|s=1

Ψu,aET(2)
u,a

We now show the following lemma:

Lemma 14. Fix any ` > 1 and cluster c ∈ [C].We must have E[
∑
a∈Gc,` T

(1)
c,a | ∪`(E(`))c] = C−1O

(
T−3

)
and

E[
∑
a∈Gc,` T

(1)
c,a | ∩`E(`)] = C−1O

(
C2V
ε2`−1

)
provided that Gc,` 6= Φ.

Proof. Fix cluster c ∈ [C]. From definition, we know that all arms a in Gc,` satisfy the following for all users u ∈ C(c):
ε` ≤ Ψc,a = |Pua − Puπu(1)| ≤ ε`−1 for ` > 1. In that case, with probability at least 1 − T−3, the event E(j) is true
for all j implying that the algorithm is ε`-good (see Lemma 13). Hence, we must have Pr(∪`(E(`))c)E[

∑
a∈Gc,` T

(1)
c,a |

∪`(E(`))c] = C−1O
(
T−2

)
. Therefore, conditioning on all E(j) being true, by definition using property (3), at the beginning

of the `th phase, if u ∈ C(c) ∩M(`,i), it must be the case that a 6∈ N (`,i) for all a ∈ Gc,`. Hence, we must have (by plugging

in the sample complexity in Lemma 12 with with V = σ2C2(C
∨
µα−1)3

(
N
∨

MC
)

log3(ABCT) and ∆`+1 = ε`/40C)
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E[
∑
a∈Gc,`

T(1)
c,a | ∩E(`)] ≤

∑̀
j=1

mj

C
=

1

C
O
( `−1∑
j=1

V

∆2
j+1

)
= C−1O

( `−1∑
j=1

C2V

ε2j

)
= C−1O

(C2V

ε2`−1

)

where we substituted the fact that ε` = C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
for some constant C′ > 0.

Note that we will have the following set of equations; we use from definition that for every arm a ∈ Gc,`, there exists a
representative arm â of Gc,` inHc such that Ψc,â ≤ min(ε`−1, 2Ψc,a) and ε`−1 ≤ 2Ψc,â.

Pr(∪`(E(`))c)
( ∑
c∈[C]

∑
`

E[
∑
a∈Gc,`

Ψc,aT
(1)
c,a | ∪`(E(`))c]

)
≤ Pr(∪`(E(`))c)

( ∑
c∈[C]

∑
`

( max
a∈Gc,`

Ψc,a)
∑
a∈Gc,`

E[T(1)
c,a | ∪`(E(`))c]

)
≤

∑
c∈[C],a∈Hc

Ψc,aC
−1O

(
T−2

)
.

and similarly, we will also have∑
c∈[C]

∑
`

E[
∑
a∈Gc,`

Ψc,aT
(1)
c,a | ∩`E(`)] ≤

∑
c∈[C]

∑
`

( max
a∈Gc,`

Ψc,a)
∑
a∈Gc,`

E[T(1)
c,a | ∩`E(`)]

=
∑
c∈[C]

( max
a∈Gc,1

Ψc,a)
∑
a∈Gc,1

E[T(1)
c,a | ∩`E(`)] +

∑
c∈[C]

∑
`>1

E[
∑
a∈Gc,`

Ψc,aT
(1)
c,a | ∩`E(`)]

= ||P||∞ ·
V

ε21
1[Gc,1 6= Φ] +

∑
c∈[C]

∑
`>1:Gc,` 6=Φ

C−1O
(C2V

ε`

)
≤

∑
c∈[C],a∈Hc

C−1O
(C2V

Ψc,a

)
.

Similarly, from well known analysis of UCB algorithm, we know that (recall that {πu(s)}|γC|s=1 are the top γC arms for the
user u). ∑

u∈[N],a∈{πu(s)}γ|C|s=1

Ψu,aET(2)
u,a ≤ N−1O

( ∑
u∈[N],a∈{πu(s)}|γC|s=1

(σ logT

Ψu,a
+ 3Ψu,a

))

Therefore, we can bound the regret from above as

Reg(T) = ||P||∞·
V

ε21
1[Gc,1 6= Φ]+C−1O

( ∑
c∈[C],a∈Hc

Ψc,aT
−2+

C2V

Ψc,a

)
+N−1O

( ∑
u∈[N],a∈{πu(s)}γ|C|s=1

(σ logT

Ψu,a
+3Ψu,a

))
.

Loosely speaking, this bound translates as Reg(T) = Õ((M + N)/Ψ) where Ψ is the minimum sub-optimality gap; Õ(·)
hides factors in C and other logarithmic terms.

F Proofs of Theorems 3, 4

F.1 Proofs of Theorem 3, Corollary 1

We first derive lower bounds for the following two settings: (a) known cluster assignment, and (b) known cluster rewards.
The lower bound for MAB-LC follows by taking the maximum of these two bounds.

Known Cluster Assignments. Suppose we know the mapping between users and clusters. In this setting, it is easy to see
that the optimal strategy is to treat users within a cluster as a single super-user, and reduce the problem to that of solving C
different multi-armed bandit problems (each corresponding to the C clusters). One could rely on the regret lower bound of
stochastic MAB [Lattimore and Szepesvári, 2020, Cesa-Bianchi and Lugosi, 2006, Bubeck and Cesa-Bianchi, 2012] and
provide the following informal proof for the regret lower-bound for our problem. We have C MAB instances, where the cth

instance has M arms and occurs Tc times (note that Tc is a random variable). Since the regret of the cth instance is lower
bounded by 0.05E

[
min(

√
MTc,Tc)

]
, the overall regret is lower bounded 0.05

∑
c∈[C] E

[
min(

√
MTc,Tc)

]
.
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We now make the above argument more formal. At a high level, the proof involves designing problem instances that are
hard to separate. We then argue that any algorithm should suffer large regret on at least one of the problems.

• Partition users into C clusters. Let Nc be the set of users in cluster c.

• Choose indices (a1, . . . , aC) such that ai ∈ [M] for all i. Note that there are MC possible such choices. We are going to
define MC problem instances each corresponding to a choice of (a1, . . . , aC). In these problems, each ai corresponds
to the optimal arm in cluster i. Define the mean rewards of the jth arm in ith cluster as

Xij =

{
1−ε

2 , if j 6= ai,
1+ε

2 , otherwise.

Let’s call this problem instance Proba1,...aC .

Define problem instance Prob0,c,a1,...aC as follows. It is exactly equal to Proba1,...aC except for one difference. The rewards
of all the arms in cluster c are set to 1−ε

2 .

In the proof, we first consider deterministic algorithms. Using Fubini’s theorem, these results can be easily extended to
randomized algorithms [Bubeck and Cesa-Bianchi, 2012]. Next, we assume Tc, the number of appearances of cluster c, is a
fixed quantity. The final results can simply be obtained by taking expectation over {Tc}c∈[C]. Let T (c, a) be the number of
times arm a has been pulled during the appearances of cluster c. Then the regret of the algorithm under Proba1,...aC can be
written as

Rega1,...aC(T) =
∑
c∈[C]

∑
a∈[M]\{ac}

εEa1...aC [T (c, a)] =
∑
c∈[C]

ε (Tc − Ea1,...aC [T (c, ac)]) .

Let Jc be a random variable that is drawn according to the discrete distribution
(
T (c,0)
Tc

, . . . T (c,M−1)
Tc

)
. Then

Rega1,...aC(T) =
∑
c∈[C]

εTc (1− Pa1,...aC [Jc = ac]) .

So, we have

1

MC

∑
a1,...aC

Rega1,...aC(T) =
1

MC

∑
a1,...aC

∑
c∈[C]

εTc (1− Pa1,...aC [Jc = ac]) . (13)

Next, from Pinsker’s inequality, we have

Pa1,...aC [Jc = ac] ≤ P0,c,a1,...aC [Jc = ac] +

√
1

2
KL(P0,c,a1,...aC ,Pa1,...aC)

(a)

≤ P0,c,a1,...aC [Jc = ac] +

√
1

2
KL

(
1− ε

2
,

1 + ε

2

)
E0,c,a1,...aC [T (c, ac)].

Inequality (a) simply follows from data processing inequality and the definition of KL divergence (also see Equation 3.20 of
Bubeck and Cesa-Bianchi [2012]). Next, we take the average of the LHS and the average of the RHS in the above equation
over all possible values of ac. This gives us

1

M

∑
a′∈[M]

Pa1,...,ac=a′,...aC [Jc = a′] ≤ 1

M

∑
a′∈[M]

P0,c,a1,...ac=a′,...aC [Jc = a′]

+
1

M

∑
a′∈[M]

√
1

2
KL

(
1− ε

2
,

1 + ε

2

)
E0,c,a1,...ac=a′,...aC [T (c, a′)]

Now observe that Prob0,c,a1,...ac,...aC doesn’t depend on ac (that is, Prob0,c,a1,...ac,...aC are the same problem instances for
all values of ac). So ∑

a′∈[M]

P0,c,a1,...ac=a′,...aC [Jc = a′] = 1.
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The second term in the RHS of the previous inequality can be bounded using Cauchy–Schwarz inequality

1

M

∑
a′∈[M]

√
1

2
E0,c,a1,...ac=a′,...aC [T (c, a′)] ≤

√√√√ 1

2M

∑
a′∈[M]

E0,c,a1,...ac=a′,...aC [T (c, a′)]

=

√
1

2M
Tc

Substituting this in the previous inequality gives us

1

M

∑
a′∈[M]

Pa1,...,ac=a′,...aC [Jc = a′] ≤ 1

M
+

√
Tc
2M

KL

(
1− ε

2
,

1 + ε

2

)

Substituting the above inequality in Equation (13), we get

max
a1,...aC

Rega1,...aC(T) ≥ 1

MC

∑
a1,...aC

Rega1,...aC(T) ≥
∑
c∈[C]

εTc

(
1− 1

M
−
√
εTc
2M

log
1 + ε

1− ε

)
.

Finally, taking expectation over Tc, and choosing best possible ε, we get the following lower bound on the worst-case regret

max
a1,...aC

Rega1,...aC(T) ≥ max
ε

∑
c∈[C]

εE

[
Tc

(
1− 1

M
−
√
εTc
2M

log
1 + ε

1− ε

)]
(a)

≥ max
ε

∑
c∈[C]

εE

[
Tc

(
1− 1

M
−
√
ε2Tc
M

)]
,

where (a) follows from the the fact that log 1+ε
1−ε ≤ 2ε. Rewriting the RHS in the above equation, we get

max
a1,...aC

Rega1,...aC(T) ≥ max
ε

∑
c∈[C]

ε

(
1− 1

M

)
E[Tc]−

ε2

M1/2
E[T3/2

c ]

= max
ε
ε

(
1− 1

M

)
T− ε2

∑
c∈[C] E[T

3/2
c ]

M1/2
.

We now focus on maximizing the RHS of the above equation. Note that the objective is quadratic in ε. So one can obtain an

exact expression for the optimal value of ε. If
(
M1/2 −M−1/2

)
< 2

∑
c∈[C] E[T3/2

c ]

T , then the RHS is given by

(
M1/2 −M−1/2

) T2

4
∑
c∈[C] E[T

3/2
c ]

.

On the other hand, if
(
M1/2 −M−1/2

)
> 2

∑
c∈[C] E[T3/2

c ]

T , the RHS is given by

(
1− 1

M

)
T−

∑
c∈[C] E[T

3/2
c ]

M1/2
.

For the special case where PN is uniform and the clusters have the same size, we have E[T
3/2
c ] = Θ(T3/2C−3/2).

Substituting this in the above bounds, we get

max
a1,...aC

Rega1,...aC(T) ≥

{
0.05
√
MCT, if T > 0.5MC

0.05T otherwise.
(14)
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Known Cluster Rewards. We now consider the setting where we know the reward distributions of arms in each cluster.
In this setting, it is easy to see that the optimal strategy is to solve a C-armed MAB problem for each user, where the C
arms correspond to the best arms in each of the C clusters. That is, with the knowledge of cluster rewards, we can reduce
the MAB-LC problem to that of solving N multi-armed bandit problems each with C arms. Here each MAB problem
corresponds to a user. For this problem, we already derived lower bounds above. In particular, in the known cluster
assignment setting, we derived lower bounds for solving C MAB instances each with M arms. So we could rely on the above
lower bounds to derive lower bounds for the known cluster reward setting (we just replace C with N and M with C in the
bounds). When PN is uniform and the clusters have the same size, we could rely on Equation (14) and obtain the following
minimax lower bounds

inf supReg(T) ≥

{
0.05
√
NCT, if T > 0.5NC

0.05T otherwise.
(15)

For the more general case of non-uniform PN and uneven cluster sizes, we obtain

inf supReg(T) ≥


(
C1/2 − C−1/2

)
T2

4
∑
b∈[N] E[T

3/2
b ]

, if
(
C1/2 − C−1/2

)
< 2

∑
b∈[N] E[T

3/2
b ]

T(
1− 1

C

)
T−

∑
b∈[N] E[T

3/2
b ]

C1/2 otherwise.
(16)

F.2 Proof of Theorem 4

Here is a high level idea of the proof. We find two bandit instances that are close enough to each other but the behaviour of
any uniformly efficient algorithm is totally different in the two instances.

Background. Similar to lower bounding techniques used in the MAB literature, our proof relies on data processing
inequality [Kaufmann, 2020]. Let µ1, µ2 be two stochastic K-armed bandit models. Let Ft be the σ-algebra generated by
the observations available until round t. Let’s suppose τ is the stopping time, and let Iτ be the information available until
round τ . Then for any event E ∈ Fτ , the data processing inequality tells us

KL(PIτµ1
,PIτµ2

) ≥ KL(Pµ1
(E),Pµ2

(E))

Moreover, by definition of KL divergence we have

KL(PIτµ1
,PIτµ2

)
(a)
= Eµ1

[Lτ (µ1, µ2)]
(b)
=

K∑
k=1

Eµ1
[T (k)]KL(µ1,a, µ2,a).

Lτ in the above equation is the log-likelihood ratio, T (k) is the number of pulls of arm k, and µ1,a is the distribution of
rewards of arm a in bandit model µ1.

Main Proof. Let π : [N]→ [C] be the mapping from users to clusters and let X ∈ RC×M be the mean rewards of arms
in the clusters. Let (π1,X1), (π2,X2) be two MAB-LC models. Let a∗1,c be the optimal arm in the cth cluster of the first
model, and a∗2,c be the optimal arm in the second model. Let C̄ be the set of clusters for which a∗1,c 6= a∗2,c. Let T (c, a)
be the number of times arm a has been pulled when cluster c appeared during the course of the algorithm. Let ET be the
following event

ET =

∑
c∈[C̄]

T (c, a∗1,c) ≤ T/2


Intuitively, ET has a small probability under (π1,X1) where the optimal arms should be selected a lot. Moreover, ET has
large probability under (π2,X2) as the event only contains sub-optimal arms. This can be formally proved using Markov’s
inequality as follows

P1(ET) = P1

∑
c∈[C̄]

T (c, a∗1,c) ≤ T/2

 = P1

∑
c∈[C̄]

∑
a∈[M]\{a∗1,c}

T (c, a) > T/2

 ≤ 2
∑
c∈[C̄]

∑
a∈[M]\{a∗1,c}

E1 [T (c, a)]

T

P2(ĒT) = P2

∑
c∈[C̄]

T (c, a∗1,c) > T/2

 ≤ 2
∑
c∈[C̄] E2

[
T (c, a∗1,c)

]
T

.
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Let ζ1 =
∑
c∈[C̄]

∑
a∈[M\{a∗1,c}]

E1 [T (c, a)] and ζ2 =
∑
c∈[C̄] E2

[
T (c, a∗1,c)

]
. Based on our assumptions of uniform

efficiency of the algorithm, we know that ζ1, ζ2 = o(Tα) for all α ∈ (0, 1]. Next, observe that the KL divergence between
two bernoulli distributions can be lower bounded as KL(p, q) ≥ (1− p) log (1/(1− q))− log 2 [Garivier and Kaufmann,
2021]. Using this, we have

KL(P1(ET),P2(ET)) ≥
(

1− 2ζ1
T

)
log

(
T

2ζ2

)
− log 2 ≈ log T.

This shows that

lim
T→∞

KL(PIT1 ,P
IT
2 )

logT
≥ 1. (17)

We now rely on this result to prove Theorem 4. All we need to do is construct interesting bandit models that are hard to
separate. The first set of models we construct is as follows. Let (π1,X1) be any MAB-LC model. Construct (π2,X2) from
(π1,X1) as follows: π2 = π1, X2 is same as X1 for all cluster-arm pairs, except for one location. We take a sub-optimal
arm a′ in cluster c and make its mean reward to be slightly larger than the mean reward of the best arm in cluster c (i.e.,
X2[c, a′] = X1[c, a∗1,c] + ε for some ε→ 0). Applying the above result on this model pair gives us

lim
T→∞

E1 [T (c, a′)]KL(X1[c, a′],X1[c, a∗1,c])

logT
≥ 1.

We now rely on the following upper bound on the KL divergence between two Bernoulli distributions

KL(p, q) ≤ (p− q)2

q(1− q)
.

Using this in the previous inequality, we get

lim
T→∞

E1 [T (c, a′)] (X1[c, a∗1,c]−X1[c, a′])

logT
≥

X1[c, a∗1,c](1−X1[c, a∗1,c])

(X1[c, a∗1,c]−X1[c, a′])
.

Note that this result holds for any c, a′. Summing over all possible values of c, a′ gives us the required result in Theorem 4

lim
T→∞

Reg(T)

logT
≥
∑
c∈[C]

∑
a 6=a∗c

X[c, a∗c ](1−X[c, a∗c ])

(X[c, a∗c ]−X[c, a′])
. (18)

Tighter Bounds. Note that the above lower bound didn’t explicitly depend on the number of users N. We now derive a
different bound that depends on N. Let (π1,X1) be any MAB-LC model. Construct (π2,X2) from (π1,X1) as follows: X2

is exactly same as X1. Moreover, π2 is same as π1 for all users except for a particular user b. To be precise, π2 places b
in a cluster that is different from π1(b). Let’s call π1(b) as c and π2(b) as c′. One can show that Equation (17) holds for
this setting. The proof of this uses similar arguments as those used to prove Equation (17) (the only thing that changes is
our definition of the event ET which now includes all the users b that have different optimal arms across the two MAB-LC
models). Applying Equation (17) to this setting gives us the following

lim
T→∞

∑
a∈[M] E1 [T (b, a)]KL(X1[c, a],X1[c′, a])

logT
≥ 1.

Here T (b, a) is the number of times arm a has been pulled for user b. From the above inequality, the regret of user b can be
lower bounded as (this follows from Holder’s inequality:

∑
i |aibi| ≤ (

∑
i |ai|) maxi |bi|)

lim
T→∞

∑
a∈[M] E1 [T (b, a)] (X1[c, a∗1,c]−X1[c, a])

logT
≥ min
a∈[M]

(X1[c, a∗1,c]−X1[c, a])

KL(X1[c, a],X1[c′, a])
.

Furthermore, optimizing the RHS over the choice of c′ gives us

lim
T→∞

∑
a∈[M] E1 [T (b, a)] (X1[c, a∗1,c]−X1[c, a])

logT
≥ max

c′ 6=c
min
a∈[M]

(X1[c, a∗1,c]−X1[c, a])

KL(X1[c, a],X1[c′, a])
.
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This shows that the overall regret (for all the users) can be lower bounded as

lim
T→∞

Reg(T)

logT
≥
∑
b∈[N]

max
c′ 6=π(b)

min
a∈[M]

(X[π(b), a∗π(b)]−X[π(b), a])

KL(X[π(b), a],X[c′, a])
.

So, a tighter lower bound for the regret can be obtained by taking a maximum of this regret lower bound and the lower
bound in Equation (18).

G Missing Details in Section 5

G.1 Preliminaries

Lemma 15. (Conditional Number bounds) Let P ∈ RN×M be a matrix with non-zero singular values σ1 > σ2 . . . ... > σr
for some M ≥ r > 0. Consider a sub-matrix PS which is formed by taking all rows of matrix P and columns from a set
S ⊂ [M] of indices. Suppose that the row-space of PS is a non-trivial vector space. Then, λmax(PTSPS)

λmin(PTSPS)
≤ λmax(PTP)

λmin(PTP)
where

λmax(·), λmin(·) corresponds to the largest and smallest non-zero eigenvalues of the corresponding matrix.

Proof. Let Pi be the i-th row of P.

λmax(PTP) = sup
x:‖x‖2=1

xTPTPx = sup
x:‖x‖2=1

∑
i

xTPT
i Pix ≥ sup

x:‖x‖2=1, x[M]−S=0

∑
i

xTPT
i Pix

= sup
x:‖x‖2=1

∑
i

xTPT
i|SPi|Sx = λmax(PT

SPS). (19)

Let K be the row-space of P. Let K′ be the row space of PS .

λmin(PTP) = inf
x∈K:‖x‖2=1

xTPTPx = inf
x∈K:‖x‖2=1

∑
i

xTPT
i Pix

(a)

≤ inf
x∈K:‖x‖2=1, x[M]−S=0

∑
i

xTPT
i Pix

= inf
x∈K′:‖x‖2=1

∑
i

xTPT
i|SPi|Sx = λmin(PT

SPS). (20)

(a) is due to the fact that there is at least one x 6= 0 in the row-space of P with only non-zero entries in S.

Lemma (Restatement of Lemma 4). Suppose Assumption 3 is true. Consider a sub-matrix Psub of P having non-zero
singular values λ′1 > · · · > λ′C′ (for C′ ≤ C). Then, provided Psub is non-zero, we have λ′1

λ′
C′
≤ λ1

λC
.

Proof. Let S ′ ⊂ [N], S ⊂ [M]. Let PS′,S be the sub-matrix formed by choosing column indices S ′ and S from
matrix P ∈ RN×M. Let σmax(·) and σmin(·) be the largest and smallest non-zero singular values. Suppose, that
dim(rowspace(P[N],S)) ≥ 1. Let dim(colspace(PS′,S)) ≥ 1. Applying Lemma 15 to P:,S and P using the fact

that rowspace of P:,S is a non-trivial vector space, we get:
λmax(PT:,SP:,S)

λmin(PT:,SP:,S)
≤ λmax(PTP)

λmin(PTP)
.

Again applying Lemma 15 to PT
S′,S and PT

:,S and using the fact that rowspace of PT
S′,S is a non-trivial vector space, we get:

λmax(PS′,SP
T
S′,S)

λmin(PS′,SP
T
S′,S)

≤ λmax(P:,SP
T
:,S)

λmin(P:,SPT:,S)
. We observe that

λmax(P:,SP
T
:,S)

λmin(P:,SPT:,S)
=

λmax(PT:,SP:,S)

λmin(PT:,SP:,S)
. This implies:

λmax(PS′,SP
T
S′,S)

λmin(PS′,SP
T
S′,S)

≤
λmax(PTP)
λmin(PTP)

. Taking square root on both sides yields the result.

Lemma (Restatement of Lemma 5). Suppose Assumption 3 is true. Consider a sub-matrix Psub ∈ RB′×A′ (with SVD

decomposition Psub = ŨΣ̃Ṽ) of P whose rows correspond to a nice subset of users. Then,
∣∣∣∣∣∣Ũ∣∣∣∣∣∣

2,∞
≤
√

µC
βN′ and∣∣∣∣∣∣Ṽ∣∣∣∣∣∣

2,∞
≤
√

µC
αM′ .

Proof of Lemma 5. Suppose the reward matrix P has the SVD decomposition UΣVT. We are looking at a sub-matrix
of P denoted by Psub ∈ RN′×M′ which can be represented as UsubΣVT

sub where Usub,Vsub are sub-matrices of U,V
respectively and are not necessarily orthogonal. Here, the rows in Psub corresponds to a union of cluster of users ∪j∈AC(j)
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for A ∈ [C] and the columns in Psub corresponds to the trimmed set of arms in [M]. Hence we can write (provided
Usub,Vsub are invertible)

Psub = Usub(U
T
subUsub)

−1/2(UT
subUsub)

1/2Σ(VT
subVsub)

1/2(VT
subVsub)

−1/2VT
sub

= Usub(U
T
subUsub)

−1/2ÛΣ̂V̂T(VT
subVsub)

−1/2VT
sub

where ÛΣ̂V̂T is the SVD of the matrix (UT
subUsub)

1/2Σ(VT
subVsub)

1/2. Since Û is orthogonal, Usub(U
T
subUsub)

−1/2Û

is orthogonal. Similarly, V̂T(VT
subVsub)

−1/2VT
sub is orthogonal as well whereas Σ̂ is diagonal. Hence

Usub(U
T
subUsub)

−1/2ÛΣ̂V̂T(VT
subVsub)

−1/2VT
sub indeed corresponds to the SVD of Psub and we only need to argue

about the incoherence of the matrices Usub(U
T
subUsub)

−1/2Û and (V̂T(VT
subVsub)

−1/2VT
sub)

T. We have

max
i
‖Û(UT

subUsub)
−1/2UT

subei‖ ≤ max
i
‖(UT

subUsub)
−1/2UT

subei‖

≤ ‖Usub‖2,∞√
λmin(UT

subUsub)
≤

||U||2,∞√
λmin(UT

subUsub)
≤
√
µC

N
· 1√

λmin(UT
subUsub)

≤

√
µC2

Nβτ |A|
≤

√
µC

βN′

where we used the fact that NC−1 |A| ≥ N′τ−1 (NC−1 is the average cluster size; N′/|A| is the average cluster size among
the N′ users and τ−1 is the ratio of the sizes of smallest cluster and largest cluster). Similarly, we will also have

max
i
‖V̂(VT

subVsub)
−1/2VT

subei‖ ≤ max
i
‖(VT

subVsub)
−1/2VT

subei‖

≤ ‖Vsub‖2,∞√
λmin(VT

subVsub)
≤

||V||2,∞√
λmin(VT

subVsub)
≤
√

µC

αM′

where the last line follows from the fact that minx∈RC xTVT
subVsubx = minx∈RC

∑
i∈S xTVT

i Vix where S, |S| = M′ is
the set of rows in V represented in Vsub. Hence we can partition the set S into |S|/C disjoint sets, each of size C; from
Assumption 3, we get that the minimum over each of those sets is αC/M and therefore, the conclusion follows.

Lemma 16. Let us fix ∆`+1 > 0 and condition on the event E(`). Suppose Assumptions 3 and 2 are satisfied. In that case,
in phase `, by using

m` = O
(σ2C2(µβ−1

∨
µα−1)3 logM

∆2
`+1

(
N
∨

MC
)

log2(MNCδ−1)
))

rounds, we can compute an estimate P̃(`) ∈ RN×M such that with probability 1− δ, we have∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 for all i ∈ [a`] satisfying

∣∣∣N (i,`)
∣∣∣ ≥ γC. (21)

Proof of Lemma 16. We are going to use Lemma 1 in order to compute an estimate P̃
(`)

M(`,i),N (`,i) of the sub-matrix

PM(`,i),N (`,i) satisfying
∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1. From Lemma 1, we know that by using m` =

O
(
sN log2(MNδ−1)(

∣∣N (`,i)
∣∣ p +

√∣∣N (`,i)
∣∣ p logNδ−1)

)
rounds (see Lemma 1) restricted to users inM(`,i) such that

with probability at least 1− δ,

∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ O

( σr√
sd2

√
µ̃3 log d2

p

)
.

where d2 = min(|M(`,i)|, |N (`,i)|) and µ̃ is the incoherence factor of the matrix PM(`,i),N (`,i) . In order for the right hand

side to be less than ∆`+1, we can set sp = O
(
σ2r2µ̃3 log d2

∆2
`+1d2

)
. Since the event E(`) is true, we must have that

∣∣M(`,i)
∣∣ ≥ N/C;

hence d2 ≥ min
(

N
C ,
∣∣N (`,i)

∣∣ ). Therefore, we must have that

m` = O
(σ2C2µ̃3 logM

∆2
`+1

max
(
N,MC

)
log2(MNCδ−1)

))
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where we take a union bound over all sets comprising the partition of the users [N] (at most C of them). Finally, from Lemma
5, we know that µ̃ can be bounded from above by max(µ/β, µ/α) which we can use to say that

m` = O
(σ2C2(µβ−1

∨
µα−1)3 logM

∆2
`+1

(
N
∨

MC
)

log2(MNCδ−1)
))

to complete the proof of the lemma.

G.2 Joint Arm Elimination:

The first part of the algorithm is run in phases indexed by ` = 1, 2, . . . in a similar way as for the CS problem. As before, in
the beginning of each phase `, our goal is to maintain properties (1− 4) proposed at the beginning of Section E. Similarly,
for a fixed ε` that will be determined later, we will say that our phased elimination algorithm is ε`−good at the beginning of
the `th phase if the randomized algorithm LATTICE (for RCS) can maintain a list of users and arms satisfying the properties
(1− 4) at the start of phase `. Let us also define the event E(`) to be true if properties (1− 4) are satisfied at the beginning
of phase ` by LATTICE for RCS.

Let us fix ∆`+1 > 0 and condition on the event E(`) being true at the beginning of phase `. Suppose Assumptions 3 and 2
are satisfied. In that case, in phase `, recall from Lemma 16 that by using

m` = O
(σ2C2(µβ−1

∨
µα−1)3 logM

∆2
`+1

(
N
∨

MC
)

log2(ABCT)
))

rounds, we can compute an estimate P̃(`) ∈ RN×M such that with probability 1− T−4, we have∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 for all i ∈ [a`] satisfying

∣∣∣N (i,`)
∣∣∣ ≥ γC.

Furthermore, we denoted the aforementioned event in phase ` by E(`)
2 . Recall that in the `th phase, we have T (`)

u ≡ {j ∈
N (`,i) | maxj′∈N (`,i) P̃

(`)
uj′ − P̃

(`)
uj ≤ 2∆`+1}. For every i ∈ [a`] such that

∣∣N (`,i)
∣∣ ≥ γC, we consider a graph G(`,i)

whose nodes are given by the users in M(`,i), an edge is drawn between two users u, v ∈ M(`,i) if T (`)
u ∩ T (`)

v 6= Φ

and maxx∈N (`,i)

∣∣∣P̃(`)
ux − P̃

(`)
vx

∣∣∣ ≤ 3∆`+1. Note that Lemma 8 holds true implying that conditioned on the event E(`)
2 ,

πu(1) ∈ T (`)
u for all users u ∈ [N]. Next, we show the following:

Lemma 17. Let ∆`+1 ≥ ν. Fix any i ∈ [a`]. Conditioned on the events E(`), E(`)
2 , nodes inM(`,i) corresponding to the

same cluster form a clique.

Proof. For any two users u, v ∈M(`,i) belonging to the same cluster, consider arms x ∈ T (`)
u , y ∈ T (`)

v ; in that case, we
have

P̃(`)
ux − P̃(`)

vx = P̃(`)
ux −Pux + Pux −Pvx + Pvx − P̃(`)

vx ≤ 2∆`+1 + ν ≤ 3∆`+1.

it is clear that the nodes inM(`,i) corresponding to the same cluster form a clique.

Corollary 2. Condition on the events E(`), E(`)
2 and suppose ∆`+1 ≥ ν. 1) Each connected component of the graph G(`,i)

can be represented as a nice set of users. 2) Consider two users u, v ∈M(`,i) having an edge in the graph G(`,i). We must
have max

x∈T (`)
u ,y∈T (`)

v
|Pux −Pvy| ≤ 20∆`+1. 3) Consider two users u, v ∈ M(`,i) having a path in the graph G(`,i).

Then, we must have max
x∈T (`)

u ,y∈T (`)
v
|Pux −Pvy| ≤ 40C∆`+1.

Proof. 1. This follows from the statement that users in the same set belonging to the same cluster form a clique (see
Lemma 17).

2. From the construction of G(`,i), we know that users u, v ∈M(`,i) have an edge if
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 3∆`+1 (implying

that |Pux −Pvx| ≤ 6∆`+1) for all x ∈ N (`,i) and Tu ∩ Tv 6= Φ. Suppose z ∈ Tu ∩ Tv. Now, for any pair of arms
x ∈ T (`)

u , y ∈ T (`)
v ; in that case, we have

Pux −Puy = Pux −Puz + Puz −Pvz + Pvz −Pvy + Pvy −Puy ≤ 20∆`+1
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3. The proof follows in exactly the same way as in Lemma 11 with minor modification in constants.

Lemma 18. Let ∆`+1 ≤ 2ν. Conditioned on the events E(`) and E(`)
2 , for any two users u, v belonging to two different

clusters, we will have ∣∣∣P̃(`)
ux − P̃(`)

vy

∣∣∣ ≥ 8∆`+1 or
∣∣∣P̃(`)

ux − P̃(`)
vy

∣∣∣ ≥ 8∆`+1.

Proof. For any two users u, v ∈M(`,i) belonging to the same cluster, consider arms πu(1) ∈ T (`)
u , πv(1) ∈ T (`)

v (we have
proved in Lemma 8 that πu(1) ∈ T (`)

u , πv(1) ∈ T (`)
v conditioned on the event E(`)

2 ); in that case, recall that we have either∣∣Puπu(1) −Pvπu(1)

∣∣ ≥ 20ν or
∣∣Puπv(1) −Pvπv(1)

∣∣ ≥ 20ν (without loss of generality suppose the former is true). We will
have

P̃
(`)
uπu(1) − P̃

(`)
vπu(1) = P̃

(`)
uπu(1) −Puπu(1) + Puπu(1) −Pvπu(1) + Pvπu(1) − P̃

(`)
vπu(1) ≥ 20ν − 2∆`+1 ≥ 16ν ≥ 8∆`+1.

it is clear that the nodes inM(`,i) corresponding to the same cluster form a clique.

Lemma 19. Let ν ≤ ∆`+1 ≤ 2ν. Conditioned on the events E(`) and E(`)
2 , the union of the graphs G(`,i) can be represented

as C connected components if B(`) = Φ.

Proof. The proof follows from Lemma 17 and Lemma 18.

For the subsequent iteration indexed by ` + 1, we compute the updated groups of usersM(`+1) in the following way:
each set corresponds to the connected components of the graphs {G(`,i)} for those indices i ∈ [a`] where

∣∣N (`,i)
∣∣ ≥ γC

plus the groups of users M(`,i) where
∣∣N (`,i)

∣∣ ≤ C. More precisely, let T ⊆ [a`] be the subset of indices for which∣∣N (`,i)
∣∣ ≥ γC; {G(`,i,j)} be the connected components of the graph G(`,i) for i ∈ T . In that case,M(`+1) = {G(`,i,j) |

i ∈ T ,G(`,i,j) is a connected component of graph G(`,i)}+ {M(`,i) | i ∈ [a`] \ T }. Similarly, we update the family of sets
of active arms as follows: for each connected componentM(`+1,s) = G(`,i,j) of some graph, we define the active set of
arms N (`+1,s) to be ∪u∈G(`,i,j)T (`)

u and for each group {M(`,i)}i∈[a`]\T , we keep the corresponding set of active arms
{N (`,i)}i∈[a`]\T same. With a`+1 =

∣∣M(`+1)
∣∣, we will also update B(`+1) =

⋃
i∈[a`+1]||N (`+1,i)|≥γCM

(`+1,i) to be the
set of users with more than C active arms.

Lemma 20. Condition on the events E(`) being true. In that case, with probability 1 − T−4, with the groups of users
M(`+1) and their respective group of arms given by N (`+1) being updated as described above and ∆`+1 = ε`/80C, the
event E(`+1) is also going to be true with ε`+1 ≤ ε`/2.

Proof. Conditioned on the event E(`) being true, the event E(`)
2 holds true with probability with 1− T−4 (by substituting

δ = T−4 in Lemma 12). Now, conditioned on the event E(`), E(`)
2 being true, the properties (1−4) hold true at the beginning

of the (` + 1)th phase as well with our construction ofM(`+1),N (`+1). For the (` + 1)th phase from Lemma 11, we
know that for any pair of users u, v in the same clusterM(`+1,i) in the updated set of clustersM(`+1), we must have
max

x∈T (`)
u ,y∈T (`)

v
|Pux −Pvy| ≤ 40C∆`+1. From Lemma 8 we know that argmaxjPuj ∈ T (`)

u ⊆ N (`,i) where N (`,i) is

the active set of arms for users inM(`,i) in the updated setM. For ` > 1, we will set ∆`+1 = ε`/80C which would give us
that ε`+1 = ε`/2. Finally, also note that we maintain the set of users B(`+1) as stipulated in Property 4 for the beginning of
the (`+ 1)th phase.

We stop the joint phased elimination algorithm at the end of the phase `? when we have C connected components. From
Lemma 19, we know that users in the same connected component must belong to the same cluster. We then move on to the
second part where we run cluster-wise phased elimination:
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G.3 Cluster-wise Arm Elimination:

Suppose the total number of phases that the joint phased elimination algorithm was ran for is `? (ν ≤ ∆`?+1 ≤ 2ν). We
condition on the event that the joint phased elimination algorithm is ε`-good for all ` ∈ [`?] that it ran for (in other words the
event E(`?) is true); note that the failure probability for this event is at most T−3 (see Lemma 20). At the end of the joint
phased elimination algorithm, we will have C connected components denoted by N(`?) ≡ {M(`?,1),M(`?,2), . . . ,M(`?,C)}
and arms N `? ≡ {N (`?,1),N (`?,2), . . . ,N (`?,C)} such that N (`?,i) ⊇ {argmaxjPuj | u ∈M(`?,i)} i.e. for each user u in
the setM(`?,i), their best arm must belong to the set N (`?,i). Furthermore, the set N (`?,i) must also satisfy the following:∣∣∣∣ max

j∈N (`?,i)
Puj − min

j∈N (`?,i)
Puj

∣∣∣∣ ≤ ε`?+1 for all u ∈M(`?,i) (22)

This part of the algorithm is again run in phases but this time, we do not cluster anymore since the clustering operation is
complete in the joint phased elimination. Hence, we can continue to define the events E(`′), E(`′)

2 for all phases `′ for which
the Cluster-wise phased elimination algorithm is run indexed by `′ = `? + 1, `? + 2, . . . for continuity. Let us condition on
the event E(`′) which means that at the beginning of the `′th phase, our algorithm is ε`′-good. We apply Lemma 12 at the
beginning of the `′th phase such that with probability at least 1− T−4, we have

∣∣∣∣∣∣P̃(`′)

M(`′,i),N (`′,i) −PM(`′,i),N (`′,i)

∣∣∣∣∣∣
∞
≤

∆`′+1 for all i ∈ [C] by using (µ? = max(µα−1, µβ−1))

O
(σ2C2(µ?)3 logM

∆2
`′+1

(
N
∨

MC
)

log2(ABCT)
))

rounds. Note that Lemma 8 still holds true for the `′th phase. For each i ∈ [C], we only update N (`,i) = ∩u∈M(`,i)Tu. We
again choose ∆`′+1 = ε`′/32C implying that ε`′+1 = ε`′/2. Since Lemma 8 holds true, argmaxjPuj will belong to the
updated N (`,i) for every u ∈M(`,i) and furthermore,∣∣∣∣ max

j∈N (`,i)
Puj − min

j∈N (`,i)
Puj

∣∣∣∣ ≤ 4∆`′+1 ≤ ε`′+1 for all u ∈M(`,i)

.

Now, we are ready to prove the main theorem

Proof of Theorem 5. We condition on the events E(`), E(`)
2 being true for all ` (including the joint phased elimination and

the cluster-wise phased elimination algorithm). The probability that there exists any ` such that the events E(`), E(`)
2 is false

is O(T−4) (by setting δ = T−4 in the proof of Lemma 12); hence the probability that E(`), E(`)
2 is true for all ` is at least

1−O(T−3) (the total number of iterations can be at most T). Let us also denote the set of rounds in phase ` by T` ⊆ [T]
(therefore |T`| = m`). Let us compute the regret

∑
t∈T (`) Pu(t)πu(t)(1) −

∑
t∈T (`) Pu(t),ρ(t) restricted to the rounds in T (`)

conditioned on the events E(`), E(`)
2 being true for all `. We can bound the regret quantity in the `th phase from above by

m`ε`. Substituting from Lemma 12 and using the fact that ∆2
`+1 = ε2`/1024C2, we have that

∑
t∈T (`)

Pu(t)πu(t)(1) −
∑
t∈T (`)

Pu(t),ρ(t) = O
(σ2C2(µ?)3 logM

∆2
`+1

(
N
∨

MC
)

log2(MNCδ−1)
))

We can now bound the regret as follows (after removing the conditioning on the events
⋂
` E(`)

⋂
` E

(`)
2 ):

E
( ∑
t∈[T]

Pu(t)πu(t)(1) −
∑
t∈[T]

Pu(t),ρ(t)

)
= E

(∑
`

( ∑
t∈T (`)

Pu(t)πu(t)(1) −
∑
t∈T (`)

Pu(t),ρ(t)

))
=
∑
`

O
(
ε`m` |

⋂
`

E(`)
⋂
`

E(`)
2

)
+O(T−3‖P‖∞) +

∑
`

∑
u∈N\[B(`)]

RegUCB(u, T (`)
u )

At this point, the analysis is similar to the proof of Theorem 1. The contribution of the regret from the final term (analysis
of the UCB algorithm for each user with at most γC arms) is a strictly lower order term as demonstrated in the proof of
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Theorem 5 and we ignore it below. Moving on, we can decompose the regret as follows:

Reg(T) ≤ O(T−3‖P‖∞) +O
( ∑
`:ε`≤Φ

ε`m` | E(`), E(`)
2 is true for all `

)
+O

( ∑
`:∆`>Φ

ε`V∆−2
`+1 | E

(`), E(`)
2 is true for all `

)
≤ O(T−3‖P‖∞) + TΦ +O

( ∑
`:ε`>Φ

C2Vε−1
`

)

Since we chose ε` = C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
for some constant C ′ > 0, the maximum number of phases `

for which ε` > Φ can be bounded from above by J = O
(

log
(

1
Φ min

(
‖P‖∞,

σ
√
µ

log N

)))
. Hence, with V =

σ2C2(µ?)3 logMmax
(
N,MC

)
log2(ABCT), we have

Reg(T) ≤ O(T−3‖P‖∞) +O(TΦ) +O
(
JVC2Φ−1

)
= O(T−3‖P‖∞) +O(CJ

√
TV)

where we substituted Φ =
√
VC2T−1 and hence J = O

(
log
(

1√
VT−1

min
(
‖P‖∞,

σ
√
µ

log N

)))
in the final step.

H Proof of a general version of Lemma 1

For the sake of completeness, we reproduce the proof of a more general version of Lemma 1 here (Note that Lemma 1 has
been explicitly proved in Jain and Pal [2022]). We start with the following corollary:

Lemma 21 (Theorem 2 in Chen et al. [2019]). Let P = ŪΣV̄T ∈ Rd×d such that Ū ∈ Rd×r, V̄ ∈ Rd×r and
Σ , diag(λ1, λ2, . . . , λr) ∈ Rr×r with ŪTŪ = V̄TV̄ = I and ‖Ū‖2,∞ ≤

√
µr/d, ‖V̄‖2,∞ ≤

√
µr/d. Let 1 ≥ p ≥

Cκ4µ2d−1 log3 d for some sufficiently large constant C > 0, σ = O
(√

p
dκ4µr log d mini λi

)
, rank r and condition number

κ , maxi λi
mini λi

. Then, with probability exceeding 1−O(d−3), we can recover a matrix P̂ s.t.,

‖P̂−P‖∞ ≤ O
( σ

mini λi
·

√
κ3µrd log d

p
‖P‖∞

)
. (23)

Lemma 22. Let P = ŪΣV̄T ∈ RN×M such that Ū ∈ RN×r, V̄ ∈ RM×r and Σ , diag(λ1, λ2, . . . , λr) ∈ Rr×r with
ŪTŪ = V̄TV̄ = I and ‖Ū‖2,∞ ≤

√
µr/N, ‖V̄‖2,∞ ≤

√
µr/M. Let d1 = max(N,M) and d2 = min(N,M). Let

1 ≥ p ≥ Cκ4µ2d1d
−2
2 log3 d1 for some sufficiently large constant C > 0, σ = O

(√
p

dκ4µr log d mini λi

)
, rank r = O(1)

and condition number κ , maxi σi
mini σi

= O(1). Then, with probability exceeding 1−O(d−3
1 ), we can recover a matrix P̂ s.t.,

‖P̂−P‖∞ = O
( σ√

d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

p

)
. (24)

Proof of Lemma 22. Without loss of generality, let us assume that the matrix P is tall i.e. N ≥ M. Now, let us construct the
matrix

Q =
[
P 0N×B−A

]
= ŪΣ[V̄T 0T

A−B]

where Q ∈ RN×N. Clearly, the decomposition Q = ŪΣ[V̄T 0T
B−A] also coincides with the SVD of Q since both Ū and

[V̄T 0T
A−B]T are orthonormal matrices while Σ remains unchanged. In case when M > N, we can construct Q similarly by

vertically stacking P with a zero matrix of dimensions A− B×N. Hence, generally speaking, let us denote d1 = max(N,M)
and d2 = min(N,M).
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The matrix Q is µ̄-incoherent where µ̄r(d1)−1 = µrd−1
2 implying that µ̄ = µd1/d2. Moreover, we also have ‖Q‖∞ =

‖P‖∞ implying that maxij |Pij | = maxij |Qij |. Therefore, by invoking Lemma 21, the sample size must obey

p ≥ Cκ4µ2d1d
−2
2 log3 d1 and σ = O

(√ p

dκ4µr log d
min
i
λi

)
Then with probability at least O(d−3

1 ), we can recover a matrix Q̂ such that

‖Q̂−Q‖∞ ≤ O
( σ

mini λi
·

√
κ3µd1d2 rd1 log d1

p
‖P‖∞

)
.

Using the fact that ‖P‖∞ ≤ maxi λi‖Ū‖2,∞‖V̄‖2,∞ = maxi λiµr/
√
d1d2 =⇒ ‖P‖∞/mini λi = κ · µr/

√
d1d2, we

obtain a matrix P̂ such that

‖P̂−P‖∞ ≤ O
( σµr√

d1d2

(d1

d2

)1/2

√
κ5µrd1 log d1

p

)
= O

( σ√
d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

p

)
.

Lemma 23. Let the matrix P ∈ RN×M satisfy the conditions as stated in Lemma 22. Let d1 = max(N,M), d2 = min(N,M),

1 ≥ p ≥ Cκ4µ2d1d
−2
2 log3 d1 for some sufficiently large constant C > 0, σ = O

(√
p

dκ4µr log d mini λi

)
. For any pair of

indices (i, j) ∈ [N]× [M],

|P̂ij −Pij | ≤ O
( σ√

d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

p

)
(25)

Proof. Let us assume that the matrix P is tall i.e. N ≥ M. Now, let us partition the set of rows into N
M groups by assigning

each group uniformly at random to each row. Notice that the expected number of rows in each group is M and by using
Chernoff bound, the number of rows in each group lies in the interval [M2 ,

3M
2 ] with probability at least 1− 2 exp(−M/12).

When N ≤ M, we partition the set of columns in a similar manner into M/N groups so the number of columns in each
group lies in the interval [N2 ,

3N
2 ] with probability at least 1 − 2 exp(−N/12). Hence, generally speaking, let us denote

d1 = max(N,M) and d2 = min(N,M); we constructed d1/d2 sub-matrices of P denoted by P(1),P(2), . . . ,P(d1/d2).
Let us analyze the guarantees on estimating P(1). The analysis for other matrices follow along similar lines. Note that
P(1) = UΣVT

sub where Vsub denotes the N′ × r matrix where the rows in Vsub corresponds to the N′ rows in V assigned
to P(1).

First we will bound from below the minimum eigenvalue of the matrix VT
subVsub. Note that every row of V is independently

sampled with probability p , d2/d1 for the matrix P(1). Hence, we have

1

p
VT

subVsub =
1

p

∑
i∈[d1]

δiViV
T
i =

∑
i∈[d1]

W(i)

where δi denotes the indicator random variable which is true when Vi (the ith row of V) is chosen for P(1) and W(i) =
1
pδiViV

T
i . Notice that the random matrices W(i) are independent with EW(i) = ViV

T
i . Hence we define Z(i) = W(i) −

EW(i) satisfying EZ(i) = 0. Moreover, for all i ∈ [d1], we have ‖Z(i)‖2 ≤
(

1 + 1
p

)
‖ViV

T
i ‖2 ≤

(
1 + 1

p

)
maxi ‖Vi‖22 ≤

2µr
pd1

. Next, we can show the following:

‖
∑
i∈[d1]

Z(i)(Z(i))T‖2 ≤ ‖
(1

p
− 1
) ∑
i∈[d1]

(ViV
T
i )(ViV

T
i )T‖2 ≤ ‖

(1

p
− 1
)
‖Vi‖2

∑
i∈[d1]

(ViV
T
i )‖2

≤ µr

pd1
λmax(VTV).

Similarly, we will also have

‖
∑
i∈[d1]

(Z(i))TZ(i)‖2 ≤
µr

pd1
λmax(VTV) ≤ µr

pd1
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where we used that VTV is orthogonal. Therefore, by using Bernstein’s inequality for matrices, we have with probability at
least 1− δ,

‖1

p
VT

subVsub −VTV‖ ≤ 2µr

3pd1
log

2r

δ
+

√
µr

pd1
log

2r

δ
.

Hence, by using Weyl’s inequality, we will have with probability 1− δ

λmin(VT
subVsub) ≥ p−

2µr

3d1
log

2r

δ
−
√
pµr

d1
log

2r

δ
.

Hence, with probability at least 1− d−10
1 , if d2 = Ω(µr log rd1), then λmin(VT

subVsub) ≥ p/2 implying that VT
subVsub is

invertible. Also, under the same condition, note that we can show similarly that λmax(VT
subVsub) ≤ 3p/2 implying that the

condition number of each sub-matrix also stays κ ·O(1) with high probability.

Clearly, Vsub is not orthogonal and therefore, we have

P(1) = UΣ(VT
subVsub)

1/2(VT
subVsub)

−1/2VT
sub = UÛΣ̂V̂(VT

subVsub)
−1/2VT

sub

where ÛΣ̂V̂ is the SVD of the matrix Σ(VT
subVsub)

1/2. Since Û is orthogonal, ÛU is orthogonal as well. Similarly,
(V̂(VT

subVsub)
−1/2VT

sub)
T is orthogonal as well whereas Σ̂ is diagonal. Hence UÛΣ̂V̂(VT

subVsub)
−1/2VT

sub indeed
corresponds to the SVD of P(1) and we only need to argue about the incoherence of ÛU and V̂(VT

subVsub)
−1/2VT

sub.

Notice that maxi ‖(UÛ)Tei‖ ≤ ‖UTei‖ ≤
√

µr
d2

. On the other hand,

max
i
‖V̂(VT

subVsub)
−1/2VT

subei‖ ≤ max
i
‖(VT

subVsub)
−1/2VT

subei‖

≤ ‖Vsub‖2,∞√
λmin(VT

subVsub)
≤ ‖V‖2,∞√

p/2
≤
√

2µr

d2
.

Hence, with probability 1− 2 exp(−d2/12)−O(d−3
1 ), we can recover an estimate P̂(1) and apply Lemma 22 to conclude

that

‖P(1) − P̂(1)‖∞ = O
( σ√

d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

p

)
.

as long as the conditions stated in the Lemma are satisfied. Therefore, we can compute estimates of all the sub-matrices
P(1),P(2), . . . ,P(d1/d2) that have similar guarantees as above with probability at least 1 − 2d1d

−1
2 exp(−d2/12) −

O(d1d
−4
2 ). Hence, by combining all the estimates, we can obtain a final estimate P̂ of the matrix P that satisfies

‖P− P̂‖∞ ≤ O
( σ√

d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

p

)
.

Corollary 3. Consider an algorithm A that recommends random arms to users in each round (according to eq. 1) without
recommending the same arm more than once to each user. Suppose the reward matrix P and parameters p, σ satisfies the
conditions stated in Lemma 23. In that case, using m = O

(
Mp+

√
Mp logNδ−1

)
recommendations per user, A is able to

recover a matrix P̂ such that for any (i, j) ∈ [N]× [M], we have equation 25 with probability exceeding 1− δ −O(d−3
2 ).

Proof of Corollary 3. Recall that d1 = max(N,M) and d2 = min(N,M). Suppose we sample the elements in [N] × [M]
each with some parameter p = Ω(µ2d−1

2 log3 d2) independently in order to sample a set Ω ∈ [N] × [M] of indices.
Let us define the event F1 which is true when the maximum number of indices observed in some row is more than
m = O

(
Mp +

√
Mp logNδ−1

)
i.e. maxi∈[N] |(i, j) ∈ Ω | j ∈ [M]| ≥ m. We will bound the probability of the event

F1 from above by using Chernoff bound. Let us denote the number of arms observed for user i ∈ [N] to be Yi i.e.
Yi = |(i, j) ∈ Ω | j ∈ [M]|. Algorithm A can then obtain the noisy entries of P corresponding to the set Ω by doing the
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following: in each round, conditioned on the event that the user i ∈ [N] is sampled, if there is an unobserved tuple of indices
(i, j) ∈ Ω, then A will recommend j to user i and obtain an noisy observation Pij + Eij ; on the other hand, if there no
unobserved entry, then A will simply recommend a random arm j such that (i, j) 6∈ Ω. Notice that each of the random
variables Y1, Y2, . . . , YN ∼ Binomial(M, p) and are independent. By using Chernoff bound, we have that for each i ∈ [N],

Pr
(
∪i∈[N] |Yi −Mp| ≥ Mpε

)
≤ 2N exp

(
− ε2Mp

3

))
=⇒ Yi ≤ Mp+O

(√
Mp logNδ−1

)
for all i ∈ [N]

with probability 1− δ implying that Pr(F1) ≤ δ. Let F2 be the event when the recovered matrix P̂ does not satisfy the
guarantee on ‖P̂−P‖∞ as stated in Lemma 23 equation 25 given a set of observed indices Ω sampled according to the
aforementioned process. From Lemma 23, we know that Pr(F2) = O(d−3

2 ) where d1 = max(N,M). Hence we can
conclude Pr(F1 ∪ F2) ≤ Pr(F1) + Pr(F2) = δ +O(d−3

2 ). This completes the proof of the corollary.

Remark 8. Note that the failure probability in Corollary 3, Lemmas 23, 22 and 21 is O(d−3
2 ). However the constant 3 can

be replaced by any arbitrary constant c for example c = 100 without any change in the guarantees on ‖P̂−P‖∞. Hence,
the guarantees presented in Lemma 23 and Corollary 3 hold with probability at least 1−O(d−c2 ) for any arbitrary constant
c.

Lemma 24 (Generalized Restatement of Lemma 1). Let P = ŪΣV̄T ∈ RN×M such that Ū ∈ RN×r, V̄ ∈ RM×r

and Σ , diag(λ1, λ2, . . . , λr) ∈ Rr×r with ŪTŪ = V̄TV̄ = I and ‖Ū‖2,∞ ≤
√
µr/N, ‖V̄‖2,∞ ≤

√
µr/M. Let

d1 = max(N,M) and d2 = min(N,M) such that 1 ≥ p ≥ Cκ4µ2d1d
−2
2 log3 d1 for some sufficiently large constant

C > 0. In that case, for any positive integer s > 0, there exists an algorithm A that uses m = O
(
s log(MNδ−1)(Mp +√

Mp logNδ−1)
)

recommendations per user such that A is able to recover a matrix P̂ satisfying

‖P− P̂‖∞ = O
( σ√

d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

sp

)
. (26)

with probability exceeding 1−O(δ log(MNδ−1)) where σ√
s

= O
(√

p
dκ4µr log d mini λi

)
.

Proof. Consider the proof of Lemma 23 where we sampled a set of indices Ω ∈ [N] × [M] and observed Pij + Eij

corresponding to the indices (i, j) ∈ Ω where Eij’s are independent zero mean sub-gaussian random variables and
have a variance proxy of σ2 (along with other entries of the reward matrix P). From Corollary 3, we know that m =
O(Mp+

√
Mp logNδ−1) recommendations per user are sufficient to obtain the guarantees in Lemma 23 equation 25 with

probability 1 − δ if in each round t, we observe the reward corresponding to one arm for the sampled user u(t) (see eq.
1). Thus, with m recommendations per user, we observe the noisy entries of P corresponding to the indices in a superset
Ω′ ⊇ Ω.

In our problem, an algorithm has the flexibility of recommending an arm more than once to the same user. Therefore,
consider an algorithm A that uses ms recommendations per user to obtain noisy observations corresponding to each index
in Ω′ s times and uses the mean of observations corresponding to each index. In that case, the algorithm A observes
Pij + Ẽij for all (i, j) ∈ Ω′ ⊇ Ω where Ẽij are independent zero mean sub-gaussian random variables with zero mean and
variance proxy σ2/s. Hence the effective variance σ2/s should satisfy the upper bound on the noise variance implying that
σ√
s

= O
(√

pd2
µ3 log d2

‖P‖∞
)

.

At this point, algorithm A can use Lemma 23 to recover an estimate P̂ of the matrix P satisfying the following: for any
(i, j) ∈ [N]× [M], we have from equation 25

|P̂ij −Pij | ≤ O
( σ√

d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

sp

)
. (27)

with probability exceeding 1− δ −O(d−c2 ) for any arbitrary constant c > 0. We can set c such that the failure probability
δ +O(d−c2 ) < 1/10.
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In order to boost the probability of success, the algorithm A can repeat the entire process f = log(MNδ−1) times in
order to obtain f estimates P̂(1), P̂(2), . . . , P̂(f). The total number of rounds needed to compute these estimates if we
use the observation model in equation 1 is at most mf with probability at least 1− δf . Furthermore, these estimates are
independent and therefore, we can compute a final estimate P̂ by computing the entry-wise median of the matrix estimates
P̂(1), P̂(2), . . . , P̂(f) i.e. for all (i, j) ∈ [N] ×M, we compute P̂ij = median(P̂

(1)
ij , . . . , P̂

(f)
ij ). Since, with probability

9/10, each estimates satisfy the guarantee in 27, we can again apply Chernoff bound that P satisfies the guarantee in 27
with probability 1− δ/MN. Now taking a union bound over all indices, we must have that

‖P̂−P‖∞ ≤ O
( σ√

d2

(d1

d2

)1/2

√
κ5µ3r3 log d1

sp

)
(28)

with probability at least 1− δ. Therefore the total failure probability is 1−O(δ + δ log(MNδ−1)).

We obtain the statement of Lemma 1 by substituting r = O(1), κ = O(1). Moreover, by another simple application of
the Chernoff bound again, we can ensure with probability 1− Õ(δ) that the total number of recommendations (so that the
number of recommendations per user is m as described in Lemma 24) is Õ(spMN) for which the guarantees in eq. 26 is
satisfied. Now we characterize m` in this general setting:
Lemma 25. Let us fix ∆`+1 > 0 and condition on the event E(`). Suppose Assumptions 1 i satisfied. In that case, in phase
`, by using

m` = Õ
(σ2C2(C

∨
µα−1)3r3κ5τ9/2

∆2
`+1

(
N
∨

ACτ
)))

rounds, we can compute an estimate P̃(`) ∈ RN×M such that with probability 1− δ, we have∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 for all i ∈ [a`] satisfying

∣∣∣N (i,`)
∣∣∣ ≥ γC. (29)

Proof of Lemma 25. We are going to use Lemma 1 in order to compute an estimate P̃
(`)

M(`,i),N (`,i) of the sub-matrix

PM(`,i),N (`,i) satisfying
∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1. From Lemma 1, we know that by using Õ(spMN)

rounds restricted to users inM(`,i) such that with probability at least 1− δ,∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞

= O
( σ√

d2

(d1

d2

)1/2

√
κ̃5µ̃3r3 log d1

sp

)
.

where d2 = min(|M(`,i)|, |N (`,i)|) and µ̃, κ̃ is the incoherence factor and condition number of the matrix PM(`,i),N (`,i) .

In order for the right hand side to be less than ∆`+1, we can set sp = O
(
σ2κ̃5µ̃3r3 log d1

∆2
`+1d2

)
. Since the event E(`) is true, we

must have that
∣∣M(`,i)

∣∣ ≥ N/(Cτ); hence d2 ≥ min
(

N
Cτ ,
∣∣N (`,i)

∣∣ ). Therefore, we must have that

m` = O
(σ2C2τ2κ̃5µ̃3r3 logM

∆2
`+1

max
(
N,MCτ

)
log2(MNCδ−1)

))
where we take a union bound over all sets comprising the partition of the users [N] (at most C of them). Finally, from Lemma
3, we know that µ̃ can be bounded from above by max(C, 2µ/α); from lemma 2, we can say that κ̃ can be bounded from
above by κ

√
τ which we can use to say that

m` = Õ
(σ2C2(C

∨
µα−1)3r3κ5τ9/2

∆2
`+1

(
N
∨

ACτ
)))

to complete the proof of the lemma.

Plugging this m` in the proof of Theorem 1, we can show that the Algorithm 1 guarantees the following regret

Reg(T) = Õ(
√
TV) +

√
BTσ) (30)

where V = Õ
(
σ2C2(C

∨
µ)3r3κ5τ9/2

(
N + M

))
. This result follows by proceeding through the exact same steps as in the

proof of Theorem 1.
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