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Abstract

Personalization of machine learn-
ing (ML) predictions for individual
users/domains/enterprises is critical for
practical recommendation systems. Stan-
dard personalization approaches involve
learning a user/domain specific embed-
ding that is fed into a fixed global model
which can be limiting. On the other hand,
personalizing/fine-tuning model itself for
each user/domain – a.k.a meta-learning – has
high storage/infrastructure cost. Moreover,
rigorous theoretical studies of scalable
personalization approaches have been very
limited. To address the above issues, we
propose a novel meta-learning style approach
that models network weights as a sum of
low-rank and sparse components. This
captures common information from multiple
individuals/users together in the low-rank
part while sparse part captures user-specific
idiosyncrasies. We then study the framework
in the linear setting, where the problem
reduces to that of estimating the sum of a
rank-r and a k-column sparse matrix using
a small number of linear measurements. We
propose a computationally efficient alter-
nating minimization method with iterative
hard thresholding – AMHT-LRS– to learn
the low-rank and sparse part. Theoretically,
for the realizable Gaussian data setting, we
show that AMHT-LRS solves the problem
efficiently with nearly optimal sample
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complexity. Finally, a significant challenge
in personalization is ensuring privacy of
each user’s sensitive data. We alleviate this
problem by proposing a differentially private
variant of our method that also is equipped
with strong generalization guarantees.

1 INTRODUCTION

Typical industrial recommendation systems cater to a
large number of users/domains/enterprises with a small
amount of user-specific data [Wang et al., 2016,Zhang
et al., 2020]. For instance, YouTube has ∼ 1.3 billion
unique monthly active users while the average likes per
user is small. So, personalizing predictions for each
user corresponds to the challenging task of training
ML models with a few data-points. Typically, person-
alization literature has approached this problem from
collaborative [Schafer et al., 1999] or content filtering
[Burke, 2003] approach. Both these approaches, in
some sense learn a user embedding or user specific fea-
ture vector which is then consumed by a global model
to provide the personalized predictions. This can also
be seen as a variation of the popular prompt learning
approach [Lester et al., 2021].

Naturally, the prompt learning approach is limiting
because the global model might not be able to capture
all the variations across users/domains unless it is of
extremely large size which in turn leads to large infer-
ence/training cost. Moreover, user-descriptive feature
vectors, limited by privacy concerns, might not be able
to capture the user-taste explicitly.

On the other extreme, such user-specific personalized
models can be learned by fine-tuning a global model
for each user. Vanilla approaches for fine-tuning can be
categorized as: 1) Neighborhood Models : these methods
learn a global model, which is then entirely "fine-tuned"
to specific tasks [Guo et al., 2020,Howard and Ruder,
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2018,Zaken et al., 2021] 2) Representation Learning :
these methods learn a low-dimensional representation
of points which can be used to train task-specific learn-
ers [Javed and White, 2019, Raghu et al., 2019, Lee
et al., 2019, Bertinetto et al., 2018, Hu et al., 2021].
Neighborhood fine-tuning techniques have two key limi-
tations: I) Infrastructure costs of hosting such models is
prohibitive. For example, consider a scenario where we
have a pre-trained 1GB model which is fine-tuned for
1M users, then the total storage cost itself is 1PB, and
II) they typically work for a small number of data-rich
users/domains/tasks, but the key regime for personal-
ization in our work is a long tail of data-starved users.
In this regime, neighborhood fine-tuning might lead
to over-fitting as well. Simple fixes like fine-tuning
only the last layer often lead to a significantly worse
performance [Chen et al., 2020a,Salman et al., 2020].
Further, note that representation learning techniques
can learn only the (low dimensional) common informa-
tion across the users but cannot capture the user-level
peculiarities as they share a fixed smaller representation
space. These limitations make model personalization
for a large number of data-starved users a challeng-
ing problem from the perspective of both storage and
inference.

Recently, with the advent of large ML models, there has
been a huge push towards practical Parameter Efficient
Fine-Tuning (PEFT) with a variety of techniques (see
the survey [Lialin et al., 2023] and references therein).
However, as described in [Lialin et al., 2023], a rig-
orous theoretical study of such approaches that can be
scaled to large number of tasks (users) has been lim-
ited. In this work, for the multi-user personalization
problem, our first contribution is to introduce the
LRS (Low Rank and Sparse) framework that combines
representation learning and sparse fine-tuning (two dis-
tinctive class of methods for PEFT) with two main
goals: 1) propose a practical/efficient algorithm for
learning a model for each user with minimal mem-
ory/parameter overhead, and 2) theoretically establish
strong generalization properties despite having a lim-
ited amount of data for many users. We note that
close variants of LRS have been studied empirically
with significant demonstrated advantage over state-of-
the-art methods for many real-world applications - 1)
recommendation [Zhao et al., 2017] 2) fMRI data with
applications to Alzheimer’s Disease [Tu et al., 2022] 3)
Statistical Model Selection and System Identification
[Chandrasekaran et al., 2009,Yuan and Yang, 2009].

Let us describe the LRS framework for multiple users
in its full generality for any parameterized class of
functions F . Let x ∈ Rd be the input point, and let
ŷ = f(x;Θ) ∈ R be the predicted label using a function
f ∈ F parameterized by Θ. For simplicity, assume that

Θ, the set of parameters, is represented in the form of
a high dimensional vector. Let there be t users, each
with a small amount of user-specific data and each
associated with a set of learnable model parameters
Θ(i). Then, the goal is to learn Θ(i) for each user
i ∈ [t] such that (a) Θ(i) does not over-fit despite
a small number of data-points generated specifically
from user i, (b) {Θ(i), 1 ≤ i ≤ t} can be stored and
used for fast inference even for large t, Our method
LRS attempts to address all the three requirements
using a simple low-rank + sparse approach: we model
each Θ(i) as Θ(i) := U⋆ · w⋆(i) + b⋆(i), where U⋆

is a orthonormal matrix representing a global set of
shared parameters (across users) corresponding to a low
(say r)-dimensional subspace, w⋆(i) is a r-dimensional
vector and b⋆(i) is a k-sparse vector. Thus, we represent
Θ(i) := Θ(i,1) +Θ(i,2), where the first term Θ(i,1) =
U⋆ ·w⋆(i) denotes the low rank component of Θ(i) that
is, the model parameters of the ith user lying in a low-
dimensional subspace (common for all users) and the
second term Θ(i,2) = b⋆(i) is restricted to be sparse.
Hence, for each user, we only need to store weights
of the r-dimensional vector w⋆(i) and the non-zero
weights of the k-sparse b⋆(i). Therefore, if r and k
are small, then the memory overhead per user is small
thus allowing efficient deployment. Moreover, we can
expect that a small amount of user-specific data should
be sufficient to train these few additional parameters
per user without over-fitting. Finally, our framework
provides users with the flexibility to either contribute
to a central model using privacy preserving bill-board
models (see Section 3) or learn their parameters locally
without contributing to the central model. This allows
for greater customization and adaptability based on
individual user preferences and requirements.

Theoretically speaking, a recent line of work
[Thekumparampil et al., 2021,Du et al., 2020,Tripu-
raneni et al., 2021, Boursier et al., 2022, Jain et al.,
2021] analyzes a framework exclusively on representa-
tion learning. They model Θ(i) := U⋆ · w⋆(i) as the
parameters associated with the ith user and provide
theoretical guarantees in the linear model setting. How-
ever, their algorithm/analysis do not extend to our case
since their model does not capture the additional spar-
sity component in Θ(i) - this additional non-convex
constraint introduces several technical challenges in
the analysis. Moreover, these works do not explore the
personalization framework with privacy constraints.

In our second and primary contribution, we con-
sider the problem of analyzing the LRS framework from
a theoretical lens. Specifically, we analyze the instanti-
ation of LRS in the context of linear models. In this
case, the training data for each user corresponds to a
few linear measurements of the underlying user-specific
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model parameter Θ(i). Our objective is to estimate
the individual components of Θ(i). Training a model
in the LRS framework involves learning a global set
of parameters characterizing the low dimensional sub-
space and the local user-specific parameters jointly. To
this end, we propose a simple alternating minimization
(AM) style iterative technique. Our method AMHT-
LRS alternatingly estimates the global parameters and
user-specific parameters independently for each user.
To ensure sparsity of (b⋆(i))’s we use an iterative hard-
thresholding style estimator [Jain et al., 2014]. For
linear models, even estimating the global parameters
i.e. the low rank subspace induced by U⋆ is an NP-hard
problem [Thekumparampil et al., 2021]. Therefore, sim-
ilar to [Thekumparampil et al., 2021], we consider the
realizable setting where the data is generated from a
Gaussian distribution. In this case, we provide a novel
analysis demonstrating the efficient convergence of our
method, AMHT-LRS, towards the optimal solution.
We believe our analysis techniques are of independent
interest as we track entry-wise error of different param-
eter estimates across iterations of AMHT-LRS. Below,
we state our main result (Thm. 1) informally:

Theorem (Informal). Suppose we are given m · t sam-
ples from t linear regression training tasks (each corre-
sponding to a user) of dimension d with m samples each.
In the LRS framework, the goal is to learn a new regres-
sion task’s parameters using m samples, i.e., learn the
r-dimensional weight vector defining the user-specific
low rank representation and the user-specific k-sparse
vector. Then AMHT-LRS with total mṫ = Ω(kdr4)
samples and m = Ω(max(k, r3)) samples per user can
recover all the parameters exactly and in time nearly
linear in m · t.

That is, in the linear instantiation of LRS, AMHT-LRS
is able to estimate the underlying model parameters up
to desired precision as long as the total number of users
in the recommendation system is large enough. More-
over, we show that the sufficient sample complexity per
user for our estimation guarantees scales only linear in
k and cubically in r (nearly optimal); recall that r, k
are much smaller than the ambient dimension d. The
detailed analysis of Theorem 1 is provided in Appendix
D, E. Furthermore, using the billboard model of (ϵ, δ)
differential privacy (DP) [Jain et al., 2021,Chien et al.,
2021,Kearns et al., 2014], we can extend AMHT-LRS
to preserve privacy of each individual user. For simi-
lar sample complexity as in the above theorem albeit
with slightly worse dependence on r, we can guarantee
strong generalization error up to a standard error term
due to privacy (see Theorem 3 and Appendix D).

Finally, to validate our theoretical contributions,
we demonstrate experimental results on synthetic and
real-world datasets using linear models. Also, we exper-

iment with our framework applied to neural networks
architectures (see Appendix A,B). Our experiments
demonstrate the advantage/efficacy of our framework
compared to natural baseline frameworks applied to
the same model architecture.

1.1 Other Related Work

Comparison with [Hu et al., 2021]: LORA (Low
Rank Adaptation of Large Language Models) was pro-
posed by [Hu et al., 2021] for meta-learning with large
number of tasks at scale. Although the authors demon-
strate promising experimental results, LORA only al-
lows a central model (in a low dimensional manifold)
and does not incorporate sparse fine-tuning. Hence,
LORA becomes ineffective when output dimension is
small. Moreover, LORA does not have theoretical
guarantees even in simple settings.

Comparison with Prompt-based and Batch-
norm Fine-tuning: Another popular approach for
personalization is to use prompt-based or batch-
norm based fine-tuning [Wang et al., 2022,Liu et al.,
2021,Lester et al., 2021]; this involves a task-based fea-
ture embedding concatenated with the covariate. Note
that in a linear model, such an approach leads to an
additional scalar bias that can be easily modeled in
our framework; thus our framework is richer and more
expressive with smaller number of parameters.

1.2 Preliminaries - Private Personalization

For model personalization in recommendation systems,
where we wish to have a personalized model for each
user, privacy guarantees are of utmost importance. Due
to sensitivity of user-data, we would want to preserve
privacy of each user for which we use user-level (ϵ, δ)-
DP as the privacy notion (see Definition 1). In this
setting, each user i ∈ [t] holds a set of data samples
D(i) = {x(i)

j , 1 ≤ j ≤ m}. Furthermore, users interact
via a central algorithm that maintains the common
representation matrix U⋆ which is guaranteed to be dif-
ferentially private with respect to all the data samples
of any single user. The central algorithm publishes the
current U⋆ to all the users (a.k.a. on a billboard) and
obtains further updates from the users. It has been
shown in prior works [Jain et al., 2021, Chien et al.,
2021,Thakkar et al., 2019] that such a billboard mech-
anism allows for significantly more accurate privacy
preserving methods while ensuring user-level privacy.
In particular, it allows learning of U⋆ effectively, while
each user can keep a part of the model which is personal
to them, for example, the w⋆(i), (b⋆(i))’s in our context.
See Section 3 of [Jain et al., 2021] for more details
about billboard model in the personalization setting.
Traditionally, such model of private computation is
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called the billboard model of DP and is a subclass of
joint DP [Kearns et al., 2014].

Definition 1 (Differential Privacy [Dwork et al.,
2006b,Dwork et al., 2006a,Bun and Steinke, 2016]). A
randomized algorithm A is (ε, δ)-differentially private
(DP) if for any pair of data sets D and D′ that differ
in one user (i.e., |D△D′| = 1), and for all S in the
output range of A, we have

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ,

where probability is over the randomness of A. Sim-
ilarly, an algorithm A is ρ-zero Concentrated DP
(zCDP) if Dα (A(D)||A(D′)) ≤ αρ, where Dα is the
Rényi divergence of order α.

In Definition 1, when we define the notion of neigh-
borhood, we define it with respect to the addition
(removal) of a single user (i.e., additional removal of
all the data samples Di for any user i ∈ [t]). In the
literature [Dwork and Roth, 2014], the definition is
referred to as user-level DP.

2 LINEAR LRS WITH GAUSSIAN
DATA

2.1 Problem Statement And AMHT-LRS

Notations: [m] denotes the set {1, 2, . . . ,m}. For a
matrix A, Ai denotes ith row of A. For a vector x,
xi denotes ith element of x. We sometimes use xj to
denote an indexed vector; in this case xj,i denotes the
ith element of xj . ∥ · ∥2 denotes euclidean norm of a
vector and the operator norm of a matrix. ∥ · ∥∞, ∥ · ∥0
will denote the ℓ∞ and ℓ0 norms of a vector respec-
tively. ∥A∥2,∞ = maxi ∥Ai∥2 and ∥A∥F =

√∑
i ∥Ai∥22

denote the L2,∞ and Frobenius norm of a matrix re-
spectively. For a sparse vector v ∈ Rd, we define
the support supp(v) ⊆ [d] to be the set of indices
{i ∈ [d] | vi ̸= 0}. We use I to denote the identity ma-
trix. Õ(·), Ω̃(·) notations subsume logarithmic factors.
For a matrix V ∈ Rd×r, vec(V) ∈ Rdr vectorizes the
matrix V by stacking columns sequentially. Similarly
vec−1

d×r(v) inverts the vec(·) operation by reconstruct-
ing a d × r matrix from a vector of dimension dr i.e.
for the matrix V, vec−1

d×r(vec(V)) = V. Finally, let
HT : Rd×R→ Rd be a hard thresholding function that
takes a vector v ∈ Rd and a parameter ∆ as input and
returns a vector v′ ∈ Rd such that v′i = vi if |vi| > ∆
and 0 otherwise.

In this section, we describe our LRS framework for
the linear setting with Gaussian data, provide an effi-
cient algorithm for parameter estimation, and provide
rigorous analysis under realizable setting. Formally
speaking, consider t, d-dimensional linear regression

tasks indexed by i ∈ [t] where the ith training task
is associated with the ith user. Recall that according
to the definition of LRS framework, every user/task
i ∈ [t] is associated with a set of unknown learnable
parameters Θ(i) ∈ Rd that can be decomposed as
Θ(i) = U⋆w⋆(i) + b⋆(i). Here U⋆ ∈ Rd×r (satisfying
(U⋆)TU⋆ = I) is the global shared set of parameters
(across users) corresponding to the orthonormal basis
vectors of a r-dimensional subspace. For the ith user,
the r-dimensional user-specific parameters w⋆(i) ∈ Rr

corresponds to the weights of the basis vectors of low
dimensional subspace defined by columns of U⋆; simi-
larly, the user-specific k-sparse vector b⋆(i) ∈ Rd with
∥b⋆(i)∥0 = k corresponds to the sparse component of
the unknown parameters of the ith user. Henceforth,
we will refer to the problem of estimating the unknown
parameters of user i ∈ [t] to be the ith training task.

For each task i ∈ [t], m≪ d samples {(x(i)
j , y

(i)
j )}mj=1 ∈

(Rd × R)m are provided labelled as task i. Next, we
assume the following generative model for the data:
for all i ∈ [t], for all j ∈ [m], the covariates {x(i)

j }i,j
are independently generated from a d-dimensional
Gaussian with identity covariance (denoted asN (0, Id))
and the expected response is a linear function of the
corresponding covariate. More precisely, we have for
all i ∈ [t], j ∈ [m]:

x
(i)
j ∼ N (0, Id) and

y
(i)
j | x

(i)
j = ⟨x(i)

j ,U⋆w⋆(i) + b⋆(i)⟩+ z
(i)
j (1)

where z
(i)
j ∼ N (0, σ2) are zero mean Gaussian random

variables with variance σ2. Furthermore, {x(i)
j , z

(i)
j }i,j

are independent random variables. We use X(i) ∈
Rm×d to represent the matrix of covariates for the ith

task s.t. X
(i)
j = (x

(i)
j )T. Similarly, we write y(i), z(i) ∈

Rm to represent the user-specific response vector and
noise vector respectively.

Therefore, given the data-set {(x(i)
j , y

(i)
j )}i,j , the prob-

lem reduces to that of designing statistically and compu-
tationally efficient algorithms to estimate the common
representation learning parameter U⋆ as well as task-
specific parameters {w⋆(i)}i∈[t], {b⋆(i)}i∈[t]. The ERM
(Empirical Risk Minimizer) for this model assuming
squared loss is given by the following objective function:

LRS: minimize L(U,W,B)

=
∑
i∈[t]

∑
j∈[m]

1

2

(
y
(i)
j − ⟨x

(i)
j ,Uw(i) + b(i)⟩

)2

s.t. UTU = I and ∥b(i)∥0 ≤ k ∀i ∈ [t] (2)

where U ∈ Rd×r, W = [w(1) w(2) . . . w(t)]T ∈ Rt×r

stores the estimated task-specific coefficients of the low-
dimensional subspace, and B = [b(1) b(2) . . . b(t)] ∈
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Rd×t stores the estimated task-specific sparse vectors
for fine-tuning. Note that the LRS objective is non-
convex due to: a) bilinearity of U,W, and b) non-
convexity of ℓ0 norm constraint.

To optimize the LRS objective, we propose an Alter-
nating Minimizing algorithm AMHT-LRS that starts
with an initialization of the unknown parameters and
iteratively updates them. AMHT-LRS handles the
non-convexity in the objective and the constrained set
by sequentially updating U, W and B (while keeping
the others fixed) with hard thresholding (recall the
function HT(·, ·)) to ensure sparsity of the columns
of B. Let U+(ℓ−1), {w(i,ℓ−1)}i∈[t] and {b(i,ℓ−1)}i∈[t]

be the latest iterates at the beginning of the ℓth iter-
ation in AMHT-LRS where we ensure that U+(ℓ−1)

is an orthonormal matrix ∈ Rd×r, {w(i,ℓ−1)}i∈[t] are
r-dimensional vectors and {b(i,ℓ−1)}i∈[t] are at most
k-sparse. First, for each task i ∈ [t], given estimates
U+(ℓ−1),w(i,ℓ−1), we can compute b(i,ℓ) by solving:

argmin
b∈Rd

∣∣∣∣∣∣X(i)(U+(ℓ−1)w(i,ℓ−1) + b)− y(i)
∣∣∣∣∣∣
2

such that ∥b∥0 ≤ k. (3)

While the problem is non-convex, note that it is equiv-
alent to sparse linear regression with the modified re-
sponse vector y(i) −X(i)U+(ℓ−1)w(i,ℓ−1). Therefore,
we can still apply a projected gradient descent algo-
rithm which reduces to iterative hard thresholding.
More precisely, for each task indexed by i ∈ [t], in
Line 4 of AMHT-LRS, we invoke another iterative
sub-routine OptimizeSparseVector (Alg. 2). In
each iteration of OptimizeSparseVector, we run
a gradient descent step on the estimate b (of b⋆(i))
and subsequently apply the hard-thresholding function
HT(·,∆) where ∆ > 0 is set appropriately in order to
ensure that the updated estimate b is sparse at the
end of every iteration in Algorithm 2. Next, given
estimates U+(ℓ−1),b(i,ℓ), we update w(i,ℓ) by solving
the following task-specific optimization problem

argmin
w∈Rr

∣∣∣∣∣∣X(i)(U+(ℓ−1)w + b(i,ℓ))− y(i)
∣∣∣∣∣∣
2
∀i ∈ [t]. (4)

Note that the objective in equation 4 allows a closed
form solution and therefore, the updated task-specific
estimate w(i,ℓ) is given as (computed in Line 5 of Al-
gorithm AMHT-LRS):

w(i,ℓ) =
(
(X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))

)−1

(
(X(i)U+(ℓ−1))T(y(i) −X(i)b(i,ℓ))

)
(5)

Subsequently, given the updated estimates of the task-
specific parameters {w(i,ℓ)}i∈[t] and {b(i,ℓ)}i∈[t], we
update the global U+(ℓ) in two steps: first, we compute

U(ℓ) by solving

argmin
U∈Rd×r

∑
i∈[t]

∣∣∣∣∣∣X(i)(Uw(i,ℓ) + b(i,ℓ))− y(i)
∣∣∣∣∣∣
2

(6)

followed by a QR decomposition of the solution U(ℓ)

to obtain the updated estimate U+(ℓ); the QR fac-
torization ensures that U+(ℓ) is orthonormal (U(ℓ) =
U+(ℓ)R). The objective in eq. 6 allows a closed form
solution and therefore, we can compute U(ℓ) as (com-
puted in line 7 of AMHT-LRS):

U(ℓ) = vec−1
d×r(A

−1vec(V))

where A :=
∑
i∈[t]

(
w(i,ℓ)(w(i,ℓ))T ⊗

( m∑
j=1

x
(i)
j (x

(i)
j )T

))
and V :=

∑
i∈[t]

(X(i))T
(
y(i) − b(i,ℓ)

)
(w(i,ℓ))T (7)

Here ⊗ denotes the Kronecker product of two matrices.
Finally, we must ensure independence of the estimates
(which are random variables themselves) from the data
that is used in a particular update. We can ensure
such statistical independence by using a fresh batch of
samples in every iteration.

Technical Challenges: To highlight the main techni-
cal challenges in analysis, we begin with a warm-up case:
the rank-1 setting (Theorem 4 in Appendix C) where
{w⋆(i)}’s are fixed to be 1. Here, the learnable param-
eters of the ith user can be written as Θ(i) = u⋆ +b⋆(i)

where u⋆ ∈ Rd is a global parameter vector shared
across users and b⋆(i) ∈ Rd×t is just a k-sparse vec-
tor (see Remark 3). AMHT-LRS alternately updates
the global parameter u⋆ and the sparse user-specific
parameter matrix B⋆ = [b⋆(1), . . . ,b⋆(t)] ∈ Rd×t. The
key novel step in the analysis is to track the entry-wise
error in the intermediate estimates of u⋆,B⋆ and their
true values – this requires a careful matrix taylor se-
ries decomposition of the least squares estimator and a
covering argument.

The general rank-r setting with unknown (W⋆)T =
[w⋆(1), . . . ,w⋆(t)] ∈ Rr×t poses several additional chal-
lenges. First of all, similar to the special case outlined
above, simply tracking the norms of U+(ℓ)−U⋆ is insuf-
ficient. Instead we track the norms of the orthonormal
matrix U+(ℓ) projected on the subspace orthogonal
to the one spanned by the columns of U⋆ – given by
(I−U⋆(U⋆)T)U+(ℓ). This is because, while analyzing
U+(ℓ) −U⋆, the estimate error of W⋆ leads to a bias
term that does not go down with iterations. Our novel
approach combines the complementary ideas presented
in [Thekumparampil et al., 2021], where the authors
consider only the low rank component and not the
sparse component and secondly, in [Netrapalli et al.,
2014], where the authors design an AM algorithm for
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Algorithm 1 AMHT-LRS (Algorithm for estimating U⋆, {w⋆(i)}i∈[t] and {b⋆(i)}i∈[t].)

Require: Data {(x(i)
j ∈ Rd, y

(i)
j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B. Initialization

U+(0), {w(i,0)}i∈[t], {b(i,0)}i∈[t] and parameters B, γ(0), ϵ > 0 such that
∣∣∣∣∣∣(I−U⋆(U⋆)T)U+(0)

∣∣∣∣∣∣
F
≤ B, maxi ∥b(i,0) −

b⋆(i)∥∞ ≤ γ(0) and ϵ is the desired parameter estimation accuracy.
1: for ℓ = 1, 2, . . . do
2: Set T (ℓ) = Ω

(
ℓ log

(
γ(ℓ−1)

ϵ

))
// Beginning of the ℓth iteration

3: for i = 1, 2, . . . , t do
4: b(i,ℓ) ← OptimizeSparseVector((X(i),y(i)),v = U+(ℓ−1)w(i,ℓ−1),b = b(i,ℓ−1), α = O

(
cℓ−1
4

B√
k

)
, β =

O(cℓ−1
5 B), γ = γ(ℓ−1),T = T (ℓ)) for suitable constants 1 ≥ c4, c5 > 0.

// Update the estimate of b⋆(i)

5: Compute w(i,ℓ) as in equation 5 // Update the estimate of w⋆(i)

6: end for
7: Compute U(ℓ) as in equation 7 and update U+(ℓ) = QR(U(ℓ)) such that U+(ℓ) is orthonormal.

// Update the estimate of U⋆

8: γ(ℓ) ← (c3)
ℓ−1ϵB for a suitable constant c3 < 1.

9: end for
10: Return w(ℓ), U+(ℓ) and {b(i,ℓ)}i∈[t].

Algorithm 2 OptimizeSparseVector (Projected Gra-
dient Descent for Estimating Sparse Vector)

Require: Data (X,y) ∈ Rm×d × Rm where we minimize
||y −X(v⋆ + b⋆)||2 s.t. ||b⋆||0 ≤ k. Estimate v (of v⋆)
and initialization b (of b⋆). Iterations T, parameters
α, β, γ > 0 and suitable constant c1 ∈ [0, 1/2].

1: for j = 1,2,. . . , T do
2: c← b− 1

m
· (X(i))T(X(i)b+X(i)v − y(i))

// Gradient Descent step on b to compute
intermediate vector c

3: ∆← α+ c1
(
γ + β√

k

)
and b← HT(c,∆)

// Hard-Thresholding operation on c to
ensure sparsity of b.

4: γ ← 2c1γ + 2(α+ c1√
k
β)

5: end for
6: Return vector b.

the problem of reconstructing the low rank and sparse
components of an input matrix. In contrast, we only
observe gaussian linear measurements of the individual
columns of the parameter matrix.

Hence, our analysis involves several crucial steps in
each iteration: 1) We track the incoherence of several
intermediate matrices corresponding to the latest esti-
mates W(ℓ),U(ℓ) of W⋆,U⋆ 2) We also track the L2,∞
norm of the matrix (I−U⋆(U⋆)T)U(ℓ) to make progress
on learning B⋆. In particular, the second step is the
most technically involved component of our analysis.

2.2 Theoretical Guarantees And Analysis

As in prior works, we are interested in the few-shot
learning regime when there are only a few samples per
task. From information theoretic viewpoint, we expect
the number of samples per task to scale linearly with
the sparsity k and rank r and logarithmically with the

dimension d. On the other hand, U⋆ has dr parameters
and therefore, it is expected that the total number of
samples across all tasks scales linearly with dr which
implies we would want the number of tasks t to scale
linearly with dimension d. Note that if the sparse
vectors {b⋆(i)}i∈[t] have the same support (or a high
overlap between the supports), then the model parame-
ters might not be uniquely identifiable. This is because,
in that case, the matrix B⋆ = [b⋆(1), . . . ,b⋆(t)] ∈ Rd×t

can be represented as a low-rank matrix itself. To
establish identifiability of U⋆ and sparse matrix B⋆,
we make the following assumption:
Assumption 1 (A1). Consider the matrix B⋆ ∈ Rd×t

whose ith column is the vector b⋆(i). Then each row of
B⋆ is ζ-sparse i.e. ∥B⋆

i ∥0 ≤ ζ for all i ∈ [d], and each
column is k-sparse.

Note that the orthonormal matrix U⋆ cannot have
extremely sparse columns otherwise it would be infor-
mation theoretically impossible to separate columns of
U⋆ from B⋆. Moreover, similar to [Tripuraneni et al.,
2021], we need to ensure that each task contributes
to learning the underlying representation U⋆. These
properties can be ensured by the standard incoherence
assumptions [Tripuraneni et al., 2021, Collins et al.,
2021,Netrapalli et al., 2014] and thus, we have
Assumption 2 (A2). Let λ⋆

1,λ⋆
r be the largest

and smallest eigenvalues of the task diversity
matrix (r/t)(W⋆)TW⋆ ∈ Rr×r where W⋆ =
[w⋆(1) . . . w⋆(t)]T. We assume W⋆ and the represen-
tation matrix U⋆ are µ⋆-incoherent i.e. ||W⋆||2,∞ ≤√

µ⋆λ⋆
r and ||U⋆||2,∞ ≤

√
µ⋆r
d .

Now, we are ready to state our main theorem formally:
Theorem 1. Consider the LRS problem (equation 2)
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with t linear regression tasks and samples obtained
by equation 1. Let model parameters satisfy as-
sumptions A1 and A2. Let B⋆ satisfy row sparsity
ζ = O

(
t(r2µ⋆)−1

√
λ⋆
r

λ⋆
1

)
, and column sparsity k =

O
(
d · (λ

⋆
r

λ⋆
1
)2
)
. Suppose Algorithm 1 is initialized with

U+(0) s.t.
∣∣∣∣(I−U⋆(U⋆)T)U+(0)

∣∣∣∣
F
= O

(√
λ⋆
r

λ⋆
1

)
and∣∣∣∣U+(0)

∣∣∣∣
2,∞ = O(

√
µ⋆r/d), and is run for L = Õ(1)

iterations Then, with high probability, the outputs
U+(L), {b(i,L)}i∈[t] satisfy:∣∣∣∣∣∣(I−U⋆(U⋆)T)U+(L)

∣∣∣∣∣∣
F
=

Õ(1)σS√
µ⋆λ⋆

r

,

and
∣∣∣∣∣∣b(i,L) − b⋆(i)

∣∣∣∣∣∣
∞
≤ Õ(1)σS√

k
, i ∈ [t],

respectively, where S =
(
µ⋆

√
r3d
mt +

√
r3

mλ⋆
r
+

√
k
m

)
provided the total number of samples satisfies:

m = Ω̃
(
k + r2µ⋆

(λ⋆
1

λ⋆
r

)2

+
σ2r3

λ⋆
r

)
,

mt = Ω̃
(
r3dµ⋆

(
r(µ⋆)4(λ⋆

r)
2k + µ⋆

(
λ⋆
1

λ⋆
r

)2

+ σ2
(
1 + 1

λ⋆
r

)))
.

For a new task with m additional labelled samples and
task specific parameters w⋆ ∈ Rr, b⋆ ∈ Rd, ||b⋆||0 =
k, a modified version of AMHT-LRS (see Alg. 6
in Appendix E) computes an estimate w,b of w⋆,b⋆

such that with high probability, we have the following
generalization bound:

L(U+(L),w,b)−L(U⋆,w⋆,b⋆) = Õ
(
σ2

(
S2+

k + r

m

))
.

Note that the per-task sample complexity of our
method roughly scales as m = (r3 + k), which is in-
formation theoretically optimal in k and is roughly
r2 factor larger. Total sample complexity scales as
mt = kdr4, which is roughly kr3 multiplicative factor
larger than the information theoretic bound. Note that
typically r and k are considered to be small, so the
additional factors are small, but we leave further inves-
tigation into obtaining tighter bounds for future work.
Finally, the generalization error scales as σ2(r + k)/m
which is nearly optimal. Note that, ignoring the LRS
framework, and directly learning the parameters of
each task separately would lead to significantly larger
error of σ2d/m.
Remark 1 (Runtime and Memory). The run-time
of Algorithm 1 is dominated by the update for U+(ℓ).
For each iteration ℓ, Step 8 has a time complexity of
O((dr)3 + (mt)(dr)2); however in practice, a gradient
descent step for the update of U(ℓ) can bring down the
time complexity to O(mtdr). Moreover, the memory
usage of Algorithm 1 is O((dr)2 + tr2).

Remark 2 (Initialization). Note that Algorithm 1 has
local convergence properties as described in Theorem 1.
In practice, typically we use random initialization for
U+(0). However, similar to the representation learning
framework in [Tripuraneni et al., 2021], we can use
the Method of Moments to obtain a good initialization.
See Appendix F for more details.

Remark 3 (Special Settings). Consider the setting
where, for each task, we just need to learn a single cen-
tral model for all tasks and sparse fine-tune the weights
for each task i.e. w⋆(i) = 1 for all i ∈ [t] is fixed. In this
case, AMHT-LRS obtains global convergence guarantees
(Theorem 4 in Appendix C). Moreover, if the central
model U⋆ is also frozen, then the task-based sparse fine-
tuning reduces to standard compressed sensing. In the
realizable setting, our framework recovers the standard
generalization error of σ2k/m in compressed sensing
[Jain and Kar, 2017][Chapter 7].

3 PRIVATE LINEAR LRS: PRIVACY
PRESERVING
PERSONALIZATION

We now extend our framework, algorithm and analysis
to allow user-level differential privacy. In this section,
we provide a user level DP variant of Algorithm 1 in
the billboard model. We obtain DP for the computa-
tion of each U(ℓ) by perturbing the covariance matrix
A and the linear term V in the algorithm with Gaus-
sian noise to ensure that the contribution of any single
user is protected. We start by introducing the func-
tion clip : R × R → R that takes as input a scalar x,
parameter ρ and returns clip(x, ρ) = x · min

{
1, ρ

x

}
.

We can extend the definition of clip to vectors and
matrices by using clip(v, ρ) = v ·min

{
1, ρ

∥v∥2

}
for a

vector v and clip(A, ρ) = A ·min
{
1, ρ

∥A∥F

}
for a ma-

trix A. In order to ensure that Algorithm 1 is private,
for input parameters A1,A2,A3,Aw, we first clip the
covariates and responses: for all i ∈ [t], j ∈ [m], we

will have x̂
(i)
j ← clip

(
x
(i)
j ,A1

)
, ŷ(i)j ← clip

(
y
(i)
j ,A2

)
,

̂
(x

(i)
j )Tb(i,ℓ) ← clip

(
(x

(i)
j )Tb(i,ℓ),A3

)
and ŵ(i,ℓ) ←

clip
(
w(i,ℓ),Aw

)
. Now, we can modify Line 7 in Al-

gorithm 1 as follows (let L be the number of iterations
of Alg. 1):

A := 1
mt

(∑
i∈[t]

(
ŵ(i,ℓ)(ŵ(i,ℓ))T ⊗

(∑m
j=1 x̂

(i)
j (x̂

(i)
j )T

))
+N(1)

)
(8)

V := 1
mt

(∑
i∈[t]

∑
j∈[m] x̂

(i)
j

(
ŷ
(i)
j − (

̂
x
(i)
j )Tb(i,ℓ)

)
(ŵ(i,ℓ))T +N(2)

)
(9)

where, for some σDP > 0, each entry of N(1) is inde-
pendently generated from N

(
0,m2 · A4

1 · A4
w · L · σ2

DP

)
;
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similarly, each entry of N(2) is independently generated
fromN

(
0,m2 · A2

1(A2 + A3)
2A2

w · L · σ2
DP

)
. We are now

ready to state our main result:
Theorem 2. Algorithm 1 (with modifications men-
tioned in equation 8 and equation 9) satisfies σ−2

DP −
zCDP and correspondingly satisfies (ε, δ)-differential
privacy in the billboard model, when we set the noise
multiplier σDP ≥ 2ε−1

√
(log(1/δ) + ε). Furthermore,

if ε ≤ log(1/δ), then σDP ≥ ε−1
√

8 log(1/δ) suffices to
ensure (ε, δ)-differential privacy.

Next, we characterize the generalization properties of
modified AMHT-LRS:
Theorem 3. Consider the LRS problem equa-
tion 2 with all parameters m, t, ζ obeying the
bounds stated in Theorem 1 and furthermore, t =

Ω̃(
(rd)3/2

√
log(1/δ)+ϵ

ϵ µ⋆). Suppose we run AMHT-LRS
(Step 7 in Alg. 1 replaced with 8 and 9) for L =

Õ(1) iterations with A1 = Õ(
√
d),A2 = Õ(

√
µ⋆λ⋆

r +

(maxi ∥b⋆(i)∥2)),A3 = Õ
(
λ⋆
r

√
µ⋆

λ⋆
1

)
,Aw = Õ(

√
µ⋆λ⋆

r).
Then, with high probability, generalization error for a
new task, with m additional labelled samples and task
specific parameters w⋆ ∈ Rr, b⋆ ∈ Rd, ||b⋆||0 = k,
satisfies:∣∣∣∣∣∣(I−U⋆(U⋆)T)U+(L)

∣∣∣∣∣∣
F
=

O(1)σS√
λ⋆
r

+

√
kη√
µ⋆λ⋆

r

,∣∣∣∣∣∣b(i,L) − b⋆(i)
∣∣∣∣∣∣
∞
≤ O(1)σS√

k
+ η,∀i ∈ [t],

L(U,w,b)− L(U⋆,w⋆,b⋆)

= Õ
(
σ2S2 +

dr2(log(1/δ) + ϵ)(λ⋆
rµ

⋆)2

ϵ2t2
· (κ2 + r2d2)

)
where (w,b) are estimates of (w⋆,b⋆) obtained by

Alg. 6, S =
(
µ⋆

√
r3d
mt +

√
r3

mλ⋆
r
+

√
k
m

)
, η =

Õ
(
t−1µ⋆r2d3/2

(
1+

√
λ⋆
r

λ⋆
1
+maxi∈[t]

∥b⋆(i)∥2√
µ⋆λ⋆

r

)
σDP

)
and

κ = 1 +
√

λ⋆
r

λ⋆
1
+maxi∈[t]

∥b⋆(i)∥2√
µ⋆λ⋆

r

.

Note that the modified AMHT-LRS ensures (ϵ, δ) dif-
ferential privacy without any assumptions. However,
Theorem 3 still has good generalization properties;
moreover, the per-task sample complexity guarantee
m still only needs to scale polylogarithmically with the
dimension d. In other words, our algorithm can ensure
good generalization along with privacy in data-starved
settings as long as the number of tasks is large - scales
as ∼ d3/2/ϵ. Similarly, generalization error for a new
task has two terms: the first has a standard dependence
on noise σ2 and the second has a scaling of d3(ϵt)−2

which is standard in private linear regression and pri-
vate meta-learning [Smith et al., 2017,Jain et al., 2021].

Detailed proofs of our main results namely Theorems
1,3 are delegated to Appendix D, E.

4 EMPIRICAL RESULTS

Here, we validate our theoretical guarantees for lin-
ear LRS and compare AMHT-LRS with algorithms
for other baseline frameworks: 1) Single Model
(ucentral): learns a single model for all tasks, 2) Full
Fine-tuning (uindv) separate model for each task
aka standard fine-tuning, 3) Representation Learn-
ing or Rep. Learning (uw): only low rank model
[Thekumparampil et al., 2021] and 4) Prompt Learn-
ing (uT(x || c): Modified covariate by concatenation
with a task-embedding vector.
a. LRS on Recommendation Datasets: We experi-
ment with 2 datasets: MovieLens1M and Netflix. For
the Movielens1M dataset, we have 241 users with vary-
ing number of rated movies (22−3070). For the Netflix
dataset, we have 1000 users, each with at most 100
rated movies. For Movielens1M dataset, we compare
the rank-1 version of AMHT-LRS with other baselines
where we vary the sparsity. With only 15% sparsity,
AMHT-LRS becomes superior to other baselines. For
Netflix dataset, we compare the Representation Learn-
ing baseline with AMHT-LRS and vary the rank at 2%
sparsity - the remaining baselines perform significantly
worse (Appendix A). Clearly, AMHT-LRS provides
gains on both datasets and corroborate our theory.
Moreover, the number of additional parameters per
task is also significantly small for AMHT-LRS (refer
to Table B.2.3 for exact numbers).

b. DP LRS Simulations: Here, for a synthetic
dataset, we note that while Differentially Private (DP)
AMHT-LRS performs quite well for each ϵ, both the
private and non-private Single Model baselines fare
badly even on higher values of ϵ. Further, DP AMHT-
LRS achieves RMSE comparable to its non-private
version by ϵ ≈ 2 mark.

Detailed versions of these experiments are provided
in Appendix A. Additional experiments with neural
network architectures and other synthetic datasets are
provided in Appendix B.

5 CONCLUSION AND FUTURE
WORK

We presented a novel framework LRS for model per-
sonalization that can scale to many users/domains, be
accurate and preserve privacy. We proposed AMHT-
LRS, that combines alternate minimization – popular
in representation learning – with hard thresholding
based methods. In linear model with Gaussian data,
we rigorously proved that AMHT-LRS is statistically
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(a) DP-AMHT-LRS Simulations (b) MovieLens (c) Netflix

Figure 1: Comparison of AMHT-LRS with algorithms for other baseline frameworks on different datasets. Fig. a
demonstrates that the overall RMSE on the simulated data for both the private and non-private versions of AMHT-LRS is
far lower than the corresponding variants of Single Model. In Fig. b, on Movielens data, rank 1 version of AMHT-LRS
(at 15% sparsity) outperforms other baselines with small parameter overhead/user. In Fig. c, for Netflix data, we plot
RMSE v/s rank curves for AMHT-LRS (at 2% sparsity) and representation learning. We observe that for each rank value,
AMHT-LRS improves upon the performance of representation learning.

and computationally efficient, and is able to generalize
to new users with only O(r+k) samples, where r is the
representation learning dimension and k is the num-
ber of fine-tuning weights. We extended our results to
ensure that privacy of each user is preserved despite
sharing information. Extending LRS to non-realizable
and adversarial settings are critical future directions.
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A EMPIRICAL RESULTS

(a) MovieLens (b) Netflix (c) Jester
Figure 2: RMSE on different datasets for various methods as we increase the user-specific fine-tunable parameters. Note
that AMHT-LRS outperforms other baselines with a small amount of parameter overhead/user. Full fine-tuning generalizes
poorly in the more data-starved Netflix and Jester datasets.

Compute Resources: For all of our experiments we used Google Colaboratory, with a single V100 GPU having
12 GB RAM.

In this section, we are going to expand upon the information presented in Section 4 and fill the gaps in
implementation details. Recall that we developed AMHT-LRS with the following two goals: a) demonstrate that
personalization with AMHT-LRS indeed improves accuracy for tasks with a small number of points, b) for a
fixed budget of parameters, AMHT-LRS is significantly more accurate than existing baselines.

Also, recall the nomenclature for the following baselines mentioned in the main paper: 1) Single Model
(ucentral): learns a single model for all tasks, 2) Full Fine-tuning (uindv): separate model for each task
aka standard fine-tuning, 3) Representation Learning or Rep. Learning (uw): only low rank model
[Thekumparampil et al., 2021] and 4) Prompt Learning (uT(x || c): Modified covariate by concatenation
with a task-embedding vector. Note that the models considered in [Hu et al., 2021,Chua et al., 2021,Denevi
et al., 2018] all reduce to Full fine-tuning models (with much higher memory footprint) in the experi-
ments that we consider. In the case of Rep. Learning and AMHT-LRS where r > 1, we will replace "u"
by "U" in their respective nomenclature. Lastly, the above approaches are not just restricted to linear
models and can be extended to complex model classes such as Neural Networks (see Appendix B.2 for
extension to 2-3 layer Neural Net architectures and Table B.2.3 for memory footprint comparisons). Addi-
tional experiments on synthetic data can also be found in Appendix B.1. Here, we focus on two sets of experiments:

A.1 Linear Models on Recommendation Datasets

We compare the performance of AMHT-LRS against the baselines mentioned above on 3 recommendation datasets:
MovieLens1M, Netflix and Jester. For each dataset, we define training tasks at a user-level or with small groups
of users.

A.1.1 MovieLens Dataset

The MovieLens 1M dataset comprises of 1M ratings of 6K users for 4K movies. Each user is associated with some
demographic data namely gender, age group, and occupation in the MovieLens dataset. We partition the users
into 241 disjoint clusters where each cluster represents a unique combination of the demographic data. Each user
group thus represents a "task" in the language of our paper. We partition the data into training and validation in
the following way: for each task, we randomly choose 20% movies rated by at least one user from that task and
put all ratings made by users from that task for the chosen movie into the validation set. The remaining ratings
belong to the training set. Based on the ratings in the training set, we fit a matrix of rank 50 onto the ratings
matrix and obtain a 50 dimensional embedding of each movie. Thus, we ensure that there is no data leakage
during embeddings generation. For each task, the samples consist of (movie embedding, average rating) tuples;
the response is the average rating of the movie by users in that task. The number of samples per task varies from
22 to 3070 - clearly many clusters are data starved. We use the training data to learn the different models (see
Section 4; with hyper-parameter tuning) and use them to predict the ratings for the validation data.
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Empirical Observations on MovieLens validation dataset: With respect to the single model as reference, in the
linear rank-1 case, the representation learning and the prompt learning based baselines have 1 and 50 additional
parameters per task respectively; they are unable to personalize well. In contrast, with only 10%(= 5) additional
parameters per task, AMHT-LRS has smaller RMSE than fully fine-tuned model, which require 241x more
parameters. See Figures 1 and Table B.2.3 for clear comparisons.

A.1.2 Netflix Dataset

We consider the Netflix Challenge dataset comprising of 17k users and 480k movies where ratings are provided as
integers on a scale of 1− 5. We choose the top 1000 users who have rated the most movies and top 100 movies
that have been rated the most and consider the 1000× 100 rating matrix restricted to these sets of top users and
movies - this rating matrix comprises approximately 90k ratings. We perform the train-validation split in the
following way: for 70 users, we keep 10% of their ratings in the training set (small data/user); for 70 users, we
kept 50% of their ratings in their training set (medium data/user) and for the rest of 60 users, we kept 90% of
their ratings in their training set (large data/user). All the observed ratings restricted to the 1000× 100 ratings
matrix that are absent in the training set is inserted into the validation set. By using standard low rank matrix
completion techniques [Chen et al., 2020b], we complete the ratings matrix by minimizing the MSE w.r.t to the
entries in the training set with a nuclear norm regularizer. Following this, we compute SVD UΣVT and take the
first 50 columns of V; this results in a truncated 1000× 50 dimensional matrix V̂ where each row corresponds to
a 50-dimensional embedding of each movie. As before, the train-validation data split before embedding generation
ensures that there is no data leakage while creating the embeddings. For each task representing each user, the
samples consist of (movie embedding, average rating) tuples; the response is the average rating of the movie
given by users in that task. For this experiment, instead of varying the number of fine-tunable parameters, we
fix it at 2% (= 1 parameter since d = 50), and vary the rank r for both rep. learning and AMHT-LRS. The
different models (see Section 4) are trained with some hyper-parameter tuning) used to predict the ratings for the
validation data.

Empirical Observations on Netflix validation data: We notice all the baselines other than rep. learning seem to
perform significantly worse. Further, at each value of the rank r, AMHT-LRS with just (r−1)∗50 (from U)+(r−
1) ∗ 1 (from w) = (r − 1) ∗ 51 number of additional parameters shared across all users and 1 additional parameter
(since 2% of d = 50 is 1) per user, outperforms all the other baselines. See Figures 1 and Table B.2.3 for clear
comparisons.

A.1.3 Jester Dataset

The Jester dataset comprises of 4.1M ratings from 73k users for 100 jokes with each rating being on a scale of
−10.0 to +10.0. We choose 100 users who have rated all the 100 jokes and consider the 100× 100 rating matrix
restricted to these users and jokes - this rating matrix is entirely filled. Similar to the Netflix dataset, we perform
the train-validation split in the following way: for 30 users, we keep 10% of their ratings in the training set (small
data/user); for 40 users, we kept 50% of their ratings in their training set (medium data/user) and for the rest of
30 users, we kept 90% of their ratings in their training set (large data/user). We use the training data to learn the
different models (with some hyper-parameter tuning) and use them to predict the ratings in the validation data.

Empirical Observations on Jester validation dataset:

The conclusions are mostly similar as in the Netflix and MovieLens cases. With only 2%(= 1) additional parameter
per task, AMHT-LRS has smaller RMSE than fully fine-tuned model, which require 100x more parameters and
the other baselines such as representation learning (1 additional parameter) and prompt learning (50 additional
parameters). This holds true for both data-starved and data-surplus tasks. See Figures 1 and Table B.2.3 for
clear comparisons.

A.1.4 DP LRS Simulations

Here, for each task i ∈ [t], we generate m = 100 samples {(x(i)
j , y

(i)
j )}j∈[m] where x

(i)
j ∼ N (0, Id×d), y

(i)
j =

⟨x(i)
j ,u⋆w⋆(i) + b⋆(i)⟩ and w⋆(i) = 1 is fixed for simplicity. We select number of tasks t = 5000, data dimensions

d = 10, k, ζ, and both the column and row sparsity level of {b⋆(i)}i∈[t] to be 2. We sample u⋆ uniformly from the
unit sphere and the non-zero elements of {b⋆(i)}i∈[t] are sampled i.i.d. from N (0, 1) with the non-zero indices
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selected randomly. We run the algorithm for 15 epochs and use RDP sequential composition to compute the
privacy risk accumulated over the epochs. We set smallest possible clipping norm values for A1,A2 and A3 s.t.
most samples don’t get clipped. We fix δ = 10−5. Finally we plot the RMSE on the test set for different values of
ϵ.

Figure 3: Comparison of Overall RMSE on the simulated data for both the private and non-private versions of AMHT-LRS
and the Single Model Baseline.s

Empirical Observations: We note that while DP AMHT-LRS performs quite well for each ϵ, both the private
and non-private Single Model baselines fare badly even on higher values of ϵ. Further, DP AMHT-LRS achieves
RMSE comparable to its non-private version by ϵ ≈ 2 mark.

B ADDITIONAL EXPERIMENTS AND SETUP

Figure 4: Decrease in RMSE on Synthetic data for AMHT-LRS on increase in fine-tunable parameters

B.1 Synthetic experiments with non-private algorithms

Synthetic dataset: Here, for each task i ∈ [t], we generate m = 100 samples {(x(i)
j , y

(i)
j )}j∈[m] where x

(i)
j ∼

N (0, Id×d), y
(i)
j = ⟨x(i)

j ,u⋆w⋆(i) + b⋆(i)⟩. We select d = 150, set k, ζ, the column and row sparsity level of
{b⋆(i)}i∈[t] to be 10 and 5, respectively. We sample u⋆ uniformly from the unit sphere; non-zero elements of
{b⋆(i)}i∈[t] and w⋆(i) are sampled i.i.d. from N (0, 1) with the indices of zeros selected randomly.

Figure 4 shows that not only having a single model can lead to poor performance, but a fully fine-tuned model
per task can also be highly inaccurate as scarcity of data per task can leading to over-fitting. Finally, low-rank
representation learning as well as prompt tuning based techniques do not perform well due to lack of modeling
power. In contrast, our method recovers the underlying parameters – as also predicted by Theorem 1 – and
provides 5 orders of magnitude better RMSE.
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B.2 Experiments with Neural Networks

As described in Section 4, our techniques/approaches can be extended to complex classes of non-linear model. To
demonstrate this, we fix the class of models to Neural Networks (denoted by F : Rd → R). Similar to Section 4,
we consider the following baselines: 1) Single Model (F(x; ucentral)): learns a single Neural Network model for
all tasks, 2) Full Fine-tuning (F(x; uindv)) Learns a separate fully-trained Neural Network model for each task,
3) Rep. Learning (F(x; uw)): Learns separate Neural Networks for each task such that the NN parameters
of each task lie on a low dimensional manifold. 4) Prompt Learning (F(x || c; ucentral)): The covariate is
concatenated with a trainable embedding of the corresponding task and a single Neural network model is trained
with the modified covariates. AMHT-LRS (F(x; uw + bsparse)) itself trains a separate Neural Network model for
each task but assumes that the entire set of parameters of the Neural networks for each task can be represented
as a Low Rank+Sparse matrix. And as before, for the the case of Rep. Learning or AMHT-LRS extensions to
Neural Networks, if we use r > 1, we will replace "u" by "U" in their respective nomenclature.

As in the case of linear models, we use the training data to learn the parameters of different models (with some
hyper-parameter tuning) described above and use them to predict the ratings in the validation data. The overall
average validation RMSE for AMHT-LRS and the 4 different baselines (modified for neural networks) that we
consider against different amounts of sparsity in bsparse is computed (shown in figures for each of three datasets
that we experiment with). The memory footprint of the different methods (for each of the three datasets) has
been provided in Table B.2.3.

More Details on Experimental Setup: To compute the single model and fully fine-tuned model metrics, we
used batched gradient descent. To compute the low rank model metrics, we performed alternating optimization
as per the algorithm described in [Thekumparampil et al., 2021]. Finally, to compute AMHT-LRS metrics, we
used an L2 regularization for each b(i,ℓ). For all the gradient based methods, we used Adam/AdamW Optimizer
with weight decay and learning rate scheduler. We experimented with Cosine Annealing and Decay on Plateau
schedulers. We performed a search over learning rates, L2 weight decay values and learning rate scheduler
hyperparameters (decay factor for Decay on Plateau and window size for Cosine Annealing) and reported the
model metrics which gave the best overall RMSE on the validation dataset.

B.2.1 Netflix Dataset

LRS with 2 layer Neural Net for Netflix: For the Neural Network (NN) experiments on Netflix dataset, we
consider the function class F - a 2 layer Neural Net with a single hidden layer of 50 neurons and tanh activation.
The training and the validation data on the Netflix dataset is same as created for the linear models (see Section
A.1.2). The comparison of validation RMSE of AMHT-LRS and all the 4 baselines corresponding to the Netflix
dataset is given in Figure B.2.1.

Observe that AMHT-LRS outperforms the rest of the baselines with a small memory overhead (see Table B.2.3).
In particular, the improvement in performance is achieved along with a significant improvement in memory cost
compared to Full fine-tuning - AMHT-LRS (with only 1% sparsity/tunable parameters for each user) outperforms
the Full-Finetuning baseline at each rank r value.

B.2.2 Jester Dataset

LRS with 2 layer Neural Net for Jester: For the Neural Network (NN) experiments on Jester dataset, we
consider the function class F - a 2 layer Neural Net with a single hidden layer comprising 50 neurons and tanh
activation. As before, the training and the validation data is the same that was created for the case of linear
models (see Sec. A.1.3). The comparison of validation RMSE of AMHT-LRS and all the 4 baselines corresponding
to the Jester dataset is given in Figure 6a.

Again, we observe that AMHT-LRS outperforms the rest of the baselines with a small memory overhead (see
Table B.2.3). As before, the improvement in performance is achieved along with a significant improvement in
memory cost compared to Full fine-tuning - AMHT-LRS (with only 2% sparsity/tuneable parameters for each
user) outperforms the Full-Finetuning baseline with only 1.5% of the corresponding number of parameters.
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(a) Overall comparison of RMSE. (b) Rep. Learning v/s AMHT-LRS

Figure 5: Comparison of Overall RMSE on the Netflix validation data achieved by AMHT-LRS and the different baselines
we consider where the training is modified for toy Neural Network models with a single hidden layer of 50 neurons and
tanh activation. AMHT-LRS outperforms other baselines at each rank value (see Table B.2.3 for exact numbers on model
parameters).

(a) Overall comparison of RMSE.

Figure 6: Comparison of Overall RMSE on the Jester validation data achieved by AMHT-LRS and the different baselines
we consider where the training is modified for toy Neural Network models with a single hidden layer of 50 neurons and
tanh activation. AMHT-LRS outperforms other baselines along with a significantly smaller memory footprint (see Table
B.2.3 for exact numbers on model parameters).

B.2.3 MovieLens Dataset

LRS with 3 layer Neural Net for MovieLens: For the Neural Network (NN) experiments on MovieLens
dataset, we consider the function class F - a 3 layer Neural Net with 2 hidden layers of 50 neurons each and tanh
activation. The training and the validation data on the MovieLens dataset is created in a similar manner as
discussed in Section 4. The comparison of validation RMSE of AMHT-LRS and all the 4 baselines corresponding
to the MovieLens dataset is given in Figure 7a. Here, we can observe that AMHT-LRS has almost similar
performance as the best performing baseline Full Fine-tuning (F(x; uindv)) while outperforming the other baselines.
However, note that the individual models F(x; uindv) have a high memory overhead since every trained model per
task has the same memory usage as a single Neural Network model. In particular AMHT-LRS (with only 20%
sparsity/tunable parameters) matches the Full-finetuning baseline with approximately 20% of the corresponding
number of parameters.
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(a) Overall comparison of RMSE.

Figure 7: Comparison of RMSE on the MovieLens validation data achieved by AMHT-LRS and the different baselines we
consider where the training is modified for toy Neural Network models with 2 hidden layers of 50 neurons each. AMHT-LRS
has similar performance as individual models F(x; uindv) trained for each task; however our models have a significantly
smaller memory footprint (see Table B.2.3 for exact numbers on model parameters).

C WARM-UP: CENTRAL MODEL + FINE-TUNING

C.1 Sparse Fine-tuning of Central Model

Inspired by parameter efficient transfer learning applications shown in [Guo et al., 2020] where the authors
propose learning a task-specific sparse vector, we consider the following simple variant of our problem in the
noiseless rank-1 setting (r = 1) with (W⋆)T being a multiple of an all 1 t-dimensional vector. We will denote the
representation vector by u⋆ ∈ Rd that is shared by all the tasks. Therefore, the ERM for this model is given
by the LRS problem with w(i) = 1 for all i ∈ [t]. We can also pose this problem as the setting when the low
rank representation of the datapoints corresponds to projection on a fixed unknown vector; there exists a central
model (parameterized by the fixed unknown vector shared across tasks) and each task is a fine-tuned version of
the central model. Our AM algorithm to solve the modified ERM problem is significantly simpler; in particular
Steps 2-8 in Algorithm 1 is replaced by the following set of updates given estimates u(ℓ−1) ∈ Rd (of u⋆) and
{b(i,ℓ−1)}i∈[t] (of {b⋆(i)}i∈[t]) in the ℓth iteration with a suitable choice of ∆(ℓ):

c(i,ℓ) ← b(i,ℓ−1) − (m−1X(i))T(X(i)(u(ℓ−1) + b(i,ℓ−1))− y(i)) (10)

b(i,ℓ) ← HT(c(i,ℓ),∆(ℓ)) (11)

u(ℓ) ←
(∑

i

(X(i))TX(i)
)−1(∑

i

(X(i))T
(
y(i) −X(i)b(i,ℓ)

))
(12)

Notice that the updates in eq. 12 are only implemented once in each iteration (unlike Algorithm 2) which improves
the run-time as well as the sample complexity of the algorithm by logarithmic factors. The detailed Algorithm is
provided in Appendix C. We present the main theorem below:

Theorem 4. Consider the LRS problem with t linear regression tasks and samples obtained by equa-
tion 1 where rank r = 1, σ = 0, U⋆ ≡ u⋆ ∈ Rd and w⋆

i ≡ w⋆ ∈ R. Let model parameters
{b⋆(i)}i∈[t] satisfy assumption A1. Suppose Algorithm 1 with modified updates (eq. 12) is run for L =

log
(
ϵ−1
0

(
maxi∈[t]

∣∣∣∣b⋆(i)
∣∣∣∣
∞ + ||u⋆||∞ +

||u⋆||2√
k

))
iterations. Then, w.p. ≥ 1−O(δ0), the outputs u(L), {b(i,L)}i∈[t]

satisfy:
∣∣∣∣u(L) − w⋆u⋆

∣∣∣∣
∞ ≤ O(ϵ0) and

∣∣∣∣b(i,L) − b⋆(i)
∣∣∣∣
∞ ≤ O(ϵ0) for all i ∈ [t] provided the total number of

samples satisfy m = Ω̃(k), mt = Ω̃(d
√
k) and mt2 = Ω̃(ζkd).

Remark 4. Notice from Theorem 4 that our AM algorithm in the sparse fine-tuning setting enjoys global
convergence guarantees and does not require any initialization conditions. Secondly, we do not need u⋆ to satisfy
any incoherence property for convergence guarantees of Theorem 4 (unlike Theorem 1). Therefore, Theorem 4
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Table 1: Comparison of number of model parameters for Linear formulation of AMHT-LRS at different sparsity
levels and different baselines. Note that our approach AMHT-LRS at 2% and 10% sparsity levels for MovieLens
and Jester respectively has substantially less number of parameters than Full fine-tuning uindv and comparable
number of model parameters with the other baselines. For Netflix, at each rank r value, with just 1 additional
parameter/user AMHT-LRS is able to outperform all other baselines.

Dataset Method #Parameters

MovieLens

Single Model (ucentral) 50
Full Fine-tuning (uindv) 12,050
Rep. Learning (uw) 291
Prompt Learning (ucentral, x || c) 12,100
AMHT-LRS (uw + b2% sparse) 532
AMHT-LRS (uw + b6% sparse) 1,014
AMHT-LRS (uw + b10% sparse) 1,496
AMHT-LRS (uw + b16% sparse) 2,219
AMHT-LRS (uw + b20% sparse) 2701

Jester

Single Model (ucentral) 50
Full Fine-tuning (uindv) 5,000
Rep. Learning (uw) 150
Prompt Learning (ucentral, x || c) 5,050
AMHT-LRS (uw + b2% sparse) 250
AMHT-LRS (uw + b4% sparse) 350
AMHT-LRS (uw + b6% sparse) 450
AMHT-LRS (uw + b8% sparse) 550
AMHT-LRS (uw + b10% sparse) 650

Netflix

Single Model (ucentral) 50
Full Fine-tuning (uindv) 50,000
Rep. Learning (uw) Rank r = 1 1,050
Rep. Learning (Uw) Rank r = 2 2,100
Rep. Learning (Uw) Rank r = 3 3,150
Rep. Learning (Uw) Rank r = 4 4,200
Rep. Learning (Uw) Rank r = 5 5,250
Prompt Learning (ucentral, x || c) 10,050
AMHT-LRS (uw + b2% sparse) Rank r = 1 2,050
AMHT-LRS (Uw + b2% sparse) Rank r = 2 3,100
AMHT-LRS (Uw + b2% sparse) Rank r = 3 4,150
AMHT-LRS (Uw + b2% sparse) Rank r = 4 5,200
AMHT-LRS (Uw + b2% sparse) Rank r = 5 6,250

is interesting in itself and significantly improves on the guarantees of Theorem 1 directly applied to the special
setting.

C.2 Detailed Analysis and Proof of Theorem 4

In the fine-tuning model described in Section C.1, we consider a system comprising of t tasks, each of which
(indexed by i ∈ [t]) is parameterized by an unknown task-specific sparse parameter vector b⋆(i) ∈ Rd satisfying
∥b⋆(i)∥0 ≤ k along with a dense unknown parameter vector u⋆ ∈ Rd that is shared across all tasks. Now, for each
task i ∈ [t], we obtain samples {(x(i)

j , y
(i)
j )}mj=1 according to the following model:

x
(i)
j ∼ N (0, Id) and y

(i)
j | x

(i)
j = ⟨x(i)

j ,u⋆ + b⋆(i)⟩ for all i ∈ [t], j ∈ [m] (13)

We will assume that the model parameters {b⋆(i)}i∈[t] satisfy Assumption A1. More importantly, we do not
assume A2 and furthermore, we do not assume that u⋆ is unit-norm. Since u⋆ is not unit norm, we can write it
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Table 2: Comparison of number of model parameters for NN versions of AMHT-LRS at different sparsity levels
and different baselines. As in Table B.2.3, our approach AMHT-LRS at 1% and 5% for MovieLens and Jester
respectively sparsity levels has substantially less number of parameters than Full fine-tuning F(x; uindv) and
comparable number of model parameters with the other baselines. For Netflix, at each rank r value, with just 1%
additional parameter/user AMHT-LRS is able to outperform all other baselines.

Dataset Method #Parameters

MovieLens

Single Model F(x; ucentral) 5,151
Full Fine-tuning F(x; uindv) 1,241,391
Rep. Learning F(x; uw) 5,392
Prompt Learning F(x || c; ucentral) 19,701
AMHT-LRS F(x; uw + b1% sparse) 17,924
AMHT-LRS F(x; uw + b5% sparse) 67,570
AMHT-LRS F(x; uw + b10% sparse) 129,748
AMHT-LRS F(x; uw + b15% sparse) 191,685
AMHT-LRS F(x; uw + b20% sparse) 253,863

Jester

Single Model F(x; ucentral) 2,601
Full Fine-tuning F(x; uindv) 260,100
Rep. Learning F(x; uw) 2,701
Prompt Learning F(x || c; ucentral) 10,101
AMHT-LRS F(x; uw + b1% sparse) 5,302
AMHT-LRS F(x; uw + b5% sparse) 15,706
AMHT-LRS F(x; uw + b10% sparse) 28,711
AMHT-LRS F(x; uw + b15% sparse) 41,716
AMHT-LRS F(x; uw + b20% sparse) 54,721

Netflix

Single Model (F(x; ucentral)) 2,601
Full Fine-tuning F(x; uindv) 2,601,000
Rep. Learning F(x; uw) Rank r = 1 4,601
Rep. Learning F(x;Uw) Rank r = 2 9,202
Rep. Learning F(x;Uw) Rank r = 3 13,803
Rep. Learning F(x;Uw) Rank r = 4 18,404
Rep. Learning F(x;Uw) Rank r = 5 23,005
Prompt Learning F(x || c; ucentral) 55,101
AMHT-LRS F(x; uw + b1% sparse) Rank r = 1 30,601
AMHT-LRS F(x;Uw + b1% sparse) Rank r = 2 35,202
AMHT-LRS F(x;Uw + b1% sparse) Rank r = 3 39,803
AMHT-LRS F(x;Uw + b1% sparse) Rank r = 4 44,404
AMHT-LRS F(x;Uw + b1% sparse) Rank r = 5 49,005

as u⋆ = u⋆

||u⋆||2
||u⋆||2. In order to map it to the statement of Theorem 4 and the general problem statement in 1,

we can immediately write w⋆ ← ||u⋆||2 and u⋆ ← u⋆

||u⋆||2
(since u⋆ in the statement of Theorem 4 is unit-norm).

Hence, we can simplify the notation significantly by assuming that u⋆ is not unit norm and by subsuming the
scalar w⋆ (which is same across all tasks for this special setting) with the norm of vector u⋆.

Initialization and Notations: For ℓ = 0, we will initialize u(0) = 0 and b(i,0) = 0 for all tasks indexed by
i ∈ [t]. For any ℓ ≥ 0, at the beginning of the (ℓ+ 1)th iteration, we will use α(ℓ), τ (ℓ) to denote known upper
bounds on the ℓ2-norm of the approximated parameters and γ(ℓ), β(ℓ) to denote known upper bounds on the
ℓ∞-norm of the approximated parameters that will hold with high probability as described below:

max
i∈[t]

∣∣∣∣∣∣b(i,ℓ) − b⋆(i)
∣∣∣∣∣∣
2
≤ α(ℓ) and max

i∈[t]

∣∣∣∣∣∣b(i,ℓ) − b⋆(i)
∣∣∣∣∣∣
∞
≤ γ(ℓ),∣∣∣∣∣∣u(ℓ) − u⋆

∣∣∣∣∣∣
∞
≤ β(ℓ) and

∣∣∣∣∣∣u(ℓ) − u⋆
∣∣∣∣∣∣
2
≤ τ (ℓ).
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Algorithm 3 AMHT-LRS (Central Model+Finetuning)

Require: Data {(x(i)
j ∈ Rd, y

(i)
j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B. Initial Error Bounds

maxi∈[t] ∥b(0,ℓ)−b⋆(i)∥2 ≤ α(0), maxi∈[t] ∥b(i,0)−b⋆(i)∥∞ ≤ γ(0), ∥u(0)−u⋆∥∞ ≤ β(0) and ∥u(0)−u⋆∥2 ≤ τ (0).

1: Suitable constants c1, c2, c3 > 0.
2: for ℓ = 1, 2, . . . (Until Convergence) do
3: ∆(ℓ) ← β(ℓ−1) + c1√

k

(
τ (ℓ−1) + α(ℓ−1))

4: c(i,ℓ) ← b(i,ℓ−1) − 1
m · (X

(i))T(X(i)(u(ℓ−1) + b(i,ℓ−1))− y(i))

5: b(i,ℓ) ← HT(c(i,ℓ),∆(ℓ))

6: u(ℓ) ←
(

1
mt

∑
i

∑
j x

(i)
j (x

(i)
j )T

)−1(
1
mt

∑
i

∑
j x

(i)
j (y

(i)
j − (x

(i)
j )Tb(i,ℓ))

)
7: Set, γ(ℓ) ← 2β(ℓ−1) + 2c1√

k
τ (ℓ−1) + 2c1γ

(ℓ−1)

8: Set τ (ℓ) ← c2
√
kγ(ℓ), β(ℓ) ← c3γ

(ℓ) and α(ℓ) ←
√
kγ(ℓ)

9: end for
10: Return w(ℓ), U+(ℓ) and {b(i,ℓ)}i∈[t].

Lemma 2. For some constant c > 0 and for any iteration indexed by ℓ ∈ [L], we can have the following updates

γ(ℓ) = 2β(ℓ−1) + 2c

√
log(td/δ0)

m

(
τ (ℓ−1) + α(ℓ−1)

)
,

α(ℓ) = 2
√
kβ(ℓ−1) + 2c

√
k log(td/δ0)

m

(
τ (ℓ−1) + α(ℓ−1)

)
support(b(i,ℓ) ⊆ support(b⋆(i)).

with probability 1−O(δ0).

Proof. Fix any i ∈ [t]. It is easy to see that update step 4 of Algorithm 3 gives us

c(i,ℓ) − b⋆(i) =
(
I− 1

m
(X(i))TX(i)

)(
b(i,ℓ−1) − b⋆(i)

)
+

1

m
(X(i))TX(i)(u⋆ − u(ℓ−1))

=⇒ c(i,ℓ) − b⋆(i) − u⋆ + u(ℓ−1) =
(
I− 1

m
(X(i))TX(i)

)(
b(i,ℓ−1) − b⋆(i)

)
+
(
I− 1

m
(X(i))TX(i)

)
(u(ℓ−1) − u⋆). (14)

Let es ∈ Rd denote the sth basis vector for which the sth coordinate entry is 1 and all other coordinate entries are
0. Then, note that:∣∣∣(c(i,ℓ) − b⋆(i) − u⋆ + u(ℓ−1)

)
s

∣∣∣
=

∣∣∣∣eTs (I− 1

m
(X(i))TX(i)

)(
b(i,ℓ−1) − b⋆(i)

)
+ eTs

(
I− 1

m
(X(i))TX(i)

)
(u(ℓ−1) − u⋆)

∣∣∣∣
≤

∣∣∣∣eTs (I− 1

m
(X(i))TX(i)

)(
b(i,ℓ−1) − b⋆(i)

)∣∣∣∣+ ∣∣∣∣eTs (I− 1

m
(X(i))TX(i)

)
(u(ℓ−1) − u⋆)

∣∣∣∣
≤

∣∣∣∣ 1meTs (X
(i))TX(i)(b(i,ℓ−1) − b⋆(i))− eTs (b

(i,ℓ−1) − b⋆(i))

∣∣∣∣
+

∣∣∣∣ 1meTs (X
(i))TX(i)(u(ℓ−1) − u⋆)− eTs (u

(ℓ−1) − u⋆)

∣∣∣∣
≤ c

√
log(1/δ0)

m

(
τ (ℓ−1) + α(ℓ−1)

)
,

w.p. ≥ 1−O(δ0), where we invoke Lemma 17 in the last step and plugging a = es and b = b(i,ℓ−1) − b⋆(i) and
u(ℓ−1) − u⋆ for the two terms respectively. Therefore, by taking a union bound over all entries s ∈ [d], and a
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further union bound over all tasks (t of them), we can conclude that for all i ∈ [t], we must have∣∣∣∣∣∣c(i,ℓ) − b⋆(i) − u⋆ + u(ℓ−1)
∣∣∣∣∣∣
∞
≤ c

√
log(td/δ0)

m

(
τ (ℓ−1) + α(ℓ−1)

)
=⇒

∣∣∣∣∣∣c(i,ℓ) − b⋆(i)
∣∣∣∣∣∣
∞
≤ β(ℓ−1) + c

√
log(td/δ0)

m

(
τ (ℓ−1) + α(ℓ−1)

)
(15)

w.p. 1−O(δ0). Now, we have

b(i,l) = HT(c(i,ℓ),∆(ℓ))

=⇒ b(i,l)s =

{
c
(i,ℓ)
s if |c(i,ℓ)s | > ∆(ℓ),

0 otherwise,
(16)

=⇒ |b(i,l)s − b⋆(i)s | =

{
|c(i,ℓ)s − b

⋆(i)
s | if |c(i,ℓ)s | > ∆(ℓ),

|b⋆(i)s | otherwise.
(17)

Therefore if we set ∆(ℓ) = β(ℓ−1) + c
√

log(td/δ0)
m

(
τ (ℓ−1) + α(ℓ−1)

)
(as described in Step 2 of the algorithm), then,

by using equation 15 and equation 17, we have
∣∣∣∣b(i,ℓ) − b⋆(i)

∣∣∣∣
∞ ≤ 2∆(ℓ) and therefore,

=⇒
∣∣∣∣∣∣b(i,ℓ) − b⋆(i)

∣∣∣∣∣∣
∞
≤ 2β(ℓ−1) + 2c

√
log(td/δ0)

m

(
τ (ℓ−1) + α(ℓ−1)

)
= γ(ℓ) (18)

and
∣∣∣∣∣∣b(i,ℓ) − b⋆(i)

∣∣∣∣∣∣
2
≤ 2
√
kβ(ℓ−1) + 2c

√
k log(td/δ0)

m

(
τ (ℓ−1) + α(ℓ−1)

)
= α(ℓ), (19)

with probability 1−O(δ0). Furthermore, from equation equation 15 we have for any coordinate s∣∣∣(c(i,ℓ) − b⋆(i)
)
s

∣∣∣ ≤ ∆(ℓ).

Thus, if s /∈ support(b⋆(i)), then the above gives |c(i,ℓ)| ≤ ∆(ℓ). Using this in equation 16 gives b(i,l)s = 0. Hence, for
all s ∈ [d], we must have s /∈ support(b⋆(i)) =⇒ s /∈ support(b⋆(i,ℓ)) implying that support(b(i,ℓ) ⊆ support(b⋆(i)).
Hence, the proof of the lemma is complete.

Lemma 3. For some constant c > 0 and for any iteration indexed by ℓ > 0, we have

τ (ℓ) =

√
2ζk
t γ(ℓ) + 4α(ℓ)

√
d log(d/δ0)

mt

1− c
√

d log(1/δ0)
mt

with probability 1−O(δ0).

Proof. Update step 3 of the Algorithm for the ℓth iteration gives us

u(ℓ) =
( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T

)−1( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T(u⋆ + b⋆(i) − b(i,ℓ))

)
=⇒ u(ℓ) − u⋆ =

( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T︸ ︷︷ ︸

A

)−1( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T(b⋆(i) − b(i,ℓ))︸ ︷︷ ︸
v

)
.

Let us denote the vector b⋆(i) − b(i,ℓ) by z(i,ℓ) for simplicity. Notice that for any h ∈ [d], we have

vh =
( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )Tz(i,ℓ)

)
h

=
1

mt

∑
i

∑
j

((
x
(i)
j,h

)2

z
(i,ℓ)
h +

∑
u:u ̸=h

x
(i)
j,hx

(i)
j,uz

(i,ℓ)
u

)
. (20)
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Now, note that the random variable
(
x
(i)
j,h

)2

z
(i,ℓ)
h is a

(
4(z

(i,ℓ)
h )2, 4|z(i,ℓ)h |

)
sub-exponential random variable.

Similarly, x(i)
j,hx

(i)
j,uz

(i,ℓ)
u is a

(
2(z

(i,ℓ)
u )2,

√
2|z(i,ℓ)u |

)
sub-exponential random variable. Therefore, we must have

(
x
(i)
j,h

)2

z
(i,ℓ)
h +

∑
u:u̸=h

x
(i)
j,hx

(i)
j,uz

(i,ℓ)
u

=
(
4(z

(i,ℓ)
h )2 + 2

∑
u:u̸=h

(z(i,ℓ)u )2,max
(
4|z(i,ℓ)h |, max

u:u ̸=h
(
√
2|z(i,ℓ)u |)

))
=

(
4∥z(i,ℓ)∥22, 4∥z(i,ℓ)∥∞

)
sub-exponential random variable. (21)

Furthermore,

E [vh] =
1

mt

∑
i

∑
j

(
E
[(

x
(i)
j,h

)2

z
(i,ℓ)
h

]
+ E

 ∑
u:u̸=h

x
(i)
j,hx

(i)
j,uz

(i,ℓ)
u

)
=

1

mt

∑
i

∑
j

(
z
(i,ℓ)
h + 0

)
=

1

t

∑
i

z
(i,ℓ)
h . (22)

Using equation 21, equation 22 and Lemma 23 in equation 20 implies that∣∣∣∣∣vh − 1

t

∑
i

z
(i,ℓ)
h

∣∣∣∣∣ ≤ max
(
2∥z(i,ℓ)∥2

√
2 log(1/δ0)

mt
, 2∥z(i,ℓ)∥∞

2 log(1/δ0)

mt

)
≤ max

(
2α(ℓ)

√
2 log(1/δ0)

mt
, 2γ(ℓ) 2 log(1/δ0)

mt

)
︸ ︷︷ ︸

ϵh

.

will be true with probability at least 1− δ0. On taking a union bound over all h ∈ [d], we will have that∣∣∣∣∣vh − 1

t

∑
i

z
(i,ℓ)
h

∣∣∣∣∣ ≤ max
(
2α(ℓ)

√
2 log(d/δ0)

mt
, 2γ(ℓ) 2 log(d/δ0)

mt

)
︸ ︷︷ ︸

ϵh

. (23)

with probability 1−O(δ0). Note that ∥v∥22 =
∑

h v
2
h. Hence, we have∑

h

v2h ≤
∑
h

(
2
(1
t

∑
i

z
(i,ℓ)
h

)2

+ 2ϵ2h

)
≤ 2ζ

∑
h

∑
i

(
z
(i,ℓ)
h

t
)2 + 2

∑
h

ϵ2h

≤ 2ζ
∑
i

∑
h

(z(i,ℓ)h

t

)2

+ 2
∑
h

ϵ2h

≤ 2ζ

t
(α(ℓ))2 + 8(α(ℓ))2

2d log(d/δ0)

mt
,

where we use that 2α(ℓ)
√

2 log(d/δ0)
mt > 2γ(ℓ) 2 log(d/δ0)

mt . Hence, with probability at least 1−O(δ0), we must have
by using that α(ℓ) ≤

√
kγ(ℓ)

∥v∥2 ≤
√

2ζk

t
γ(ℓ) + 4α(ℓ)

√
d log(d/δ0)

mt
(24)
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Furthermore, from Lemma 19, we have with probability 1− δ0 for any iterations ℓ ∈ [L]

∥ 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T − I∥2 ≤ c

√
d log(1/δ0)

mt
. (25)

implying that the minimum eigenvalue of the matrix 1
mt

∑
i

∑
j x

(i)
j (x

(i)
j )T − I is at least 1− c

√
d log(1/δ0)

mt ; hence

the maximum eigenvalue of the matrix ( 1
mt

∑
i

∑
j x

(i)
j (x

(i)
j )T − I)−1 is at most (1 − c

√
d log(1/δ0)

mt )−1. Using
equation 24 and equation 25, we get for any iterations ℓ ∈ [L] with probability 1−O(δ0),

∥u(ℓ) − u⋆∥2 ≤

√
2ζk
t γ(ℓ) + 4α(ℓ)

√
d log(d/δ0)

mt

1− c
√

d log(1/δ0)
mt

≜ τ (ℓ). (26)

Lemma 4. For some constant c > 0 and for any iteration indexed by ℓ > 0, we have

β(ℓ) =
(ζ
t
+ 2c

√
log(d/δ0)

mt

√
2ζk

t

)
γ(ℓ) +

(
c

√
log(d/δ0)

mt
+ 8c
√
d
log(d/δ0)

mt

)
α(ℓ)

with probability at least 1−O(δ0).

Proof. With probability at least 1−O(δ0), we have that ||E||2 ≤
√

d log 9
mt . We fix mt = Ω(d) so that ||E||2 < 1.

Our goal is to bound the quantity ∥u(ℓ) − u⋆∥∞ from above. Denoting A = I + E and using the fact that
(I+E)−1 = I−E+E2 + . . . (since ||E||2 < 1), by using Lemma 16 and taking a union bound over all entries
s ∈ [d], we have with probability at least 1− δ0,∣∣∣∣∣

∣∣∣∣∣v − 1

t

∑
i

(b⋆(i) − b(i,ℓ))

∣∣∣∣∣
∣∣∣∣∣
∞

= max
s

∣∣∣∣∣∣ 1

mt

∑
i

∑
j

eTsx
(i)
j (x

(i)
j )T(b⋆(i) − b(i,ℓ))− 1

t

∑
i

eTs (b
⋆(i) − b(i,ℓ))

∣∣∣∣∣∣
= max

s

∣∣∣∣∣∣ 1

mt

∑
i

∑
j

(x
(i)
j )T(b⋆(i) − b(i,ℓ))eTsx

(i)
j −

1

t

∑
i

eTs (b
⋆(i) − b(i,ℓ))

∣∣∣∣∣∣
≤ c

√√√√∑
i

∑
j

∥(b⋆(i) − b(i,ℓ))eTs ∥2F
log(d/δ0)

m2t2

≤ cα(ℓ)

√
log(d/δ0)

mt
.

Hence with probability at least 1− δ0, we will have the following statement

||v||∞ ≤ cα(ℓ)

√
log(d/δ0)

mt
+

ζ

t
γ(ℓ). (27)

Since u(ℓ) − u⋆ = (I+E)−1v with E = 1
mt

∑
i

∑
j x

(i)
j (x

(i)
j )T − I, we will have

∣∣∣∣∣∣u(ℓ) − u⋆
∣∣∣∣∣∣
∞
≤

∞∑
j=0

∣∣∣∣Ejv
∣∣∣∣
∞. (28)
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Let V ≜ {z ∈ Rd|∥z∥ = 1}. Then for ϵ ≤ 1, there exists an ϵ-net, Nϵ ⊂ Z, of size (1 + 2/ϵ)d w.r.t the Euclidean
norm, i.e. ∀ z ∈ Z, ∃ z′ ∈ Nϵ s.t. ∥z− z′∥2 ≤ ϵ. Now consider any z ∈ Nϵ. Then, Lemma 17 with a = es and
b = z and taking a union bound over all entries s ∈ [d] gives∣∣∣∣∣∣eTs

( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T − I

))
z

∣∣∣∣∣∣ ≤ c∥z∥22 max
(√ log(1/δ0)

mt
,
log(1/δ0)

mt

)

=⇒ ∥Ez∥∞ ≤ cmax
(√ log(d|Nϵ|/δ0)

mt
,
log(d|Nϵ|/δ0)

mt

)
≤ cmax

(√ log(d(1 + 2/ϵ)d/δ0)

mt
,
log(d(1 + 2/ϵ)d/δ0)

mt

)
, ∀v ∈ Nϵ (29)

Further, ∃ z ∈ Nϵ s.t. ∥z′ − z∥2 ≤ ϵ. This implies that setting ϵ← 1/4 and c← 2c gives:

∥Ez′∥∞ ≤ ∥E(z− z′)∥∞ + ∥Ez∥∞
≤ ∥E(z− z′)∥2 + ∥Ez∥∞

≤ c

√
d log(d/δ0)

mt
. (30)

with probability at least 1− δ0. Hence, with probability at least 1−O(δ0), we have that ||E||2 ≤
√

d log 9
mt and

||Ez||∞ ≤ c

√
d log(dδ−1

0 )
mt for all z ∈ V. Therefore, let us conditioned on these events in order to prove the next

steps. We will show an upper bound on ∥A−1v∥∞.

∥A−1v∥∞ = ∥(I+E)−1v∥∞

≤
∞∑
j=0

∣∣∣∣Ejv
∣∣∣∣
∞. (31)

We have with probability at least 1− δ0

∥Epv∥∞ = ∥EEp−1v∥∞

=

∣∣∣∣∣∣∣∣(E∥Ep−1v∥2
)( Ep−1v

∥Ep−1v∥2

)∣∣∣∣∣∣∣∣
∞

= ∥Ep−1v∥2
∣∣∣∣∣∣∣∣E( Ep−1v

∥Ep−1v∥2

)∣∣∣∣∣∣∣∣
∞

≤ ∥Ep−1v∥2c
√

d log(d/δ0)

mt

≤
(
c

√
d log(1/δ0)

mt

)p−1

c

√
d log(d/δ0)

mt
∥v∥2 (32)

Therefore, if mt = Ω(d log(d/δ0)) by taking a union bound we must have with probability at least 1− δ0,

∞∑
p=1

||Epv||∞ = O
(√d log(d/δ0)

mt

)
||v||2. (33)

Therefore we have w.p. ≥ 1−O(δ0)

∣∣∣∣∣∣u(ℓ) − u⋆
∣∣∣∣∣∣
∞
≤ ||v||∞ + 2c

√
d log(d/δ0)

mt
||v||2. (34)

Plugging the bounds of ||v||∞ and ||v||2 from equation 27 and equation 24 in equation 34, we obtain that w.p.
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≥ 1− δ0) ∣∣∣∣∣∣u(ℓ) − u⋆
∣∣∣∣∣∣
∞

≤ cα(ℓ)

√
log(d/δ0)

mt
+

ζ

t
γ(ℓ) + 2c

√
d log(d/δ0)

mt

(√2ζk

t
γ(ℓ) + 4α(ℓ)

√
d log(d/δ0)

mt

)
=

(ζ
t
+ 2c

√
d log(d/δ0)

mt

√
2ζk

t

)
γ(ℓ) +

(
c

√
log(d/δ0)

mt
+ 8c

d log(d/δ0)

mt

)
α(ℓ) = β(ℓ) (35)

Lemma 5. After L iterations, for some constant c > 0. we will have with probability 1−O(Lδ0),∣∣∣∣∣∣u(L) − u⋆
∣∣∣∣∣∣
∞
≤ c32

L−1(c3 + c1c2 + c1)
L−1Z,∣∣∣∣∣∣b(i,L) − b⋆(i)

∣∣∣∣∣∣
∞
≤ 2L−1(c3 + c1c2 + c1)

L−1Z,∣∣∣∣∣∣b(i,L) − b⋆(i)
∣∣∣∣∣∣
2
≤
√
k2L−1(c3 + c1c2 + c1)

L−1Z,∣∣∣∣∣∣u(L) − u⋆
∣∣∣∣∣∣
2
≤ c2
√
k2L−1(c3 + c1c2 + c1)

L−1Z,

where

Z =
(
2
∣∣∣∣∣∣u(0) − u⋆

∣∣∣∣∣∣
∞

+
2c1√
k

∣∣∣∣∣∣u(0) − u⋆
∣∣∣∣∣∣
2
+ 2c1 max

i∈[t]

∣∣∣∣∣∣b(i,0) − b⋆(i)
∣∣∣∣∣∣
∞

)
,

c1 = c

√
k log(tdL/δ0)

m
,

c2 =

√
2ζ
t + 4

√
d log(dL/δ0)

mt

1− c
√

d log(L/δ0)
mt

,

c3 =
(ζ
t
+ 2c

√
d log(d/δ0)

mt

√
2ζk

t

)
+
√
k
(
c

√
log(d/δ0)

mt
+ 8c

d log(d/δ0)

mt

)
.

Proof. Using Lemma 2 and the fact that α(ℓ) ≤
√
kγ(ℓ), we have for ℓ ≥ 1

γ(ℓ) ≤ 2β(ℓ−1) +
2c1√
k
τ (ℓ−1) + 2c1γ

(ℓ−1), (36)

τ (ℓ) ≤ c2
√
kγ(ℓ), (37)

β(ℓ) ≤ c3γ
(ℓ), (38)

Using equation 37 and equation 38 in equation 36, we get

γ(ℓ) ≤ (2c3 + 2c1c2 + 2c1)γ
(ℓ−1)

= 2(c3 + c1c2 + c1)γ
(ℓ−1)

≤ . . .

≤ 2ℓ−1(c3 + c1c2 + c1)
ℓ−1γ(1)

≤ 2ℓ−1(c3 + c1c2 + c1)
ℓ−1

(
2β(0) +

2c1√
k
τ (0) + 2c1γ

(0)
)
, (39)

where in the last step we plug in the value γ(1) ≤ 2β(0) + 2c1√
k
τ (0) + 2c1γ

(0) from equation 36 at ℓ = 1.

Using equation 39 in equation 38 gives

β(ℓ) ≤ c32
ℓ−1(c3 + c1c2 + c1)

ℓ−1
(
2β(0) +

2c1√
k
τ (0) + 2c1γ

(0)
)
. (40)
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Using equation 39, equation 37 and α(ℓ) ≤
√
kγ(ℓ) further gives:

α(ℓ) ≤
√
k2ℓ−1(c3 + c1c2 + c1)

ℓ−1
(
2β(0) +

2c1√
k
τ (0) + 2c1γ

(0)
)
, (41)

τ (ℓ) ≤ c2
√
k2ℓ−1(c3 + c1c2 + c1)

ℓ−1
(
2β(0) +

2c1√
k
τ (0) + 2c1γ

(0)
)
. (42)

equation 39, equation 40,equation 41 and equation 42 give us the required result.

Theorem (Restatement of Theorem 4). Consider the LRS problem with t linear regression tasks and samples
obtained by equation 1 where rank r = 1, σ = 0, U⋆ ≡ u⋆ ∈ Rd and w⋆

i ≡ w⋆ ∈ R. Let model parameters
{b⋆(i)}i∈[t] satisfy assumption A1 with ζ = O(t). Suppose Algorithm 1 with modified updates (eqns. 10,11,12)

is run for L = log
(
ϵ−1
0

(
maxi∈[t]

∣∣∣∣b⋆(i)
∣∣∣∣
∞ + ||u⋆||∞ +

||u⋆||2√
k

))
iterations. Then, w.p. ≥ 1−O(δ0), the outputs

u(L), {b(i,L)}i∈[t] satisfy:∣∣∣∣∣∣u(L) − w⋆u⋆
∣∣∣∣∣∣
∞
≤ O(ϵ0) and

∣∣∣∣∣∣b(i,L) − b⋆(i)
∣∣∣∣∣∣
∞
≤ O(ϵ0) for all i ∈ [t].

provided the total number of samples satisfy

m = Ω̃(k), mt = Ω̃(d
√
k) and mt2 = Ω̃(ζkd).

Proof. In order to map 13 to the statement of Theorem 4 and the general problem statement in 1, recall that we
can immediately write w⋆ ← ||u⋆||2 and u⋆ ← u⋆

||u⋆||2
(since u⋆ in the statement of Theorem 4 is unit-norm). For

the simplicity of notation, we had subsumed w⋆ within ||u⋆||2. Therefore, we directly use Lemma 5 to prove our
theorem where the result is stated after mapping back to the setting in 13 and the Theorem statement.

D ALGORITHM AND PROOF OF THEOREM 1 (PARAMETER RECOVERY)

Algorithm 4 AMHT-LRS (Alternating Minimization for LRS in (2))

Require: Data {(x(i)
j ∈ Rd, y

(i)
j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B,

∣∣∣∣∆(U+(0),U⋆)
∣∣∣∣
F
≤ B,

maxi ∥b(i,0) − b⋆(i)∥∞ ≤ γ(0), Parameters ϵ > 0 and A.
1: for ℓ = 1, 2, . . . do
2: Set T (ℓ) = Ω

(
ℓ log

(
γ(ℓ−1)

ϵ

))
3: for i = 1, 2, . . . , t do
4: b(i,ℓ) ← OptimizeSparseVector((X(i),y(i)),v = U+(ℓ−1)w(i,ℓ−1), α = O

(
cℓ−1
4

B√
k
+ A

)
, β = O(cℓ−1

5 B +

A), γ = γ(ℓ−1) + A,T = T (ℓ))
{Use a fresh batch of data samples; c4, c5 are suitable constants}1

5: w(i,ℓ) =
(
(X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))

)−1(
(X(i)U+(ℓ−1))T(y(i) − X(i)b(i,ℓ))

)
{Use a fresh batch of

data samples}
6: end for
7: Set A :=

∑
i∈[t]

(
w(i,ℓ)(w(i,ℓ))T⊗

(∑m
j=1 x

(i)
j (x

(i)
j )T

))
and V :=

∑
i∈[t](X

(i))T
(
y(i)−b(i,ℓ)

)
(w(i,ℓ))T {Use

a fresh batch of data samples}
8: Compute U(ℓ) = vec−1

d×r(A
−1vec(V)) and U+(ℓ) ← QR(U(ℓ)) {U(ℓ) = U+(ℓ)R}

9: γ(ℓ) ← (c3)
ℓ−1ϵB+ A for a suitable constant c3 < 1.

10: end for
11: Return w(ℓ), U+(ℓ) and {b(i,ℓ)}i∈[t].

Assumption 3 (A3). We assume that ||U⋆||2,∞ ≤
√
ν⋆/k for some constant ν⋆ > 0.

Note that Assumption A3 is weaker than Assumption A2 where ||U⋆||2,∞ ≤
√

µ⋆/d provided k ≤ dν⋆

µ⋆ . We will
use Assumption A3 in place of A2 for simplicity of exposition and for sharper guarantees as well. Recall that in
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Algorithm 5 DP-AMHT-LRS ( Private Alternating Minimization for LRS in (2))

Require: Data {(x(i)
j ∈ Rd, y

(i)
j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B,

∣∣∣∣∆(U+(0),U⋆)
∣∣∣∣
F
≤ B,

maxi ∥b(i,0) − b⋆(i)∥∞ ≤ γ(0), Parameters ϵ > 0 and A.
1: for ℓ = 1, 2, . . . do
2: Set T (ℓ) = Ω

(
ℓ log

(
γ(ℓ−1)

ϵ

))
3: for i = 1, 2, . . . , t do
4: b(i,ℓ) ← OptimizeSparseVector((X(i),y(i)),v = U+(ℓ−1)w(i,ℓ−1), α = O

(
cℓ−1
4

B√
k
+ A

)
, β = O(cℓ−1

5 B +

A), γ = γ(ℓ−1) + A,T = T (ℓ)) for suitable constants c4, c5

5: w(i,ℓ) =
(
(X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))

)−1(
(X(i)U+(ℓ−1))T(y(i) −X(i)b(i,ℓ))

)
6: end for
7: ∀i, j : x̂

(i)
j ← clipA1

(
x
(i)
j

)
, ŷ

(i)
j ← clipA2

(
y
(i)
j

)
, ̂
(x

(i)
j )Tb(i,ℓ) ← clipA3

(
(x

(i)
j )Tb(i,ℓ)

)
and ŵ(i,ℓ) ←

clipAw

(
w(i,ℓ)

)
8: A := 1

mt

(∑
i∈[t]

(
ŵ(i,ℓ)(ŵ(i,ℓ))T ⊗

(∑m
j=1 x̂

(i)
j (x̂

(i)
j )T

))
+N1

)
9: V := 1

mt

(∑
i∈[t]

∑
j∈[m] x̂

(i)
j

(
ŷ
(i)
j − (

̂
x
(i)
j )Tb(i,ℓ)

)
(ŵ(i,ℓ))T +N2

)
10: U(ℓ) = vec−1

d×r(A
−1vec(V))

11: U+(ℓ) ← QR(U(ℓ)) {U(ℓ) = U+(ℓ)R}
12: γ(ℓ) ← (c3)

ℓ−1ϵB+ A for a suitable constant c3 < 1.
13: end for
14: Return w(ℓ), U+(ℓ) and {b(i,ℓ)}i∈[t].

the general setting described in eq. 1, we obtain samples that are generated according to the following process:

x
(i)
j ∼ N (0, Id) and y

(i)
j | x

(i)
j = ⟨x(i)

j ,U⋆w⋆(i) + b⋆(i)⟩+ z
(i)
j for all i ∈ [t], j ∈ [m], (43)

where each z
(i)
j ∼ N (0, σ2) denotes the independent measurement noise with known variance σ2. For each task

i ∈ [t], we will denote the noise vector to be z(i) such that its jth co-ordinate is z
(i)
j . Further, with some abuse of

notation we will denote:

• λj ≡ λj

(
r
t (W

(ℓ))TW(ℓ)
)
, λ⋆

j = λj

(
r
t (W

⋆)TW⋆
)
≡ λj

(
r
t (W

⋆)TW⋆
)
∀ j ∈ [r],

• µ ≡ µ(ℓ) and µ⋆ for the incoherence factors for W(ℓ) and W⋆ respectively,
• ν ≡ ν(ℓ) for the incoherence factor of U+(ℓ).

We will now prove Theorem 1 via an inductive argument. We will start with the base case.

D.1 Base Case

We initialize W(0) = 0 and recall
∣∣∣∣(I−U⋆(U⋆)T)U+(0)

∣∣∣∣
F
= O

(√
λ⋆
r

λ⋆
1

)
,
∣∣∣∣U+(0)

∣∣∣∣ ≤ √
ν(0)

k where ν(0) is an
appropriate constant less than 1. We use Lemma 13 that is proved later in its full generality. We have by using
Lemma 13 : ∣∣∣∣∣∣b(i,1) − b⋆(i)

∣∣∣∣∣∣
2
≤ 2φ(i) + ϵ and

∣∣∣∣∣∣b(i,1) − b⋆(i)
∣∣∣∣∣∣
∞
≤ 1√

k

(
2φ(i) + ϵ

)
with probability at least 1− T (ℓ)δ, where φ(i) is an upper-bound on φ̂(i) s.t.

φ̂(i) = 2
(√

k∥U⋆w⋆(i)∥∞ + c1∥U⋆w⋆(i)∥2 + σ

√
k log(dδ−1)

m

)
≤ 2

(√
k∥U⋆∥2,∞∥w⋆(i)∥2 + c1∥w⋆(i)∥2 + σ

√
k log(dδ−1)

m

)
≤ 2

(√
ν⋆ + c1

)
∥w⋆(i)∥2 + 2σ

√
k log(dδ−1)

m
.
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Choosing ϵ = 4
(√

ν⋆ + c1

)
gives us the required expression for ℓ = 0. Hence, we have that for c′ = O

(
1

B
U(0)

λ⋆
1

λ⋆
r

)
,

we will have that

∣∣∣∣∣∣b(i,0) − b⋆(i)
∣∣∣∣∣∣
2
≤ c′ max(ϵ,

∣∣∣∣∣∣w⋆(i)
∣∣∣∣∣∣
2
)BU(0)

√
λ⋆
r

λ⋆
1

+ 4σ

√
k log(dδ−1)

m
(44)

∣∣∣∣∣∣b(i,0) − b⋆(i)
∣∣∣∣∣∣
∞
≤ c′ max(ϵ,

∣∣∣∣∣∣w⋆(i)
∣∣∣∣∣∣
2
)BU(0)

√
λ⋆
r

kλ⋆
1

+ 4σ

√
log(dδ−1)

m
(45)

D.2 Inductive Step

We will begin with the inductive assumption. Note that these assumptions are true in the base case as well due
to our initialization and optimizing the task-specific sparse vector. Let

Λ = O
(√

λ⋆
rµ

⋆
(

σ2r
mtλ⋆

r
+ σ1r

3/2

mtλ⋆
r

√
rd log rd+ σ

√
r3dµ⋆ log2(rδ−1)

mtλ⋆
r

)
+ σ

(√
r3 log2(rδ−1)

mλ⋆
r

)
+

√
k log(dδ−1)

m

))
Λ′ = O

( Λ√
µ⋆λ⋆

r

)
.

Assumption 4 (Inductive Assumption). At the beginning of the ℓth iteration, we will use q(ℓ−1),Bu+(ℓ−1) to
describe the following upper bounds on the quantities of interest:

1) 1/2 < λmin(Q
(ℓ−1)) ≤ λmax(Q

(ℓ−1)) < 1, where Q(ℓ−1) := ⟨(U⋆)TU+(ℓ−1)⟩ (46)

2) ∥∆(U+(ℓ−1),U⋆)∥F = ∥(I−U⋆(U⋆)T)U+(ℓ−1)∥F = ∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F

≤ BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ′, (47)

3) ∥b(i,ℓ) − b⋆(i)∥2 ≤ c′∥(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2

≤ c′ max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ, (48)

4) ∥b(i,ℓ) − b⋆(i)∥∞ ≤ c′∥(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2/
√
k

≤ c′ max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1k

+
Λ√
k
, (49)

5) ∥U+(ℓ−1)∥2,∞ ≤
√
ν(ℓ−1)/k, (50)

where ν(ℓ−1) < 1
181c , c

′ > 0 and Λ′ < 1/1000. Note that Λ,Λ′ are fixed and do not change with iterations.

Note that the base case satisfies the inductive assumption for our problem. Let us denote h(i,ℓ) ≜ w(i,ℓ) −
(Q(ℓ−1))−1w⋆(i) and (H(ℓ))T =

[
h(1,ℓ) h(2,ℓ) . . . h(t,ℓ)

]
Rr×t .
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Lemma 6. For some constant c > 0 and for any iteration indexed by ℓ > 0, we have

∥h(i,ℓ)∥2 ≤
1

1− c
√

r log(1/δ0)
m

{
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1∥∥w⋆(i)∥2·

(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
+ ∥b⋆(i) − b(i,ℓ)∥2

(√
k∥U+(ℓ−1)∥2,∞ + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
+ σ

√
r log2(rδ−1)

m

}
,

∥H(ℓ)∥F ≤
1

1− c
√

r log(1/δ0)
m

·
{
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1∥

√
t

r
λ⋆
1·

(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U(ℓ−1)∥F

)
+
√
kζ∥U⋆∥F∥b⋆(i) − b(i,ℓ)∥∞ +

√√√√∑
i∈[t]

(
c∥b⋆(i) − b(i,ℓ)∥2

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)2

+ σ

√
rt log2(rδ−1)

m

}
with probability at least 1− δ0, where h(i,ℓ) = w(i,ℓ) − (Q(ℓ−1))−1w⋆(i).

Proof. According to the update step equation 5, we have

w(i,ℓ) − (Q(ℓ−1))−1w⋆(i) =
( (X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))

m

)−1

·( (X(i)U+(ℓ−1))T(y(i) −X(i)b(i,ℓ))

m

)
− (Q(ℓ−1))−1w⋆(i)

⇐⇒ h(i,ℓ)

:=
( (X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))

m

)−1

︸ ︷︷ ︸
A

·

( (X(i)U+(ℓ−1))T(y(i) −X(i)b(i,ℓ))

m
− (X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)

m

)
︸ ︷︷ ︸

z

. (51)

Therefore,

∥h(i,ℓ)∥∞ ≤ ∥A∥∥z∥∞ and ∥h(i,ℓ)∥2 ≤ ∥A∥∥z∥2. (52)

We will analyse the terms A and z separately.

Analysis of A:

Note that:

A−1 =
1

m
(X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))

=
1

m
(U+(ℓ−1))T(X(i))TX(i)U+(ℓ−1)

=
1

m
(U+(ℓ−1))T

(∑
j

x
(i)
j (x

(i)
j )T

)
U+(ℓ−1)

=
1

m

∑
j

(U+(ℓ−1))Tx
(i)
j (x

(i)
j )TU+(ℓ−1). (53)



Sample-Efficient Personalization: Modeling User Parameters as Low Rank Plus Sparse Components

Now, let V ≜ {v ∈ Rr|∥v∥ = 1}. Then for ϵ ≤ 1, there exists an ϵ-net, Nϵ ⊂ V, of size (1 + 2/ϵ)r w.r.t the
Euclidean norm, i.e. ∀ v ∈ V, ∃ v′ ∈ Nϵ s.t. ∥v − v′∥2 ≤ ϵ. Then for any v ∈ Nϵ,

vT
( 1

m

∑
j

(U+(ℓ−1))Tx
(i)
j (x

(i)
j )TU+(ℓ−1)

)
v

=
1

m

∑
j

(
vT(U+(ℓ−1))T

)
x
(i)
j (x

(i)
j )T

(
U+(ℓ−1)v

)
=

1

m

∑
j

(
U+(ℓ−1))v

)T

x
(i)
j (x

(i)
j )T

(
U+(ℓ−1)v

)
. (54)

Further, note that (
U+(ℓ−1)v

)T(
U+(ℓ−1)v

)
= Tr

((
U+(ℓ−1)v

)T(
U+(ℓ−1)v

))
= Tr

(
vT

(
(U+(ℓ−1))TU+(ℓ−1)

)
v
)
. (55)

Using equation 54 and equation 55 in Lemma 17 with a = b = U+(ℓ−1)v gives∣∣∣∣∣∣vT
( 1

m

∑
j

(U+(ℓ−1))Tx
(i)
j (x

(i)
j )TU+(ℓ−1) − (U+(ℓ−1))TU+(ℓ−1)

))
v

∣∣∣∣∣∣
≤ c∥U+(ℓ−1)v∥22 max

(√ log(1/δ0)

m
,
log(1/δ0)

m

)
=⇒ ∥vTEv∥ ≤ c∥U+(ℓ−1)v∥22 max

(√ log(|Nϵ|/δ0)
m

,
log(|Nϵ|/δ0)

m

)
≤ c∥U+(ℓ−1)v∥22 max

(√ log((1 + 2/ϵ)r/δ0)

m
,
log((1 + 2/ϵ)r/δ0)

m

)
∀v ∈ Nϵ (56)

where E ≜ 1
m

∑
j(U

+(ℓ−1))Tx
(i)
j (x

(i)
j )TU+(ℓ−1) − (U+(ℓ−1))TU+(ℓ−1). Since E is symmetric, therefore ∥E∥ =

(v′)TEv′ where v′ ∈ V is the largest eigenvector of E. Further, ∃ v ∈ Nϵ s.t. ∥v′ − v∥ ≤ ϵ. This implies

∥E∥ = (v′)TEv′ = (v′ − v)TEv + (v′)TE(v′ − v) + vTEv

≤ ∥v′ − v∥∥E∥∥v∥+ ∥v′∥∥E∥∥v′ − v∥+ vTEv

≤ 2ϵ∥E∥+ vTEv

=⇒ ∥E∥ ≤ vTEv

1− 2ϵ
. (57)

Using equation 56 and equation 57 and setting ϵ← 1/4 and c← 2c
√
log(9) then gives:

∥E∥ ≤ c∥U+(ℓ−1)v∥22 max

√
r log(1/δ0)

m
(58)

Using equation 58 in equation 53 then gives

∥A−1∥ ≥ ∥U+(ℓ−1)v∥22
(
1− c

√
r log(1/δ0)

m

)
≥ λmin

(
(U+(ℓ−1))TU+(ℓ−1)

)(
1− c

√
r log(1/δ0)

m

)
=⇒ ∥A∥ ≤ 1

λmin

(
(U+(ℓ−1))TU+(ℓ−1)

)(
1− c

√
r log(1/δ0)

m

)
=

1

1− c
√

r log(1/δ0)
m

(59)

(60)
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since (U+(ℓ−1))TU+(ℓ−1) = I.

Analysis of z:

Similarly, we have

z =
1

m
(X(i)U+(ℓ−1))T(y(i) −X(i)b(i,ℓ))− 1

m
(X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)

=
1

m
(U+(ℓ−1))T(X(i))TX(i)(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)︸ ︷︷ ︸

:=d
(i,ℓ)
1

+
1

m
(U+(ℓ−1))T(X(i))TX(i)(b⋆(i) − b(i,ℓ))︸ ︷︷ ︸

:=d
(i,ℓ)
2

+
1

m
(U+(ℓ−1))T(X(i))Tz(i)︸ ︷︷ ︸

d
(i,ℓ)
3

. (61)

Analysis of d(i,ℓ)
3 :

Let us condition on the vector z(i). In that case (X(i))Tz(i) is a d× 1 vector, each of whose entry is generated
independently according to N (0,

∣∣∣∣z(i)∣∣∣∣2
2
). Therefore, if we consider any vector v satisfying ||v||2 = 1, we have

vT(X(i))Tz(i) ∼ N (0,
∣∣∣∣∣∣z(i)∣∣∣∣∣∣2

2
)

and therefore, with probability 1− δ, we must have

∣∣∣∣∣∣∣∣ 1m (U+(ℓ−1))T(X(i))Tz(i)
∣∣∣∣∣∣∣∣
2

≤ σ

√
r log2(rδ−1)

m
.

Analysis of d(i,ℓ)
1 :

d
(i,ℓ)
1 =

1

m
(U+(ℓ−1))T(X(i))TX(i)(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)

= (U+(ℓ−1))T
( 1

m
(X(i))TX(i) − I

)
(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)︸ ︷︷ ︸
d

(i,ℓ)
1,1

+ (U+(ℓ−1))T(U⋆Q(ℓ−1))−U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)︸ ︷︷ ︸
d

(i,ℓ)
1,2

. (62)

Note that

E
[
d
(i,ℓ)
1,1

]
= E

[
(U+(ℓ−1))T

( 1

m
(X(i))TX(i) − I

)
(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)

]
= 0.

Further,

(z
(i,ℓ)
1,1 )k =

1

m

∑
j

(u(k,ℓ−1))Tx
(i)
j (x

(i)
j )T(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)

− (u(k,ℓ−1))T(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i).

Using Lemma 17 in the above with a = u(k,ℓ−1) and b = (U⋆Q−U+(ℓ−1))Q−1w⋆(i), we get

(z
(i,ℓ)
1,1 )k ≤ c

√
log(1/δ0)

m
∥u(k,ℓ−1)∥2∥(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2. (63)



Sample-Efficient Personalization: Modeling User Parameters as Low Rank Plus Sparse Components

Taking the Union Bound overall entries k ∈ [r], we have

∥d(i,ℓ)
1,1 ∥2 =

√∑
k∈[r]

|(z(i,ℓ)1,1 )k|2

≤ c

√
log(r/δ0)

m

√∑
k∈[r]

∥u(k,ℓ−1)∥22 · ∥(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2

= c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F∥(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2. (64)

Further,

∥d(i,ℓ)
1,2 ∥2 = ∥(U+(ℓ−1))T(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2

= ∥(U+(ℓ−1))T(I−U⋆(U⋆)T)U+(ℓ−1)(Q(ℓ−1))−1w⋆(i)∥2
= ∥(U+(ℓ−1))T(I−U⋆(U⋆)T)2U+(ℓ−1)(Q(ℓ−1))−1w⋆(i)∥2

=
∥∥∥((U+(ℓ−1))T − (U+(ℓ−1))TU⋆(U⋆)T

)
·(

U+(ℓ−1) −U⋆(U⋆)TU+(ℓ−1)
)
(Q(ℓ−1))−1w⋆(i)

∥∥∥
2

≤ ∥U+(ℓ−1) −U⋆(U⋆)TU+(ℓ−1)∥2F∥(U(ℓ−1) −U⋆(U⋆)TU+(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2
= ∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2
≤ ∥U+(ℓ−1) −U⋆Q(ℓ−1)∥2F∥(Q(ℓ−1))−1∥∥w⋆(i)∥2. (65)

We will also use the sharper bound below later for finding the Frobenius norm of H(ℓ)

∥d(i,ℓ)
1,2 ∥2 = ∥(U+(ℓ−1))T − (U+(ℓ−1))TU⋆(U⋆)T∥F∥(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2.

(66)

Using equation 64 and equation 65 in equation 62, we have

∥d(i,ℓ)
1 ∥2 ≤ c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F∥(U⋆Q(ℓ−1) −U+(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2 (67)

+ ∥U+(ℓ−1) −U⋆Q(ℓ−1)∥2F∥(Q(ℓ−1))−1∥∥w⋆(i)∥2 (68)

≤ ∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1∥∥w⋆(i)∥2· (69)(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
(70)

As before, using equation 64 and equation 66, we have

∥d(i,ℓ)
1 ∥2 ≤ ∥(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2·(

∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U(ℓ−1)∥F

)
. (71)

Analysis of d
(i,ℓ)
2 :

Note that

d
(i,ℓ)
2 =

1

m
(U+(ℓ−1))T(X(i))TX(i)(b⋆(i) − b(i,ℓ))

= (U+(ℓ−1))T
( 1

m
(X(i))TX(i) − I

)
(b⋆(i) − b(i,ℓ))︸ ︷︷ ︸

d
(i,ℓ)
2,1

+(U+(ℓ−1))T(b⋆(i) − b(i,ℓ))︸ ︷︷ ︸
d

(i,ℓ)
2,2

and E
[
d
(i,ℓ)
2,1

]
= E

[
(U+(ℓ−1))T

( 1

m
(X(i))TX(i) − I

)
(b⋆(i) − b(i,ℓ))

]
= 0.
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Further,

(z
(i,ℓ)
2,1 )k =

1

m

∑
j

(u(k,ℓ−1))Tx
(i)
j (x

(i)
j )T(b⋆(i) − b(i,ℓ))− (u(k,ℓ−1))T(b⋆(i) − b(i,ℓ)).

Using Lemma 17 in the above with a = u(k,ℓ−1) and b = (b⋆(i) − b(i,ℓ)), we get

(z
(i,ℓ)
2,1 )k ≤ c

√
log(1/δ0)

m
∥u(k,ℓ−1)∥2∥b⋆(i) − b(i,ℓ)∥2. (72)

Taking the Union Bound overall entries k ∈ [r], using the above we have

∥d(i,ℓ)
2,1 ∥2 =

√∑
k∈[r]

|(z(i,ℓ)2,1 )k|2

≤ c

√
log(r/δ0)

m

√∑
k∈[r]

∥u(k,ℓ−1)∥22 · ∥b⋆(i) − b(i,ℓ)∥2

= c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F∥b⋆(i) − b(i,ℓ)∥2. (73)

Further,

∥d(i,ℓ)
2,2 ∥2 = ∥(U+(ℓ−1))T(b⋆(i) − b(i,ℓ))∥2

= ∥
(
(U+(ℓ−1))T(b⋆(i) − b(i,ℓ))

)
supp(b⋆(i))

∥2

≤ ∥U+(ℓ−1)

supp(b⋆(i))
∥2∥(b⋆(i) − b(i,ℓ))supp(b⋆(i))∥2

≤
√
k∥U+(ℓ−1)∥2,∞∥b⋆(i) − b(i,ℓ)∥2. (74)

Using equation 73 and equation 74 we have

∥d(i,ℓ)
2 ∥2 ≤ ∥b⋆(i) − b(i,ℓ)∥2

(√
k∥U+(ℓ−1)∥2,∞ + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
. (75)

Using equation 59, equation 70 and equation 75 we have

∥h(i,ℓ)∥2 ≤
1

1− c
√

r log(1/δ0)
m

·
{
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1∥∥w⋆(i)∥2·

(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U(ℓ−1)∥F

)
+ ∥b⋆(i) − b(i,ℓ)∥2

(√
k∥U+(ℓ−1)∥2,∞ + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
+ σ

√
r log2(rδ−1)

m

}
. (76)

Using equation 59, equation 71 and equation 75, we also have the sharper bound

∥h(i,ℓ)∥2 ≤
1

1− c
√

r log(1/δ0)
m

{
∥(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2·

(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U(ℓ−1)∥F

)
+ ∥b⋆(i) − b(i,ℓ)∥2

(√
k∥U+(ℓ−1)∥2,∞ + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
+ σ

√
r log2(rδ−1)

m

}
. (77)
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Further note that
∑

i∈[t] ∥(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥22:

=
∑
i∈[t]

Tr
((

(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)
)T

·

(
(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)

))
=

∑
i∈[t]

Tr
(
(w⋆(i))T

(
(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1

)T

·

(
(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1

)
w⋆(i)

)
= Tr

((
U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1

)T

·(
(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1

)∑
i∈[t]

w⋆(i)(w⋆(i))T
)

≤ Tr
((

U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1
)T

·(
(U+(ℓ−1) −U⋆Q(ℓ−1))(Q(ℓ−1))−1

))
λmax

(∑
i∈[t]

w⋆(i)(w⋆(i))T
)

= ∥U+(ℓ−1) −U⋆Q(ℓ−1)∥2F∥(Q(ℓ−1))−1∥2 · t
r
λ⋆
1, (78)

and
∑

i∈[t] ∥(U+(ℓ−1))T(b⋆(i) − b(i,ℓ))∥22

=
∑
i∈[t]

∑
j∈[r]

(
(U+(ℓ−1,j))T(b⋆(i) − b(i,ℓ))

)2

=
∑
i∈[t]

∑
j∈[r]

( ∑
p∈supp(b⋆(i))

U+(ℓ−1,j)
p (b⋆(i)

p − b(i,ℓ)
p )

)2

≤ k
∑
i∈[t]

∑
j∈[r]

∑
p∈supp(b⋆(i))

(U+(ℓ−1,j)
p )2(b⋆(i)

p − b(i,ℓ)
p )2

≤ kζ
∑
j∈[r]

∑
p∈supp(b⋆(i))

(U+(ℓ−1,j)
p )2∥b⋆(i) − b(i,ℓ)∥2∞

= kζ∥b⋆(i) − b(i,ℓ)∥2∞
∑
j∈[r]

∑
p∈supp(b⋆(i))

(U+(ℓ−1,j)
p )2

≤ kζ∥U⋆∥2F∥b⋆(i) − b(i,ℓ)∥2∞.

The above two equations with equation 77 imply

∥H(ℓ)∥F ≤
1

1− c
√

r log(1/δ0)
m

{
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1∥

√
t

r
λ⋆
1·

(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U(ℓ−1)∥F

)
+
√
kζ∥U⋆∥F∥b⋆(i) − b(i,ℓ)∥∞ +

√√√√∑
i∈[t]

(
c∥b⋆(i) − b(i,ℓ)∥2

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)2

+ σ

√
rt log2(rδ−1)

m

}
. (79)
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Corollary 1. If BU(ℓ−1) = O
(

1
1
√
rµ⋆

)
,
√

r log(1/δ0)
m = O(1),

√
ν(ℓ−1) = O

(
1√
rµ⋆

)
,
√

r2 log(r/δ0)
m = O

(
1√
µ⋆

)
,

ϵ <
√

µ⋆λ⋆
r,

√
r2ζ
t = O

(
1√
µ⋆

)
, Λ′ = O

(√
λ⋆
r

λ⋆
1

)
and Assumption 4 holds for iteration ℓ− 1, then w.p. 1−O(δ0)

∥h(i,ℓ)∥2 = O
(max{ϵ,∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1√

rµ⋆

)
+O

(
Λ′∥w⋆(i)∥2√

rµ⋆

)
+O

(
Λ√
rµ⋆

)
+O

(
σ

√
r log2(rδ−1)

m

)
,

∥H(ℓ)∥F ≤ O
(B

U(ℓ−1)
λ⋆
r

λ⋆
1

√
t
rλ

⋆
1

√
rµ⋆

)
+O

(
Λ′
√

t
rλ

⋆
r

1√
rµ⋆

)
+O

(
1√
rµ⋆

√
t
rΛ

)
+O

(
σ

√
rt log2(rδ−1)

m

)
.

Proof. The proof follows from plugging the various constant bounds of the lemma statement and Inductive
Assumption 4 in the expressions of Lemma 6:

∥h(i,ℓ)∥2 ≤
1

1− c
√

r log(1/δ0)
m

{
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1∥∥w⋆(i)∥2·

(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
+ ∥b⋆(i) − b(i,ℓ)∥2

(√
k∥U+(ℓ−1)∥2,∞ + c

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)
+ σ

√
r log2(rδ−1)

m

}
. (80)

≤ 1

1− c
√

r log(1/δ0)
m

·

{(
BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ′
)
· 2∥w⋆(i)∥2

((
BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ′
)
+ c

√
log(r/δ0)

m
·
√
r
)

+
(
c′ max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1
+ Λ

)(√
ν(ℓ−1) + c

√
log(r/δ0)

m

√
r
)
+ σ

√
r log2(rδ−1)

m

}
. (81)

Using Λ′ = O
(

1√
rµ⋆

√
λ⋆
r

λ⋆
1

)
, the above becomes

≤
max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

1− c
√

r log(1/δ0)
m

·

{
2
(
BU(ℓ−1) +O

( 1√
rµ⋆

√
λ⋆
r

λ⋆
1

)
+ c

√
r log(r/δ0)

m

)
+ c′

(√
ν(ℓ−1) + c

√
r log(r/δ0)

m

)}
+

1

1− c
√

r log(1/δ0)
m

{
2Λ′∥w⋆(i)∥2

(
BU(ℓ−1) +O

( 1√
rµ⋆

√
λ⋆
r

λ⋆
1

)
+ c

√
r log(r/δ0)

m

)

+ Λ
(√

ν(ℓ−1) + c

√
r log(r/δ0)

m

)
+ σ

√
r log2(rδ−1)

m

}
. (82)

Further, using c
√

r log(1/δ0)
m = O(1), BU(ℓ−1) = O

(
1√
rµ⋆

)
,
√
ν(ℓ−1) = O

(
1√
rµ⋆

)
,
√

r2 log(r/δ0)
m = O

(
1√
µ⋆

)
,

λ⋆
r ≤ λ⋆

1, r ≥ 1 in the above, we get

= O
(max{ϵ,∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1√

rµ⋆

)
+O

(
Λ′∥w⋆(i)∥2√

rµ⋆

)
+O

(
Λ√
rµ⋆

)
+O

(
σ

√
r log2(rδ−1)

m

)
. (83)
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Similarly using the Inductive Assumption expressions from 4, we also have

∥H(ℓ)∥F ≤
1

1− c
√

r log(1/δ0)
m

{
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1∥

√
t

r
λ⋆
1·

(
∥U+(ℓ−1) −U⋆Q(ℓ−1)∥F + c

√
log(r/δ0)

m
∥U(ℓ−1)∥F

)
+
√

kζ∥U⋆∥F∥b⋆(i) − b(i,ℓ)∥∞ +

√√√√∑
i∈[t]

(
c∥b⋆(i) − b(i,ℓ)∥2

√
log(r/δ0)

m
∥U+(ℓ−1)∥F

)2

+ σ

√
rt log2(rδ−1)

m

}
(84)

≤ 1

1− c
√

r log(1/δ0)
m

{(
BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ′
)
· 2
√

t

r
λ⋆
1

(
BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ′ + c
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As before, using the bound on Λ′, the above becomes
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Further, using c
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Corollary 2. If Assumption 4 and Corollary 1 hold, and Λ′ = O
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Proof. Using Triangle Inequality, Assumption 4 and Corollary 1, we have
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for some c′′ > 0, where in the last two lines, we use the fact that ϵ <
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Using equation 90 in equation 89 we get
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Using equation 92 and Corollary 1 in equation 93, we have∣∣∣√λj
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where in the last two steps we use
√

λ⋆
r

λ⋆
1
< 1, Λ′ = O

(√
λ⋆
r

λ⋆
1

)
, Λ = O(

√
λ⋆
r) and σ

√
r2 log2(rδ−1)

m = O(
√
λ⋆
r). Note

that for j = r, the above implies for some c′′ > 0∣∣∣√λr

(r
t
(W(ℓ))TW(ℓ)

)
−
√
λ⋆
r

(r
t
(W⋆)TW⋆

)∣∣∣ ≤ c′′
√

λ⋆
r

(r
t
(W⋆)TW⋆

)
⇐⇒ (1− c′′)

√
λ⋆
r

(r
t
(W⋆)TW⋆

)
≤

√
λr

(r
t
(W(ℓ))TW(ℓ)

)
≤ (1 + c′′)

√
λ⋆
r

(r
t
(W⋆)TW⋆

)
. (95)

and for j = 1, √
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Lemma 7. If ∥U(ℓ) −U⋆(U⋆)TU(ℓ)∥ ≤ ∥U(ℓ) −U⋆(U⋆)TU(ℓ)∥F ≤ 3
4 then 1

2 ≤ ∥Q
(ℓ)∥ ≤ 1.

Proof. Upper Bound:

∥Q(ℓ)∥ = ∥(U⋆)TU(ℓ)∥ ≤ ∥U⋆∥∥U(ℓ)∥ ≤ 1,

since both U⋆,U(ℓ) ∈ Rd×r are orthonormal.

Lower Bound:
Now, let E := U(ℓ) − U⋆(U⋆)TU(ℓ) and Q = (U⋆)TU(ℓ). Then (U(ℓ))TE = I − ((U⋆)TU(ℓ))T(U⋆)TU(ℓ) =
I− (Q(ℓ))TQ(ℓ). Then using Lemma 18 with A = I,B = (Q(ℓ))TQ(ℓ) and C = (U(ℓ))TE, we get that

σk(I)− σk((Q
(ℓ))TQ(ℓ)) ≤ ∥(U(ℓ))TE∥ ≤ ∥U(ℓ)∥∥E∥

=⇒ 1− σ2
k(Q

(ℓ)) ≤ ∥U(ℓ) −U⋆(U⋆)TU(ℓ)∥

=⇒ σk(Q
(ℓ)) ≥

√
1− ∥U(ℓ) −U⋆(U⋆)TU(ℓ)∥.

Therefore, ∥U(ℓ) −U⋆(U⋆)TU(ℓ)∥F ≤ 3
4 =⇒ σk(Q

(ℓ)) ≥ 1
2 ∀ k ∈ [r].
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Lemma 8. Let V = 1
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Using equation 99, equation 100 and Lemma 23 in equation 98 gives
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Note that ∥V∥2F =
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Lemma 9. Let
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and
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Therefore, using equation 104, equation 105 and equation 106 in Lemma 16 we get
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Lemma 10. For some constant c > 0 and for any iteration indexed by ℓ > 0, we have
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with probability at least 1−O(δ0).

Proof. Analysis of ∥U(ℓ) −U⋆Q(ℓ−1)∥F:
Update step for U of the Algorithm without DP Noise for the ℓth iteration gives us∑

i∈[t]
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i∈[t]

(X(i))TX(i)
(
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Using Lemma 22, the above can be written as:

Avec(U(ℓ)) = vec(V′ +Ξ),

and Avec(U(ℓ) −U⋆Q(ℓ−1)) = vec(V +Ξ), (108)

where
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h(i,ℓ) = w(i,ℓ) − (Q(ℓ−1))−1w⋆(i), ξ(i)j ∼ N (0, σ2) and Ξd×r = 1
mt

∑
i∈[t](X

(i))Tξ(i)(w(i,ℓ))T. Now introducing DP
noise we get:
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where

N1 ∼ σ1MNrd×rd(0, Ird×rd, Ird×rd),

N2 ∼ σ2MNd×r(0, Id×d, Ir×r),

where MN denotes the Matrix Normal Distribution. Note that equation 109 gives:
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First, with high probability, we will bound the following quantity
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Now, We will analyse the two multiplicands separately.
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1

t

∑
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Using Lemma 8 with R(i,ℓ) =
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Since R(i,ℓ) = −U⋆Q(ℓ−1)h(i,ℓ)(w(i,ℓ))T + (b⋆(i) − b(i,ℓ))(w(i,ℓ))T, we have

∥R(i,ℓ)∥F = ∥ −U⋆Q(ℓ−1)h(i,ℓ)(w(i,ℓ))T + (b⋆(i) − b(i,ℓ))(w(i,ℓ))T∥F
≤ ∥U⋆Q(ℓ−1)h(i,ℓ)(w(i,ℓ))T∥F + ∥(b⋆(i) − b(i,ℓ))(w(i,ℓ))T∥F
≤ ∥U⋆Q(ℓ−1)∥∥h(i,ℓ)∥2∥w(i,ℓ)∥2 + ∥b⋆(i) − b(i,ℓ)∥2∥w(i,ℓ)∥2 (114)

Using equation 114 in equation 113 gives
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Now, let V ≜ {v ∈ Rrd|∥v∥2 = 1}. Then for ϵ ≤ 1, there exists an ϵ-net, Nϵ ⊂ V, of size (1 + 2/ϵ)rd w.r.t the
Euclidean norm, i.e. ∀ v ∈ V , ∃ v′ ∈ Nϵ s.t. ∥v − v′∥2 ≤ ϵ. Now consider any vT =

[
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T
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T
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]
∈ Nϵ where

each vi ∈ Rd. Then using Lemma 9 with a = b = v, we get:
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=⇒ ∥vTEv∥ ≤ c
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∑
j∈[m]

∥w(i,ℓ)∥42

√
log(|Nϵ|/δ0)

m2t2

≤ c

√∑
i∈[t]

∑
j∈[m]

∥w(i,ℓ)∥42

√
log((1 + 2/ϵ)rd/δ0)

m2t2
, ∀v ∈ Nϵ (116)

w.p. 1−δ) where E ≜ A− 1
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∑
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∑
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(
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)
. Since E is symmetric, therefore ∥E∥ = (v′)TEv′

where v′ ∈ V is the largest eigenvector of E. Further, ∃ v ∈ Nϵ s.t. ∥v′ − v∥ ≤ ϵ. This implies:
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Using equation 116 and equation 117 and setting ϵ← 1/4 and c← 2c
√
log(9) then gives:
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Using equation 118 then gives
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Next, note that the matrix N/mt can be written as αN (0, Ird×rd) where α = σ1

mt . Therefore, with probability at
least 1− (rd)−8, the minimum eigenvalue of the matrix is at least − 4σ1

√
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mt . Further we have using standard
gaussian concentration inequalities, ∣∣∣∣∣∣∣∣N1
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Hence, the minimum eigenvalue of the matrix A+ N
mt is bounded from below by
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Therefore, the maximum eigenvalue of (A+ N1

mt )
−1 is bounded from above by,
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Using equation 115, equation 124, equation 119, equation 120, equation 121 and equation 112 in equation 110
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Analysis of
∣∣∣∣U(ℓ)

∣∣∣∣
F
:

The analysis will follow along similar lines as in the previous section except that we will now have:
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where
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i.e. we have the term −U⋆Q(ℓ−1)h(i,ℓ) replaced by U⋆w⋆(i). The above gives:
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We can compute the above following similar lines as before.
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Using Lemma 8 with R(i,ℓ) =
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U⋆w⋆(i) + (b⋆(i) − b(i,ℓ))

)
(w(i,ℓ))T, we have with probability at least 1− δ0∑
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Since R(i,ℓ) = U⋆w⋆(i)(w(i,ℓ))T + (b⋆(i) − b(i,ℓ))(w(i,ℓ))T, we have
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Using equation 129 in equation 128 gives
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Using equation 130. equation 121 and equation 124 in equation 127 gives ∥U(ℓ)∥F
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Analysis of ∥∆(U+(ℓ),U⋆)∥F:
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∥∆(U+(ℓ),U⋆)∥F = ∥(I−U⋆(U⋆)T)U+(ℓ)∥F
= min

Q+
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From equation 109, we have:
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Note that vec−1
(
E
[(

A+ N1

mt

)−1

vec
(

1
mt

∑
i∈[t](X

(i))TX(i)
(
−U⋆Q(ℓ−1)h(i,ℓ)

)
(w(i,ℓ))T

)])
=

vec−1
(
E [A]

−1 vec
(

−1
t U⋆Q(ℓ−1)(H(ℓ))TW(ℓ)

))
lies in the subspace parallel to U⋆ and therefore does
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≤
{ c

√∑
i∈[t]

∑
j∈[m] ∥w(i,ℓ)∥42

√
rd log(1/δ0)

m2t2 + σ1

mt

(
2
√
rd+ 4

√
log rd

)
1
rλr

(
r
t (W

(ℓ))TW(ℓ)
)
− c

√∑
i∈[t]

∑
j∈[m] ∥w(i,ℓ)∥42

√
rd log(1/δ0)

m2t2 − σ1

mt

(
2
√
rd+ 4

√
log rd

) ·
(2
t
∥U⋆Q(ℓ−1)(H(ℓ))TW(ℓ)∥F

)
+

1

1
rλr

(
r
t (W

(ℓ))TW(ℓ)
)
− c

√∑
i∈[t]

∑
j∈[m] ∥w(i,ℓ)∥42

√
rd log(1/δ0)

m2t2 − σ1

mt

(
2
√
rd+ 4

√
log rd

) ·
{(√4ζ

t
(max

i
∥w(i,ℓ)∥2)∥b⋆(i) − b(i,ℓ)∥2

)
+ 4

(
∥U⋆Q(ℓ−1)∥∥h(i,ℓ)∥2∥w(i,ℓ)∥2 + ∥b⋆(i) − b(i,ℓ)∥2∥w(i,ℓ)∥2

)√d log(rd/δ0)

mt

σ2

mt
6
√
rd log(rd) +

σ1

mt

(
2
√
rd+ 4

√
log rd

)√
r +

2σ
√
dµ⋆λ⋆

r log(2rdmt/δ0)√
mt

}}
∥R−1∥. (139)



Pal, Varshney, Madan, Jain, Thakurta, Aggarwal, Shenoy, Srivastava

Corollary 3. If BU(ℓ−1) = O
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Proof. The proof follows from plugging the various constant bounds from the corollary statement and Inductive
Assumption 4 in the expressions of Lemma 10. Note that, ∥U(ℓ) −U⋆Q(ℓ−1)∥F
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Using Assumption 4 for b(i,ℓ) and Q(ℓ−1) terms, the fact that U⋆ is orthonormal and eigenvalue ratios and
incoherence bounds for H(ℓ) and W(ℓ) from Corollaries 1 and 2, the above becomes, ∥U(ℓ) −U⋆Q(ℓ−1)∥F
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+ 4
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where J1 denotes the terms which arise from analysing the problem in the noiseless setting and J2 denotes the
contribution of noise terms (σ1, σ2, σ,Λ,Λ

′). We will analyse both separately. Note that J1
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above, we get J2
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Rearranging the terms in above gives
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Using equation 142, equation 145 in equation 141 gives us the required norm bound for ∥U(ℓ) −U⋆Q(ℓ−1)∥F.

Similarly, we can simplify the following
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bound expression from the Lemma statement.
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from Corollaries 1 and 2 in the above, we have

≤ ∥R−1∥
{ O(1)
1−O(1)

1

λ⋆
r

· 2
t
O
((BU(ℓ−1)

λ⋆
r

λ⋆
1

√
t
rλ

⋆
1

√
rµ⋆

+

√
t

r
λ⋆
r

Λ′
√
rµ⋆

+
1√
rµ⋆

√
t

r
Λ + σ

√
r log2(rδ−1)

m

)√
tµ⋆λ⋆

r

)
+

1

1−O(1)
r

λr
·

{√4ζ

t
· O(

√
µ⋆λ⋆

r)
(
c′ max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ
)

+ 4

√
d log(rd/δ0)

mt
· O(

√
µ⋆λ⋆

r) · O
(max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1√

rµ⋆
+

Λ′∥w⋆(i)∥2√
rµ⋆

+
Λ√
rµ⋆

+ σ

√
r log2(rδ−1)

m
+max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ
)

+
σ2

mt
6
√
rd log(rd) +

σ1

mt

(
2
√
rd+ 4

√
log rd

)√
r +

2σ
√
dµ⋆λ⋆

r log(2rdmt/δ0)√
mt

}}
(147)

= J ′
1 + J ′

2 (148)

where as before, J ′
1 denotes the terms which arise from analysing the problem in the noiseless setting and J ′
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Rearranging the terms in above gives
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Assuming mt = Ω̃(dr2µ⋆(1 + 1
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Using equation 150 and equation 152 in equation 148 gives us the required bound for
∣∣∣∣∆(U+(ℓ),U⋆)
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F
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Using equation 153, we have:
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Using the bounds from Corollary 1 and 3 and Inductive Assumption 4 in the above we get,
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Rearranging the terms in the above gives
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where c′′ > 0 Here, we need to use that Λ′ < 10−3,Λ < 10−3µ⋆λ⋆
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Bounds equation 155 and equation 156 complete the proof.
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Proof. Recall that
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size (1 + 2/ϵ)rd w.r.t the Euclidean norm, i.e. ∀ z ∈ Z, ∃ z′ ∈ Nϵ s.t. ∥z − z′∥2 ≤ ϵ. We will now bound∣∣∣∣∣∣(CE+ CN1
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standard basis vector es ∈ Rrd, we have using Lemma 9
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and
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Further, ∃ z ∈ Nϵ s.t. ∥z′−z∥2 ≤ ϵ. This implies that setting ϵ← 1/4 and c← 2c
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with probability at least 1− δ0 where we use equation 118, equation 119 and the fact that ∥MN∥2 ≤ ∥M∥2∥N∥2.
Hence, with probability at least 1−O(δ0), we have ||CE||2 and ||CEz||∞ for all z ∈ Z. Therefore, let us condition
on these events in order to prove the next steps. We will now show an upper bound on
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We have with probability at least 1− δ0,
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where in equation 163 we use equation 161 and in equation 164 the fact that mt =
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Using the above and equation 159 in equation 162, we have
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Similarly, we also have the following bound ∥U(ℓ)∥2,∞ =
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Analysis for vec(V′
1):
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Now consider the s-th standard basis vector es ∈ Rrd s.t. s falls under the q⋆-th fragment (q ∈ [r]), i.e. ∀ a ∈ Rrd,
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and

∥
∑
p∈[r]

∑
q∈[r]

J (i,ℓ)
p,q vec(U⋆)pe

T
q ∥F = ∥

∑
p∈[r]

J
(i,ℓ)
p,q⋆ vec(U

⋆)peq⋆∥F

= ∥
∑
p∈[r]

J
(i,ℓ)
p,q⋆ vec(U

⋆)p∥2∥eTq⋆∥2

≤ ∥
∑
p∈[r]

|J (i,ℓ)
p,q⋆ |vec(U⋆)p∥2 (175)

≤
√( ∑

p∈[r]

(J
(i,ℓ)
p,q⋆ )

2
)( ∑

p∈[r]

∥vec(U⋆)p∥22
)

= ∥J(i,ℓ,q⋆)∥2∥vec(U⋆)∥2
= ∥J(i,ℓ,q⋆)∥2∥U⋆∥F. (176)



Pal, Varshney, Madan, Jain, Thakurta, Aggarwal, Shenoy, Srivastava

Thus, using equation 174 and equation 176 in Lemma 16 we have
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where in the last step we use equation 177. Now note that as per the notation discussed above, s = (q − 1)d+ p
lies in the q-th (= q⋆) segment. Since q ∈ [r], therefore summation over s is equivalent to summation over q⋆ ∈ [r].
Using this fact, the above becomes:
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Therefore, using equation 173 in the above, we have
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Analysis for vec(V′
2):
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Let L(i,ℓ) :=
(

1
t (W

(ℓ))TW(ℓ)
)−1

. Then,

vec(V′
2) =

1

mt

∑
i∈[t]

(
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)
vec

(
(X(i))TX(i)(b⋆(i) − b(i,ℓ))(w(i,ℓ))T

)
(180)

=
1

mt

∑
i∈[t]

(
L(i,ℓ) ⊗ Id×d

)(
Ir×r ⊗ (X(i))TX(i)

)
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(
(b⋆(i) − b(i,ℓ))(w(i,ℓ))T

)
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1
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∑
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(
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)
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(
(b⋆(i) − b(i,ℓ))(w(i,ℓ))T

)
(181)

⇐⇒ V′
2 =

1

mt

∑
i∈[t]

(X(i))TX(i)(b⋆(i) − b(i,ℓ))(w(i,ℓ))T
(
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)T

, (182)

=⇒ E [vec(V′
2)] =
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∑
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Further, we have
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and ∥
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Thus, using equation 185 and equation 186 in Lemma 16 we have

∣∣∣eTs (vec(V′
2)− E [vec(V′

2)]
)∣∣∣ ≤ c
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m2t2
(187)

Now, note that ∥V′
2 − E [V′

2] ∥2,∞
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Now note that as per the notation discussed above, s = (q − 1)d + p lies in the q-th (= q⋆) segment. Since
q ∈ [r], therefore summation over s is equivalent to summation over q⋆ ∈ [r]. Using this fact the above becomes,
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Therefore, using equation 184 in the above, we have ∥V′
2∥2,∞
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(1
t
(W(ℓ))TW(ℓ)

)−1

∥F(max
i

√
ζk∥b⋆(i) − b(i,ℓ)∥∞∥w(i,ℓ)∥2)

√
log(1/δ0)

mt2

≤ ζ(max
i
∥b⋆(i) − b(i,ℓ)∥∞∥w(i,ℓ)∥2)∥

(
(W(ℓ))TW(ℓ)

)−1

∥2

c∥
(1
t
(W(ℓ))TW(ℓ)

)−1

∥F∥b⋆(i) − b(i,ℓ)∥2∥w(i,ℓ)∥2

√
log(1/δ0)

mt
. (190)

Analysis for Cvec
(

N2

mt

)
:
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Note that:

Cvec
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)−1

vec
(N2

mt

)
=

((1
t
(W(ℓ))TW(ℓ)

)−1

⊗ I
)
vec

(N2

mt

)
:= vec(V′

3)

=⇒ V′
3 = I · N2

mt
·
(1
t
(W(ℓ))TW(ℓ)

)−T

=⇒ ∥V′
3∥2,∞ = ∥N2

mt
·
(1
t
(W(ℓ))TW(ℓ)

)−1

∥2,∞

≤ 1

mt
∥N2∥2,∞

∣∣∣∣∣∣∣∣(1t (W(ℓ))TW(ℓ)
)−1

∣∣∣∣∣∣∣∣
2

≤ 1

mt
∥N2∥2,∞

r

λr

(
r
t (W

(ℓ))TW(ℓ)
)

≤ 2σ2

mt

√
log(rd/δ0) ·

r
√
r

λr

(
r
t (W

(ℓ))TW(ℓ)
) . (191)

Analysis for Cvec(Ξ):

Note that:
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)−1
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Combining V′
1, V′

2, V′
3 and V′

ξ from equation 179, equation 190, equation 191 and equation 192 respectively in
equation 168, we have:

Cvec(V′) = vec(V′
1) + vec(V′
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Therefore, using equation 193, equation 115 and equation 121 in equation 167, we have ∥U(ℓ)∥2,∞

≤ ∥U⋆∥2,∞∥
1

t

∑
i∈[t]

(1
t
(W(ℓ))TW(ℓ)

)−1

w⋆(i)(w(i,ℓ))T∥2

+ c∥U⋆∥F∥
(1
t
(W(ℓ))TW(ℓ)

)−1

∥∥w⋆(i)(w(i,ℓ))T∥F

√
log(1/δ0)

mt

+ ζ(max
i
∥b⋆(i) − b(i,ℓ)∥∞∥w(i,ℓ)∥2)∥

(
(W(ℓ))TW(ℓ)

)−1

∥2

+ c∥
(1
t
(W(ℓ))TW(ℓ)

)−1

∥F∥b⋆(i) − b(i,ℓ)∥2∥w(i,ℓ)∥2

√
log(1/δ0)

mt

+
2σ2

mt

√
log(rd/δ0) ·

r
√
r

λr

(
r
t (W

(ℓ))TW(ℓ)
) +

2σ
√

µ⋆λ⋆
r log(2rdmt/δ0)√

mt

r

λr

(
r
t (W

(ℓ))TW(ℓ)
)

+

√
r
(
c
√∑

i∈[t]

∑
j∈[m] ∥w(i,ℓ)∥42

√
rd log(rd/δ0)

m2t2 + σ1

mt

(
2
√
rd+ 2

√
2rd log(2rd/δ0)

))
1
rλr

(
r
t (W

(ℓ))TW(ℓ)
) ·

{2

t
∥U⋆(W⋆)TW(ℓ)∥F +

√
4ζ

t
(max

i
∥w(i,ℓ)∥2)∥b⋆(i) − b(i,ℓ)∥2

+ 4
(
∥U⋆∥∥w⋆(i)∥2∥w(i,ℓ)∥2 + ∥b⋆(i) − b(i,ℓ)∥2∥w(i,ℓ)∥2

)√d log(rd/δ0)

mt

+
σ2

mt
6
√
rd log(rd) +

2σ
√

dµ⋆λ⋆
r log(2rdmt/δ0)√

mt

}
. (194)

Calculation for ∥U(ℓ) −U⋆Q(ℓ−1)∥2,∞:

The analysis will follow along similar lines as in the previous section except that we will now have:
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(195)
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where
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Now, note that:

Cvec(V) =
1

mt

∑
i∈[t]

((1
t
(W(ℓ))TW(ℓ)

)−1

h(i,ℓ)(w(i,ℓ))T ⊗ (X(i))TX(i)
)
vec(U⋆Q(ℓ−1))

︸ ︷︷ ︸
vec(V1)

+
1

mt

∑
i∈[t]

((1
t
(W(ℓ))TW(ℓ)

)−1

⊗ I
)
vec

(
(X(i))TX(i)(b⋆(i) − b(i,ℓ))(w(i,ℓ))T

)
︸ ︷︷ ︸

vec(V2)

(197)

Let J(i,ℓ) :=
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while equation 190, equation 191 and equation 192 remain the same
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We also have the additional term V4 s.t.
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Now, N1 ∼ σ1MN (0, Ird×rd, Ird×rd) =⇒ N1
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where each (N1,p+q)e,f (vec(U
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Using equation 205 in equation 204 and taking a Union Bound ∀ p, q, we have w.p. ≥ 1− δ0∣∣∣∣∣∣∣∣vec−1
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Using equation 206 in equation 203 we get
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Combining V1, V2, V3, V4 and Vξ from equation 198, equation 199, equation 200, equation 207 and equation 201
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Therefore, using equation 208, equation 115, equation 121 and equation 112 in equation 196, we have ∥U(ℓ) −
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equation 194 and equation 209 give us the required result.
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As done in the analysis for Corollary 3, using Assumption 4 to plug in values for b(i,ℓ) and Q(ℓ−1), the fact that
U⋆ is orthonormal and norm and incoherence bounds for H(ℓ) and W(ℓ) from Corollaries 1 and 2, the above
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= J1 + J2 (212)

where J1 denotes the terms which arise from analysing the problem in the noiseless setting and J2 denotes the
contribution of noise terms (σ1, σ2, σ,Λ,Λ
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herence bounds for H(ℓ) and W(ℓ) from Corollaries 1 and 2 as well as BU(ℓ−1) = O
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Using equation 214 and equation 216 in equation 212 gives us the required bound for ∥U(ℓ)∥2,∞.

Similarly, using Assumption 4 to plug in values for b(i,ℓ) and Q(ℓ−1), the fact that U⋆ is orthonormal and norm
and incoherence bounds for H(ℓ) and W(ℓ) from Corollaries 1 and 2, the above becomes U

(ℓ)
2,∞, we can simplify
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and express ∥U(ℓ−1) −U⋆Q(ℓ−1)∥2,∞ as
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= J ′
1 + J ′

2 (218)

where as before, J ′
1 denotes the terms which arise from analysing the problem in the noiseless setting and J ′

2
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denotes the contribution of noise terms (σ1, σ2, σ,Λ,Λ
′). Now, J ′
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Similarly, we have J ′
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Using equation 219 and equation 221 in equation 218 gives us the required bound for ∥U(ℓ−1)−U⋆Q(ℓ−1)∥2,∞.

Lemma 12. For some constant c > 0 and for any iteration indexed by ℓ > 0, j > 0, we set
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w.p. ≥ 1− δ, where we invoke Lemma 17 in the last step and plugging a = es and b = b(i,ℓ−1,j−1) − b⋆(i) and
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i u
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w.p. ≥ 1− δ. Now, we have

b(i,ℓ−1,j) = HT(c(i,ℓ−1,j),∆(ℓ−1,j))
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=⇒ |b(i,ℓ−1,j)
s − b⋆(i)

s | =

{
|c(i,ℓ−1,j)

s − b
⋆(i)
s | if |c(i,ℓ−1,j)

s | > ∆(ℓ−1,j),

|b⋆(i)
s | otherwise.

(226)

Therefore, by using equation 224 and equation 226, we have
∣∣∣∣b(i,ℓ−1,j) − b⋆(i)

∣∣∣∣
∞ ≤ ∆(ℓ−1,j) and∣∣∣∣b(i,ℓ−1,j) − b⋆(i)

∣∣∣∣
2
≤ 2
√
k∆(ℓ−1,j). Further, from equation equation 224 we have for any coordinate s∣∣∣(c(i,ℓ−1,j) − b⋆(i)

)
s

∣∣∣ ≤ ∆(ℓ−1,j).

Thus, if s /∈ support(b⋆(i)), then the above gives |c(i,ℓ−1,j)| ≤ ∆(ℓ−1,j). Using this in equation 225 then
gives b

(i,ℓ−1,j)
s = 0, i.e., ∀ s /∈ support(b⋆(i)) =⇒ s /∈ support(b⋆(i,ℓ−1,j)). Hence, support(b(i,ℓ−1,j)) ⊆

support(b⋆(i)).

Lemma 13. Suppose c > 0 and c1 = c
√

k log(d/δ)
m ≤ 1

2 be positive constants. For any iteration indexed by ℓ > 0,
after

T (ℓ) = Ω
(
ℓmax

i
log

(γ(ℓ−1)

ϵ

))
iterations of the inner loop at Step 3 in the ℓth iteration of the outer loop, we have∣∣∣∣∣∣b(i,ℓ) − b⋆(i)

∣∣∣∣∣∣
2
≤ 2φ(i) + ϵ and

∣∣∣∣∣∣b(i,ℓ) − b⋆(i)
∣∣∣∣∣∣
∞
≤ 1√

k

(
2φ(i) + ϵ

)
with probability at least 1− T (ℓ)δ, where φ(i) is an upperbound on φ̂(i) s.t.

φ̂(i) = 2
(√

k∥U+(ℓ−1)w(i,ℓ−1) −U⋆w⋆(i)∥∞ + c1∥U+(ℓ−1)w(i,ℓ−1) −U⋆w⋆(i)∥2 + σ
√

k log(dδ−1)
m

)
≤ φ(i) = 2

(√
kα(ℓ−1) + c1β

(ℓ−1) + σ

√
k log(dδ−1)

m

)
.

and α(ℓ−1), γ(ℓ−1,j−1) and β(ℓ−1) denote upperbounds on ∥U+(ℓ−1)w(i,ℓ−1) −U⋆w⋆(i)∥∞, ∥b(i,ℓ−1,j−1) − b⋆(i)∥2
and ∥U+(ℓ−1)w(i,ℓ−1)−U⋆w⋆(i)∥2 respectively. Furthermore, we will also have that support(b(i,ℓ) ⊆ support(b⋆(i)).
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Proof. Let φ(i) be an upperbound on φ̂(i) where,

φ̂(i) = 2
(√

k∥v∥∞ + c1∥v∥2 + σ

√
k log(dδ−1)

m

)
≤ φ(i).

where v := U+(ℓ−1)w(i,ℓ−1) −U⋆w⋆(i). Then φ(i) := 2
(√

kα(ℓ−1) + c1β
(ℓ−1)

)
From Lemma 12, we have for each

iteration j,

γ(ℓ−1,j) :=
∣∣∣∣∣∣b(i,ℓ−1,j) − b⋆(i)

∣∣∣∣∣∣
2
≤ φ(i) + 2c1γ

(ℓ−1,j−1) (227)

and
∣∣∣∣∣∣b(i,ℓ−1,j) − b⋆(i)

∣∣∣∣∣∣
∞
≤ φ(i)

√
k

+
2c1√
k
γ(ℓ−1,j−1) (228)

with probability at least 1− δ0, where c1 = c
√

k log(d/δ0)
m . Therefore after T (ℓ) iterations of Step 3 inner loop at

the ℓth iteration of the outer loop, we have using equation 227:∣∣∣∣∣∣b(i,ℓ) − b⋆(i)
∣∣∣∣∣∣
2
=

∣∣∣∣∣∣b(i,ℓ−1,T (ℓ)) − b⋆(i)
∣∣∣∣∣∣
2

≤ φ(i) + 2c1γ
(ℓ−1,T (ℓ)−1)

≤ φ(i) + 2c1φ
(i) + (2c1)

2γ(ℓ−1,T (ℓ)−2)

. . .

≤ φ(i)(1 + (2c1)φ
(i) + (2c1)

2 + · · ·+ (2c1)
T (ℓ)−1) + (2c1)

T (ℓ)

γ(ℓ−1,0)

= φ(i) 1− (2c1)
T (ℓ)

1− 2c1
+ (2c1)

T (ℓ)

γ(ℓ−1)

≤ φ(i) 1

1− 2c1
+ (2c1)

T (ℓ)

γ(ℓ−1), (229)

w.p. ≥ 1 − T (ℓ)δ0 where γ(ℓ−1) = γ(ℓ−1,0) is the upper bound on ∥b(i,ℓ−1) − b⋆(i)∥2 = ∥b(i,ℓ−1,0) − b⋆(i)∥2.
Similarly, unfolding equation 228 gives∣∣∣∣∣∣b(i,ℓ) − b⋆(i)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣b(i,ℓ−1,T (ℓ)) − b⋆(i)

∣∣∣∣∣∣
∞

≤ φ(i)

√
k

+
2c1√
k
γ(ℓ−1,T (ℓ)−1)

≤ φ(i)

√
k

+
2c1φ

(i)

√
k

+
(2c1)

2γ(ℓ−1,T (ℓ)−2)

√
k

. . .

≤ φ(i)

√
k
(1 + (2c1)φ

(i) + (2c1)
2 + . . . (2c1)

T (ℓ)−1) +
(2c1)

T (ℓ)

γ(ℓ−1,0)

√
k

≤ φ(i)

√
k

1

1− 2c1
+ (2c1)

T (ℓ) γ(ℓ−1)

√
k

(230)

w.p. ≥ 1 − T (ℓ)δ0. Therefore, if we set T (ℓ) ≥ maxi
1

log(1/2c1)

(
γ(ℓ−1)

ϵ

)
and c1 < 1

2 is sufficiently small then
equation 229 gives us ∣∣∣∣∣∣b(i,ℓ) − b⋆(i)

∣∣∣∣∣∣
2
≤ 2φ(i) + ϵ (231)

and equation 230 gives us ∣∣∣∣∣∣b(i,ℓ) − b⋆(i)
∣∣∣∣∣∣
∞
≤ 1√

k

(
2φ(i) + ϵ

)
(232)
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w.p. ≥ 1− T (ℓ)δ0. Equations equation 231 equation 232 give us the required result. Also, note that we set

T (ℓ) = Ω
(
ℓmax

i
log

(γ(ℓ−1)

ϵ

))
(233)

Corollary 6. Using Corollaries 1, 2, 3, 4 and 5, we have

∣∣∣∣∣∣b(i,ℓ+1) − b⋆(i)
∣∣∣∣∣∣
2
≤ c′ max{∥w⋆(i)∥2, ϵ}BU(ℓ)

√
λ⋆
r

λ⋆
1

and
∣∣∣∣∣∣b(i,ℓ+1) − b⋆(i)

∣∣∣∣∣∣
∞
≤ c′ max{∥w⋆(i)∥2, ϵ}BU(ℓ)

√
λ⋆
r

λ⋆
1k

with c′ = max
(
O(1), O

(
1

B
U(0)

λ⋆
1

λ⋆
r

))
, and for sufficiently large constants c̃, ĉ > 0

Λ = c̃
(√

λ⋆
rµ

⋆
( σ2r

mtλ⋆
r

+
σ1r

3/2

mtλ⋆
r

√
rd log rd+ σ

√
r3dµ⋆ log2(rδ−1)

mtλ⋆
r

)
+ σ

(√r3 log2(rδ−1)

mλ⋆
r

)
+

√
k log(dδ−1)

m

))
Λ′ = ĉ

( Λ√
µ⋆λ⋆

r

)
.

Proof. Using Corollary 5 we have ∥U(ℓ)w(i,ℓ) −U⋆w⋆(i)∥∞

= ∥U(ℓ)w(i,ℓ) −U(ℓ)(Q(ℓ−1))−1w⋆(i) +U(ℓ)(Q(ℓ−1))−1w⋆(i) −U⋆w⋆(i)∥∞
≤ ∥U(ℓ)(w(i,ℓ) − (Q(ℓ−1))−1w⋆(i))∥∞ + ∥(U(ℓ) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥∞
≤ ∥U(ℓ)∥2,∞∥w(i,ℓ−1) − (Q(ℓ−1))−1w⋆(i))∥2 + ∥U(ℓ) −U⋆Q(ℓ−1)∥2,∞∥(Q(ℓ−1))−1w⋆(i)∥2

= O
( 1√

kµ⋆

)
O
(max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1√

rµ⋆
+

Λ′∥w⋆(i)∥2√
rµ⋆

+
Λ√
rµ⋆

+ σ

√
r log2(rδ−1)

m

)
+O

(
BU(ℓ−1)

√
λ⋆
r

λ⋆
1k

+
1√
k

{
Λ′ +

Λ√
µ⋆λ⋆

r

+
σ2r

mtλ⋆
r

√
rd log(rd) +

σ1r
3/2

mtλ⋆
r

√
rd log rd+ σ

√
r3dµ⋆ log2(rδ−1)

mtλ⋆
r

})
2∥w⋆(i)∥2

=
1√
k

{
O
(
max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

)
+O(Λ′∥w⋆(i)∥2) +O(Λ)

+O
(∥w⋆(i)∥2σ2r

mtλ⋆
r

√
rd log(rd)

)
+O

(∥w⋆(i)∥2σ1r
3/2

mtλ⋆
r

√
rd log rd

)
+O

(
σ
( 1√

µ⋆

√
r log2(rδ−1)

m
+ ∥w⋆(i)∥2

√
r3dµ⋆ log2(rδ−1)

mtλ⋆
r

))}
:= α(ℓ−1). (234)
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Similarly, Using Corollaries 3 and 4 we have ∥U(ℓ)w(i,ℓ) −U⋆w⋆(i)∥2

= ∥U(ℓ)w(i,ℓ) −U(ℓ)(Q(ℓ−1))−1w⋆(i) +U(ℓ)(Q(ℓ−1))−1w⋆(i) −U⋆w⋆(i)∥2
≤ ∥U(ℓ)(w(i,ℓ) − (Q(ℓ−1))−1w⋆(i))∥2 + ∥(U(ℓ) −U⋆Q(ℓ−1))(Q(ℓ−1))−1w⋆(i)∥2
≤ ∥U(ℓ)∥2∥w(i,ℓ) − (Q(ℓ−1))−1w⋆(i))∥2 + ∥U(ℓ) −U⋆Q(ℓ−1)∥F∥(Q(ℓ−1))−1w⋆(i)∥2

≤ (1 + c′′) · O
(max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1√

rµ⋆
+

Λ′∥w⋆(i)∥2√
rµ⋆

+
Λ√
rµ⋆

+ σ

√
r log2(rδ−1)

m

)
+O

(
BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ′ +
Λ√
µ⋆λ⋆

r

+
σ2r

mtλ⋆
r

√
rd log(rd) +

σ1r
√
r

mtλ⋆
r

√
rd log rd

+ σ
(√r3dµ⋆ log2(rδ−1)

mtλ⋆
r

+

√
r3 log2(rδ−1)

mλ⋆
r

))
2∥w⋆(i)∥2

)
= O

(
max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

)
+O(Λ′∥w⋆(i)∥2) +O(Λ)

+O
(∥w⋆(i)∥2σ2r

mtλ⋆
r

√
rd log(rd)

)
+O

(∥w⋆(i)∥2σ1r
3/2

mtλ⋆
r

√
rd log rd

)
+O

(
σ
( 1√

µ⋆

√
r log2(rδ−1)

m
+ ∥w⋆(i)∥2

(√r3dµ⋆ log2(rδ−1)

mtλ⋆
r

+

√
r3 log2(rδ−1)

mλ⋆
r

)))
:= β(ℓ−1). (235)

Using equation 234 and equation 235, we have:

φ(i) = 2
(√

kα(ℓ−1) + c1β
(ℓ−1) + σ

√
k log(dδ−1)

m

)
(236)

≤ O
(
max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

)
+O(Λ′∥w⋆(i)∥2) +O(Λ)

+O
(∥w⋆(i)∥2σ2r

mtλ⋆
r

√
rd log(rd)

)
+O

(∥w⋆(i)∥2σ1r
3/2

mtλ⋆
r

√
rd log rd

)
+O

(
σ
( 1√

µ⋆

√
r log2(rδ−1)

m
+

√
k log(dδ−1)

m

+ ∥w⋆(i)∥2
(√r3dµ⋆ log2(rδ−1)

mtλ⋆
r

+

√
r3 log2(rδ−1)

mλ⋆
r

)))
. (237)

Using equation 237 in Lemma 13 and setting ϵ′ ← O
(
BU(ℓ−1)

√
λ⋆
r

λ⋆
1
· ϵ
)
, we have:∣∣∣∣∣∣b(i,ℓ+1) − b⋆(i)

∣∣∣∣∣∣
2
≤ 2φ(i) + ϵ′

= O
(
max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

)
+O(Λ′∥w⋆(i)∥2) +O(Λ)

+O
(∥w⋆(i)∥2σ2r

mtλ⋆
r

√
rd log(rd)

)
+O

(∥w⋆(i)∥2σ1r
3/2

mtλ⋆
r

√
rd log rd

)
+O

(
σ
( 1√

µ⋆

√
r log2(rδ−1)

m
+

√
k log(dδ−1)

m

+ ∥w⋆(i)∥2
(√r3dµ⋆ log2(rδ−1)

mtλ⋆
r

+

√
r3 log2(rδ−1)

mλ⋆
r

)))
. (238)
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Recall that from Corollaries 3 and 4, we have∣∣∣∣∣∣∆(U+(ℓ),U⋆)
∣∣∣∣∣∣
F
≤ (1 + c′′)O

({
BU(ℓ−1)

√
λ⋆
r

λ⋆
1

+ Λ′√λ⋆
r +

Λ

r
+

σ2r

mtλ⋆
r

√
rd log(rd)

+
σ1r
√
r

mtλ⋆
r

√
rd log rd+ σ

(√r3dµ⋆ log2(rdmt/δ0)

mtλ⋆
r

)})
(239)

Therefore, it is sufficient to have for sufficiently large constants c̃, ĉ > 0

Λ = c̃
(√

λ⋆
rµ

⋆
( σ2r

mtλ⋆
r

+
σ1r

3/2

mtλ⋆
r

√
rd log rd+ σ

√
r3dµ⋆ log2(rδ−1)

mtλ⋆
r

)
+ σ

(√r3 log2(rδ−1)

mλ⋆
r

)
+

√
k log(dδ−1)

m

))
(240)

Λ′ = ĉ
( Λ√

µ⋆λ⋆
r

)
. (241)

such that
∣∣∣∣b(i,ℓ+1) − b⋆(i)

∣∣∣∣
2
≤ 1

10 max{ϵ, ∥w⋆(i)∥2}BU(ℓ−1)

√
λ⋆
r

λ⋆
1
+Λ and

∣∣∣∣∆(U+(ℓ),U⋆)
∣∣∣∣
F
≤ B

U(ℓ−1)

100

√
λ⋆
r

λ⋆
1
+Λ′

which satisfies the induction assumption and therefore completes the proof.

Comparing the contribution of noise-deficit terms on both sides for the next iteration, we also get the value of c’
as

c′′′ max{∥w⋆(i)∥2, ϵ}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

:= c′ max{∥w⋆(i)∥2, ϵ}BU(ℓ)

√
λ⋆
r

λ⋆
1

≤ 51

50 ∗ 200
c′ max{∥w⋆(i)∥2, ϵ}BU(ℓ−1)

√
λ⋆
r

λ⋆
1

=⇒ c′ :=
50 ∗ 200 ∗ c′′′

51
< 5.

using sufficiently large m and t to pull down the value of c′′′. Combining with the Base Case we have c′ =

max
(
O(1), O

(
1

B
U(0)

λ⋆
1

λ⋆
r

))
.

Theorem (Restatement of Theorem 3 (Parameter Estimation)). Consider the LRS problem equation 2 with all
parameters m, t, ζ obeying the bounds stated in Theorem 1 with ζ = O

(
t(r2(µ⋆)2)−1(

λ⋆
r

λ⋆
1
)2
)
, k = O

(
d · (λ

⋆
r

λ⋆
1
)2
)
,

m = Ω̃
(
k + r2µ⋆

(
λ⋆
1

λ⋆
r

)2

+ σ2r3

λ⋆
r

)
, mt = Ω̃

(
r3dµ⋆

(
r(µ⋆)4(λ⋆

r)
2k + µ⋆

(
λ⋆
1

λ⋆
r

)2

+ µ⋆(λ⋆
r)

2 + σ2
(
1 + 1

λ⋆
r

)))
and

furthermore, t = Ω̃
(
(rd)3/2µ⋆

(
1 + λ⋆

r +
√
rk(µ⋆)3/2λ⋆

r +
√
µ⋆

(
1 + (maxi ∥b⋆(i)∥2√

µ⋆λ⋆
r

+
√

λ⋆
r

λ⋆
1

))√
log(1/δ)+ϵ

ϵ

)
. Suppose

we run Algorithm 5 for L = log

(
λ⋆
r

σ
√

λ⋆
1

·
√

mt
µ⋆rd

)
iterations with parameters:

A1 = Õ(
√
d),A2 = Õ(

√
µ⋆λ⋆

r + (max
i
∥b⋆(i)∥2)),A3 = Õ

(
λ⋆
r

√
µ⋆

λ⋆
1

)
,Aw = Õ(

√
µ⋆λ⋆

r).

Then, w.p. ≥ 1−O(δ0), the outputs U+(L), {b(i,L)}i∈[t] satisfies:∣∣∣∣∣∣(I−U⋆(U⋆)T)U+(L)
∣∣∣∣∣∣
F
= Õ
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√
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+

√
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mλ⋆
r

+

√
k

m
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+

√
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r∣∣∣∣∣∣b(i,L) − b⋆(i)
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∞
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( σ√
k
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√
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+

√
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mλ⋆
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+

√
k

m
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+ η, for all i ∈ [t],

where
√
kη = Õ

(
t−1(µ⋆)3/2

√
λ⋆
rr
√
d
(
1 + maxi∈[t]

∥b⋆(i)∥2√
µ⋆λ⋆
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+
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λ⋆
1
+ rd

)√
log(1/δ)+ϵ

ϵ

)
.
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Proof. We will denote the DP noise by σDP > 0. Using standard gaussian concentration inequalities, we set
A1,A2,A3 and Aw as written in the theorem statement which ensures that for all i, j, ℓ in U update of Algorithm,
let ∥x(i)

j ∥2 ≤ A1, ∥w(i,ℓ)∥2 ≤ Aw, |y(i)j | ≤ A2, and ∥(x(i)
j )⊤b(i,ℓ)∥2 ≤ A3 with probability 1−O( 1

Poly(mtL) ). Setting
each entry of N1 independently according to N

(
0,m2 ·A4

1 ·A4
w · L · σ2

DP

)
(σ2

1 = m2 ·A4
1 ·A4

w ·L ·σ2
DP) and each entry

of N2 is independently set N
(
0,m2 ·A2

1(A2 +A3)
2A2

w · L · σ2
DP

)
(σ2

2 = m2 ·A2
1(A2+A3)

2A2
w ·L ·σ2

DP) ensures that

the algorithm satisfies 1
σDP

2-zCDP and equivalently (ϵ, δ) Approximate Differential Privacy if σDP ≥
√

log(1/δ)+ϵ

ϵ

(Theorem 2).

Using the bounds on m, t,mt, ζ, k in terms of the ground truth model parameters µ⋆, λ⋆
1, λ

⋆
r expressed in the

theorem statement, we invoke Corollaries 1, 2, 3, 4, 5 and 6 as well as the Base Case D.1 (ℓ = 1) to show that
our Inductive Assumption 4 holds for each iteration of ℓ and complete out proof using the Principle of Induction.

Now, note that the error bound guarantees in 4 have two terms in the upper bounds: the first one (a multiple
of BU(ℓ−1) , which stems from analysing the problem in the noiseless setting) decreases exponentially with the
number of iterations the second unchanging one (Λ and Λ′ depends on the inherent noise σ and DP noise σDP).

Plugging L = log

(
λ⋆
r

σ
√

λ⋆
1

·
√

mt
µ⋆rd

)
in the geometric series expression, we obtain the guarantees as stated in the

main theorem.

Corollary 7 (Restatement of Theorem 1 (Parameter Estimation)). Consider the LRS problem equation 2
with t linear regression tasks and samples obtained by equation 1. Let model parameters satisfy assumptions
A1, A2. Also, let the row sparsity of B⋆ satisfy ζ = O

(
t(r2(µ⋆)2)−1(

λ⋆
r

λ⋆
1
)2
)
, k = O

(
d · (λ

⋆
r

λ⋆
1
)2
)
, m = Ω̃

(
k +

r2µ⋆
(

λ⋆
1

λ⋆
r

)2

+ σ2r3

λ⋆
r

)
. Suppose Algorithm 1 is initialized with U+(0) such that

∣∣∣∣(I−U⋆(U⋆)T)U+(0)
∣∣∣∣
F
= O

(√
λ⋆
r

λ⋆
1

)
and

∣∣∣∣U+(0)
∣∣∣∣
2,∞ = O(

√
µ⋆r/d), and is run for L = log

(
λ⋆
r

σ
√

λ⋆
1

·
√

mt
µ⋆rd

)
iterations. Then, w.p. ≥ 1−O(δ0), the

outputs U+(L), {b(i,L)}i∈[t] satisfies:

∣∣∣∣∣∣(I−U⋆(U⋆)T)U+(L)
∣∣∣∣∣∣
F
= Õ

( σ√
µ⋆λ⋆

r

(
µ⋆

√
r3d

mt
+

√
r3

mλ⋆
r

+

√
k

m

))
,

∣∣∣∣∣∣b(i,L) − b⋆(i)
∣∣∣∣∣∣
∞
≤ Õ

( σ√
k

(
µ⋆

√
r3d

mt
+

√
r3

mλ⋆
r

+

√
k

m

))
, for all i ∈ [t],

where, the total number of samples satisfies:

m = Ω̃
(
k + r2µ⋆

(λ⋆
1

λ⋆
r

)2

+
σ2r3

λ⋆
r

)
,

mt = Ω̃
(
r3dµ⋆

(
r(µ⋆)4(λ⋆

r)
2k + µ⋆

(λ⋆
1

λ⋆
r

)2

+ µ⋆(λ⋆
r)

2 + σ2
(
1 +

1

λ⋆
r

)))
.

Proof. The proof follows by substituting σDP = 0 (hence σ1, σ2 = 0) in the proof of Theorem 3.

D.3 Proof of Theorem 2

Following along similar lines of proof techniques used for privacy guarantees used in [Varshney et al., 2022], our
proof will broadly involve computing the Zero Mean Concentrated Differential Privacy (zCDP) parameters and
then using them to prove the Approximate Differential Privacy. The Update Step for U(ℓ) without the additive
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DP Noise is:

x̂
(i)
j ← clip

(
x
(i)
j ,A1

)
, ŷ

(i)
j ← clip

(
y
(i)
j ,A2

)
,

̂
(x

(i)
j )Tb(i,ℓ) ← clip

(
(x

(i)
j )Tb(i,ℓ),A3

)
and ŵ(i,ℓ) ← clip

(
w(i,ℓ),Aw

)
(242)

A :=
1

mt

∑
i∈[t]

(
ŵ(i,ℓ)(ŵ(i,ℓ))T ⊗

( m∑
j=1

x̂
(i)
j (x̂

(i)
j )T

))
(243)

V :=
1

mt

∑
i∈[t]

∑
j∈[m]

x̂
(i)
j

(
ŷ
(i)
j − (

̂
x
(i)
j )Tb(i,ℓ)

)
(ŵ(i,ℓ))T (244)

U(ℓ) ← vec−1
d×r(A

−1vec(V)). (245)

where clip(,̇)̇ denotes the clipping function. Therefore, the sensitivity of A and V due to samples from ith-task
(w.r.t. the Frobenius norm) is Γ1 = mA2

1A
2
w, and Γ2 = mA1(A2 + A3)Aw respectively. Now, since each entry

of N(1) is independently generated from N
(
0,m2 · A4

1 · A4
w · L · σ2

DP

)
and each entry of N(2) is independently

generated from N
(
0,m2 · A2

1(A2 + A3)
2A2

w · L · σ2
DP

)
, the update steps equation 243 and equation 244 are

(
ρℓ,1 =

Γ2
1

2·m2·A4
1·A4

w·L·σ2
DP

= 1
2L·σ2

DP

)
-zCDP and

(
ρℓ,2 =

Γ2
2

2·m2·A4
1·A4

w·L·σ2
DP

= 1
2L·σ2

DP

)
-zCDP respectively by virtue of the DP

noise standard deviations [Bun and Steinke, 2016]. Therefore by composition and robustness to post-processing,
each iteration step is

(
ρℓ = ρℓ,1 + ρℓ,2 = 1

L·σ2
DP

)
-zCDP. By composition of zCDPs, the overall ρ for the algorithm

is given by ρ =
∑L

ℓ=1 ρℓ =
1

σ2
DP

.

Recall ρ-zCDP for an algorithm is equivalent to obtaining a (µ, µρ)-Renyi differential privacy (RDP) [Mironov,
2017] guarantee. Now, we will optimize for µ ∈ [1,∞) and demonstrate that for the choice of the noise multiplier
σDP mentioned in the theorem statement satisfies (ϵ, δ)-DP. Our analysis is similar to that of Theorem 1 of [Chien
et al., 2021].

Note that (µ, µρ)-(RDP) =⇒ (ϵ, δ) Approximate Privacy where ϵ = µρ + log(1/δ)
µ−1 ∀µ > 1. Also note that

ϵmin = ρ+ 2
√
ρ log(1/δ) is attained at dϵ

dµ = 0 =⇒ µ = 1 +
√

log(1/δ)
ρ .

Consider a fixed ϵ. Since we want to minimize σDP (which scales as 1/
√
ρ), we need to compute the maximum

permissable ρ s.t. ϵmin(ρ) ≤ ϵ. Since ϵmin(ρ) is an increasing function of ρ (thus an increasing function of σDP)
and a second order polynomial in √ρ with root at √ρ =

√
log(1/δ) + ϵmin−

√
log(1/δ), the maximum is achieved

at ϵmin(ρ) = ϵ. Therefore,

1

σ2
DP

= (
√

log(1/δ) + ϵ−
√

log(1/δ))2 =
ϵ2

(
√
log(1/δ) + ϵ+

√
log(1/δ))2

. (246)

Since the above value of σDP satisfies (ϵ, δ)-DP and

ϵ2

(
√

log(1/δ) + ϵ+
√
log(1/δ))2

≥ ϵ2

4(log(1/δ) + ϵ)
, (247)

choosing σDP ≥
2
√

(log(1/δ)+ϵ)

ϵ ensures (ϵ, δ)-DP.

E ALGORITHM AND PROOF OF THEOREM 1 (GENERALIZATION
GUARANTEES)

Consider a new task for which we get the samples {(xi, yi)}m
′

i=1 i.e. yi = ⟨xi,U
⋆w⋆ + b⋆⟩ for all i ∈ [m′]. Suppose

we have an estimate U+ of U⋆ such that (U+)TU+ = I and

∣∣∣∣(I−U⋆(U⋆)T)U+
∣∣∣∣
F
≤ ρ,

∣∣∣∣(I−U⋆(U⋆)T)U+
∣∣∣∣
2,∞ ≤

ρ√
k

and
∣∣∣∣U+

∣∣∣∣
2,∞ ≤

√
ν

k
(248)



Pal, Varshney, Madan, Jain, Thakurta, Aggarwal, Shenoy, Srivastava

for some known parameters ν, ρ. Our goal is to recover the vectors w⋆ ∈ Rr and b⋆ ∈ Rd satisfying ||b||0 ≤ k. We
will again use an Alternating Minimization algorithm for recovery of w⋆,b⋆. In the ℓth iteration, with probability
at least 1−O(δ/L) for m = Ω(k log(dLδ−1)) we have the following updates for some constant c > 0, (note that
the ℓth iterates of w⋆,b⋆ are given by w(ℓ),b(ℓ)).

At the ℓth iteration, we will denote a known upper bound

∣∣∣∣∣∣w(ℓ−1) −Q−1w⋆
∣∣∣∣∣∣
2
≤ ϕ(ℓ−1)||w⋆||2 + 2σ

√
k log(dδ−1)√

m
+ 2σ

√
r log2(rδ−1)
√
m

(249)

where ϕ(ℓ) is known. We can use Lemma 13 to have

∣∣∣∣∣∣b(ℓ) − b⋆
∣∣∣∣∣∣
2
≤ 2φ(i) + ϵ and

∣∣∣∣∣∣b(ℓ) − b
∣∣∣∣∣∣
∞
≤ 1√

k

(
2φ(i) + ϵ

)
(250)

with probability at least 1− T (ℓ)δ, where φ is an upperbound on φ̂ s.t.

φ̂ = 2
(√

k∥U+w(ℓ−1) −U⋆w⋆∥∞ + c1∥U+w(ℓ−1) −U⋆w⋆∥2 + σ

√
k log(dδ−1)√

m

)
(251)

≤ φ = 2
(√

kα(ℓ−1) + c1β
(ℓ−1) + σ

√
k log(dδ−1)√

m
+ 2σ

√
r log2(rδ−1)
√
m

)
. (252)

and α(ℓ−1), β(ℓ−1) denote upper bounds on ∥U+w(ℓ−1) − U⋆w⋆∥∞, and ∥U+w(ℓ−1) − U⋆w⋆∥2 respectively.
Furthermore, we will also have that support(b(ℓ) ⊆ support(b⋆). We denote Q = (U⋆)TU+. Using a similar

Algorithm 6 AM-New Task

Require: Data {(X ∈ Rm′×d,y ∈ Rm′
)}, known bounds ||b⋆||∞ ≤ C. Set parameter ϵ > 0 appropriately.

Estimate U+ of U⋆ satisfying
∣∣∣∣(I−U⋆(U⋆)T)U+

∣∣∣∣
F
≤ ρ. Parameter A.

1: for ℓ = 1, 2, . . . do
2: Initialize w(0),b(0) = 0. Set ϕ(0) = 2 since

∣∣∣∣w(0) − (U⋆)TU+)−1w⋆
∣∣∣∣
2
≤ ϕ(0)||w⋆||2 ≤ 2||w⋆||2. Set

γ(0) ≥ ||b⋆||∞.
3: for i = 1, 2, 3, . . . , t do
4: Set T (ℓ) = Ω

(
ℓ log

(
γ(ℓ−1)

ϵ

))
.

5: w(ℓ) =
(
(X(i)U+(ℓ−1))T(X(i)U+(ℓ−1))

)−1(
(X(i)U+(ℓ−1))T(y(i) −X(i)b(i,ℓ))

)
{Use a fresh batch of data

samples}
6: b(ℓ) ← OptimizeSparseVector(X,y, α = A+c1ϕ

(ℓ−1)||w⋆||2+
2ρ||w⋆||2√

k
, β = A+ϕ(ℓ−1)||w⋆||2+2ρ||w⋆||2, γ =

A+
||w⋆||2√

k

(
ϕ(ℓ−1)c′ + ||w⋆||2ρ(1 + c′′)

)
,T = T (ℓ)) {Use a fresh batch of data samples, constants c1, c

′, c′′

set appropriately.}
7: Set Φ(ℓ) ← ||w⋆||2Φ(ℓ−1)c3 + 2ρ||w⋆||2

(
1 + c4

)
+ A. {c3, c4 can be made arbitrarily small by increasing

number of samples m′.}
8: end for
9: end for

10: Return w(ℓ) and b(ℓ).
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analysis as in Corollary 6, we have:

∥U+w(ℓ−1) −U⋆w⋆∥∞ = ∥U+w(ℓ−1) −U(ℓ−1)Q−1w⋆ +U(ℓ−1)Q−1w⋆ −U⋆w⋆∥∞ (253)

≤ ∥U+w(ℓ−1) −Q−1w⋆)∥∞ + ∥(U(ℓ−1) −U⋆Q)Q−1w⋆∥∞ (254)

≤ ∥U+∥2,∞∥w(ℓ−1) −Q−1w⋆∥2 + ∥U+ −U⋆Q∥2,∞∥Q−1w⋆∥2 (255)

≤
√

ν

k
∥w(ℓ−1) −Q−1w⋆∥2 +

2ρ||w⋆||2√
k

(256)

≤
√

ν

k

(
ϕ(ℓ−1)||w⋆||2 + 2σ

√
k log(dδ−1)√

m
+ 2σ

√
r log2(rδ−1)
√
m

)
+

2ρ||w⋆||2√
k

(257)

:= α(ℓ−1). (258)

Similarly, we have:

∥U(ℓ−1)w(ℓ−1) −U⋆w⋆∥2 (259)

= ∥U+w(ℓ−1) −U(ℓ−1)Q−1w⋆ +U(ℓ−1)Q−1w⋆ −U⋆w⋆∥2 (260)

≤ ∥U+w(ℓ−1) −Q−1w⋆)∥2 + ∥(U(ℓ−1) −U⋆Q)Q−1w⋆∥2 (261)

≤ ∥U+∥2∥w(ℓ−1) −Q−1w⋆∥2 + ∥U+ −U⋆Q∥2∥Q−1w⋆∥2 (262)

≤ ∥w(ℓ−1) −Q−1w⋆∥2 + 2ρ||w⋆||2 (263)

≤ ϕ(ℓ−1)||w⋆||2 + 2ρ||w⋆||2 + 2σ

√
k log(dδ−1)√

m
+ 2σ

√
r log2(rδ−1)
√
m

(264)

:= β(ℓ−1). (265)

Using equation 258 and equation 265, we have:

φ = ϕ(ℓ−1)||w⋆||2(2
√
ν + c1) + ||w⋆||2(4ρ+ 4c1ρ) + σ

√
k log(dδ−1)√

m

)
(266)

since c1 < 1
40 ,
√
ν ≤ 1

40 and ρ ≤ 1
80 .

Using above in Lemma 6 and setting ϵ← φ(i), we have:∣∣∣∣∣∣b(ℓ) − b⋆
∣∣∣∣∣∣
2
≤ 3||w⋆||2

(
ϕ(ℓ−1)(2

√
ν + c1) + 4ρ(1 + c1)

)
(267)

+ 3σ

√
k log(dδ−1)√

m
+ 3σ

√
r log2(rδ−1)
√
m

)
(268)

Similarly, we will also have from our updates (with S = 1
m

∑m′

i=1 xi(xi)
T).

w(ℓ) −Q−1w⋆ =
(
U+TSU+

)−1(
U+TS(b⋆ − b(ℓ)) +U+TS(U⋆Q−U+)Q−1w⋆

)
(269)

+
(
U+TSU+

)−1(
UT(X(i))Tz(i)) (270)

We already know by using an ϵ-net argument that
∣∣∣∣∣∣∣∣(U+TSU+

)−1
∣∣∣∣∣∣∣∣
2

≤ 2. We also know that

∣∣∣∣∣∣EU+TS(b⋆ − b̂(ℓ))
∣∣∣∣∣∣
2
≤
√
ν
∣∣∣∣∣∣b⋆ − b(ℓ)

∣∣∣∣∣∣
2

(271)∣∣∣∣EU+TS(U⋆Q−U+)Q−1w⋆
∣∣∣∣
2
=

∣∣∣∣U+T(U⋆Q−U+)Q−1w⋆
∣∣∣∣
2
≤ 2ρ||w⋆||2 (272)
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and moreover, ∣∣∣∣∣∣U⋆T(S− I)(b⋆ − b(ℓ))
∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣b⋆ − b(ℓ)
∣∣∣∣∣∣
2

√
r log δ−1

m
(273)

∣∣∣∣U⋆T(S− I)(U⋆Q−U+)Q−1w⋆
∣∣∣∣
2
≤

∣∣∣∣U+T(U⋆Q−U+)Q−1w⋆
∣∣∣∣
2

√
r log δ−1

m
(274)

≤ 2ρ

√
r log δ−1

m
||w⋆||2 (275)

∣∣∣∣∣∣∣∣(U+TSU+
)−1(

UT(X(i))Tz(i))

∣∣∣∣∣∣∣∣
2

≤
σ
√
r log2(rδ−1)
√
m

(276)

with probability at least 1− δ/L. Hence, we get that∣∣∣∣w(ℓ) −Q−1w⋆
∣∣∣∣
2
≤ 3||w⋆||2

(
ϕ(ℓ−1)(2

√
ν + c1) + 4ρ(1 + c1)

)(√
ν +

√
r log δ−1

m

)
+ 2ρ||w⋆||2

(
1 +

√
r log δ−1

m

)
+

2
σ
√

r log2(rδ−1)√
m

+2
σ
√

k log(dδ−1)√
m

. Therefore, for m′ = Ω
(
max(k log(dLδ−1), r log δ−1)

)
, we get a decrease along with

a bias term. We can have ϕ(0) = 2||w⋆||2 by using w(0) = 0. After L iterations, we will get
∣∣∣∣w(L) −Q−1w⋆

∣∣∣∣
2
=

O
(
ρ||w⋆||2 + c′L−1||w⋆||2 +

σ
√

k log(dδ−1)

m′

)
; hence, we will have with L = O

(
log ρ−1) that

∣∣∣∣w(L) −Q−1w⋆
∣∣∣∣
2
=

O
(
ρ||w⋆||2 +

σ
√

k log(dδ−1)√
m

+
σ
√

r log2(rδ−1)√
m

)
. The generalization error is given by

L(U+,w(L),b(L))− L(U⋆,w⋆,b⋆) (277)

where L(U,w,b) ≜ E(x,y)(y − ⟨x,Uw + b⟩)2. Hence, we have that

L(U+,w(L),b(L))− L(U⋆,w⋆,b⋆) ≤ Õ
(
ρ2||w⋆||22 +

σ2(r + k)

m

)
. (278)

Theorem 5 (Restatement of Theorem 3 (Generalization properties in private setting)). Generalization error for
a new task scales as:

L(U,w,b)− L(U⋆,w⋆,b⋆) (279)

= Õ
(
σ2

(r3d(µ⋆)2

mt
+

r3

mλ⋆
r

+
k + r

m

)
+

dr2(log(1/δ) + ϵ)(λ⋆
rµ

⋆)2

ϵ2t2
· (κ2 + r2d2)

)
(280)

where κ = 1 +
√

λ⋆
r

λ⋆
1
+maxi∈[t]

∥b⋆(i)∥2√
µ⋆λ⋆

r

.

Proof. We assume that ||w⋆||2 ≤
√
µ⋆λ⋆

r due to the incoherence (see Assumption A2). We substitute ρ to be the
guarantee that we had obtained in Theorem 3; hence we immediately obtain our desired guarantees by using
equation 278.

Corollary 8 (Restatement of Theorem 1 (Generalization Properties in non-private setting)). Furthermore, for a
new task, Algorithm 6 ensures the following generalization error bound:

L(U,w,b)− L(U⋆,w⋆,b⋆) = Õ
(
σ2

(r3d(µ⋆)2

mt
+

r3

mλ⋆
r

+
k + r

m

))
.

Proof. The proof follows again by substituting σDP = 0 (hence σ1, σ2 = 0) which removes the last term in the
generalization properties in Theorem 3.

F DISCUSSION ON OBTAINING INITIAL ESTIMATES USING METHOD OF
MOMENTS

Overview: Note that Algorithm 1 has local convergence properties as described in Theorem 1. In practice,
typically we use random initialization for U+(0). However, similar to the representation learning framework
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[Tripuraneni et al., 2021], we can use the Method of Moments to obtain a good initialization. i.e. when the
representation matrix U⋆ is of rank r, we can compute the Singular Value Decomposition (SVD) of the matrix
(mt)−1

∑
i∈[t](y

(i)
j )2x

(i)
j (x

(i)
j )T. This is similar to the Method of Moments technique used in [Tripuraneni et al.,

2021] and has been used as an initialization technique in the AM framework of [Thekumparampil et al., 2021] as
well. Even in the presence of additional sparse vectors, the SVD decomposition is robust. Such a phenomenon
has been also been characterized theoretically in the robust PCA setting [Netrapalli et al., 2014].

Details for Rank-1: Assume ∥u⋆∥2 = ∥w⋆∥2 = 1 and ∥b⋆(i)∥0 ≤ k for all i ∈ [t]. Moreover, for some constant
µ > 0, we will have ∥u⋆∥∞ ≤

√
µ/d, ∥w⋆∥∞ ≤

√
µ/t,maxi∈[t] ∥B∥∞ ≤ µ/

√
dt where B is the matrix whose

columns correspond to b⋆(i)’s. Suppose, we obtain samples (x, y) ∈ Rd × R where each sample is randomly
generated from the t data generating models corresponding to each task. In order to generate the ith sample we
first draw a latent variable j ∼U [t] and subsequently generate the tuple according to the following process:

x(i) | j ∼ N (0, Id) and y(i) | x(i), j ∼ N (⟨x(i), w⋆
ju

⋆ + b⋆(j)⟩, σ2) (281)

We look at the quantity y2xxT. Our first result is the following lemma:
Lemma 14. Suppose we obtain samples {(x(i), y(i))} generated according to the model described in equation 281.
In that case we have

E
[
y2xxT

]
= I+

2

t

∑
j

(
w⋆

ju
⋆ + b⋆(j)

)(
w⋆

ju
⋆ + b⋆(j)

)T

(282)

where I denotes the d-dimensional identity matrix.

The proof follows from simple calculations. From the data {(x(i)
j , y

(i)
j )}mj=1 for the ith task, we can compute an

unbiased estimate A ≜ 1
mt

∑t
i=1

∑m
j=1(y

(i)
j )2x

(i)
j (x

(i)
j )T of the matrix E

[
y2xxT

]
. Let us write A = E [A] + 2F

where 2F is the error in estimating E [A]. Also, let us denote 0.5t(E
[
y2xxT

]
− I) ≜ L. In that case, we will have

0.5t(A− I) = 0.5t(A− E [A] + E [A]− I) = L+ F. We will also denote

E ≜
t∑

j=1

(
w⋆

jb
⋆(j)(u⋆)T + w⋆

i u
⋆(b⋆(j))T + b⋆(j)(b⋆(j))T

)
︸ ︷︷ ︸

G

+F.

Our goal is to show that any eigenvector of L + F is close to u⋆ in infinity norm. Note that (L + F)z =
(u(u⋆)T +E)z = λz. Hence, we have

z =
(
I− E

λ

)−1u⋆(u⋆)Tz

λ
. (283)

First, note that

λzzT − u⋆(u⋆)T =
u⋆(u⋆)TzzTu⋆(u⋆)T

λ
+

∑
p,q:p+q≥1

Epu⋆(u⋆)TzzTu⋆(u⋆)TEq

λp+q+1
(284)

∥λzzT − u⋆(u⋆)T∥∞ = ∥u
⋆(u⋆)TzzTu⋆(u⋆)T

λ − u⋆(u⋆)T∥∞ + ∥
∑

p,q:p+q≥1
Epu⋆(u⋆)TzzTu⋆(u⋆)TEq

λp+q+1 ∥∞.

(285)

We have that ∣∣∣∣∣∣∣∣u⋆(u⋆)TzzTu⋆(u⋆)T

λ
− u⋆(u⋆)T

∣∣∣∣∣∣∣∣
∞

=max
ij

eTi

(u⋆(u⋆)TzzTu⋆(u⋆)T

λ
− u⋆(u⋆)T

)
ej (286)

=eTi

(
u⋆(u⋆)T +U⋆

⊥(U
⋆
⊥)

T
)(u⋆(u⋆)TzzTu⋆(u⋆)T

λ
− u⋆(u⋆)T

)(
u⋆(u⋆)T +U⋆

⊥(U
⋆
⊥)

T
)
ej (287)

≤||u⋆||2∞

∣∣∣∣∣∣∣∣u⋆(u⋆)TzzTu⋆(u⋆)T

λ
− u⋆(u⋆)T

∣∣∣∣∣∣∣∣
2

≤ µ2

d

( ((u⋆)Tz)2

λ
− 1

)
(288)
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where U⋆
⊥ is the subspace orthogonal to the vector u⋆.

First, we will show an upper bound on ||F||∞. Recall that according to the data generating mechanism, each
co-variate x is generated according to N (0, Id) and given the co-variate, the response y | x ∼ N (⟨x, w⋆u⋆+b⋆⟩, σ2)
where w⋆,b⋆ is uniformly chosen at random from the set {w⋆

j ,b
⋆(j)}j . Hence, we can bound the magnitude of

y as follows: Ey2|x = t−1
∑t

j=1 σ
2 + ⟨x, w⋆

ju
⋆ + b⋆(j)⟩2 and therefore E

[
y2
]
= t−1

∑t
j=1 σ

2 +
∣∣∣∣w⋆

ju
⋆ + b⋆(j)

∣∣∣∣2
2
.

Hence, y ∼ t−1
∑t

j=1N (0, σ2 +
∣∣∣∣w⋆

ju
⋆ + b⋆(j)

∣∣∣∣2
2
) and therefore, by using standard Gaussian concentration, we

will have |y| ≤
√
σ2 +maxj∈[t]

∣∣∣∣w⋆
ju

⋆ + b⋆(j)
∣∣∣∣2
2
log(mt) ≤

√
σ2 + 4µt−1 log(mt) for all mt samples w.p. at least

1 − poly((mt)−1). Moreover, |x(i)
p,j | ≤ log(dmt) for all i ∈ [t], p ∈ [m], j ∈ [d]. Hence, with probability at least

1 − poly((dmt)−1), by using standard concentration inequalities, we have ||F||∞ ≤
√

σ2+4µt−1

mt log3(dmt). We
will now bound ||E||2 ≤ ||G||2 + ||F||2. In order to do so, fix unit vectors x,y such that ||E||2 = xTEy =∑

is xiysEis =
1
2

∑
is(x

2
i + y2s)Eis. We have the following:

∑
i

x2
i

t∑
j=1

d∑
s=1

b
⋆(j)
i b⋆(j)

s ≤ ζk||B||2∞ and
∑
s

y2s

t∑
j=1

b⋆(j)
s

d∑
i=1

b
⋆(j)
i ≤ ζk||B||2∞ ≤

µ2ζk

dt
(289)

=⇒
∑
i

x2
i

t∑
j=1

w⋆
jb

⋆(j)
i

d∑
s=1

u⋆
s ≤ ζd||B||∞||u||∞||w||∞

and
∑
s

y2s

t∑
j=1

w⋆
ju

⋆
s

d∑
i=1

b
⋆(j)
i ≤ kt||B||∞||u||∞||w||∞ ≤

µ2k

d
(290)

=⇒
∑
i

x2
i

t∑
j=1

w⋆
ju

⋆(j)
i

d∑
s=1

b⋆(j)
s ≤ kt||B||∞||u||∞||w||∞

and
∑
s

y2s

t∑
j=1

w⋆
jb

⋆(j)
s

d∑
i=1

u⋆
i ≤ ζd||B||∞||u||∞||w||∞ ≤

µ2ζ

t
. (291)

and similarly ||F||2 ≤
√
d||F||∞. Hence ||F||2 ≤ 1/800 provided mt = Ω(dσ2). In that case, we have ||E||2 ≤ 1/400

provided ζ ≤ c1t and k ≤ c2d for appropriate constants 0 ≤ c1, c2 ≤ 1. Therefore, λ must be at least 399/400
(Weyl’s inequality) and (⟨u⋆, z⟩2 − 1) ≤ 4||E||2 (Davis Kahan). Hence, we have the following inequality:(

((u⋆)Tz)2

λ − 1
)
≤ 1/100. Again, we have

∣∣∣∣∣∣∣∣Epu⋆(u⋆)TzzTu⋆(u⋆)TEq

λp+q+1

∣∣∣∣∣∣∣∣
∞

(292)

= max
ij

eTi

(Epu⋆(u⋆)TzzTu⋆(u⋆)TEq

λp+q+1

)
ej (293)

= max
ij

eTi E
p
(
u⋆(u⋆)T +U⋆

⊥(U
⋆
⊥)

T
)(u⋆(u⋆)TzzTu⋆(u⋆)T

λp+q+1

)(
u⋆(u⋆)T +U⋆

⊥(U
⋆
⊥)

T
)
Eqej (294)

≤ ||Epu⋆||∞||E
qu⋆||∞

∣∣∣∣∣∣∣∣u⋆(u⋆)TzzTu⋆(u⋆)T

λp+q+1

∣∣∣∣∣∣∣∣
2

≤ ||Epu⋆||∞||E
qu⋆||∞

( ((u⋆)Tz)2

λp+q+1

)
(295)

where U⋆
⊥ is the subspace orthogonal to the vector u⋆.

Lemma 15. Let ei ∈ Rd denote the ith standard basis vector. In that case, we will have

max
i

∣∣∣∣eTi Epu⋆
∣∣∣∣ ≤ µ√

d

(µ2ζk

dt
+

µ2k

d
+

µ2ζ

t
+

√
d

mt
||F||∞

)p

.

Proof. We can prove this statement via induction. For p = 1, the statement follows from the incoherence of u⋆.
Suppose the statement holds for p = k for some k > 1. Under this induction hypothesis, we are going to show
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that the statement holds for p = k + 1. We will have∣∣∣∣eTi Ek+1u⋆
∣∣∣∣2
2
=

∑
ℓ

(eTi EEku⋆eℓ)
2 =

∑
ℓ

(
∑
j

EijE
ku⋆eℓ)

2 (296)

=
∑
j1j2

Eij1Eij2

∣∣∣∣eTj1Eku⋆
∣∣∣∣
2

∣∣∣∣eTj2Eku⋆
∣∣∣∣
2
≤ µ2

d

(µ2ζk

dt
+

µ2k

d
+

µ2ζ

t
+

√
d

mt
||F||∞

)2k+2

(297)

Hence, we must have ∥
∑

p,q:p+q≥1
Epu⋆(u⋆)TzzTu⋆(u⋆)TEq

λp+q+1 ∥∞

≤
∑

p,q:p+q≥1

µ2

d

(µ2ζk

dt
+

µ2k

d
+

µ2ζ

t

)p+q( 1

λ

)p+q( ((u⋆)Tz)2

λ

)
(298)

≤ µ2

d

( ((u⋆)Tz)2

λ

) ∑
p,q:p+q≥1

αp+q =
µ2

d

( ((u⋆)Tz)2

λ

)(( 1

1− α

)2

− 1
)

(299)

where α = µ2ζk
dtλ + µ2k

dλ + µ2ζ
tλ +

√
d
mt ||F||∞. Again, if ζ ≤ c1t and k ≤ c2d for appropriate constants 0 ≤ c1, c2 ≤ 1,

we will have
∣∣∣∣λzzT − u⋆(u⋆)T

∣∣∣∣
∞ = O

(
µ2

d

)
and similarly, from our previous calculations on the operator norms,

we will have
∣∣∣∣λzzT − u⋆(u⋆)T

∣∣∣∣
2
= O(1)σ

√
d
mt . Hence, provided mt = Ω(dσ2), by using Davis Kahan inequality,

we obtain the initialization guarantees that we need for the rank-1 setting (see Theorem 1).

G USEFUL LEMMAS

Lemma 16 (Hanson-Wright lemma). Let x(1),x(2), . . . ,x(m) ∼ N (0, Id×d) be m i.i.d. standard isotropic Gaussian
random vectors of dimension d. Then, for some universal constant c ≥ 0, the following holds true with a probability
of at least 1− δ0∣∣∣∣∣∣ 1m

m∑
j=1

xT
j Ajxj −

1

m

m∑
j=1

Tr(Aj)

∣∣∣∣∣∣ ≤ cmax
(√√√√ m∑

j=1

∥Aj∥2F
log δ−1

0

m2
, max
j=1,...,m

∥Aj∥2
log δ−1

0

m

)
.

Lemma 17. Let x(1),x(2), . . . ,x(m) ∼ N (0, Id×d) be m i.i.d. standard isotropic Gaussian random vectors of
dimension d. Then, for some universal constant c ≥ 0, the following holds true with a probability of at least 1− δ0.∣∣∣∣∣∣ 1m

m∑
j=1

aT(x(j)(x(j))T)b− aTb

∣∣∣∣∣∣ ≤ c||a||2||b||2 max
(√ log δ−1

0

m
,
log δ−1

0

m

)
.

Lemma 18. For three real r-rank matrices, satisfying A−B = C, Weyl’s inequality tells that

σk(A)− σk(B) ≤ ∥C∥

∀ k ∈ [r] where σk(·) is the k-th largest singular value operator.
Lemma 19. Let x(1),x(2), . . . ,x(m) ∼ N (0, Id×d) be m i.i.d. standard isotropic Gaussian random vectors of
dimension d. Then, for some universal constant c ≥ 0, the following holds true with a probability of at least 1− δ0,∣∣∣∣∣∣ 1

m

∑m
j=1 aj(x

(j)(x(j))T)− 1
m

∑m
j=1 ajI

∣∣∣∣∣∣
2

≤ cmax
( ||a||2√

m

√
d log 9 + log δ−1

0

m
, ||a||∞

d log 9 + log δ−1
0

m

)
.

Lemma 20. Let ai,bi ∈ Rd ∀ i ∈ [t]. Then,

∥
∑
i

aib
T
i ∥2p ≤ ∥

∑
i

aia
T
i ∥p∥

∑
i

bib
T
i ∥p.
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Lemma 21. For a real matrix A ∈ Rm×n and a real symmetric positive semi-definite (PSD) matrix B ∈ Rn×n,
the following holds true: σ2

min(A)λmin(B) ≤ λmin(ABAT), where σmin(·) and λmin(·) represents the minimum
singular value and minimum eigenvalue operators respectively.

Lemma 22. For any three matrices A,B, and C for which the matrix product ABC is defined,

vec(ABC) = (CT ⊗A)vec(B).

Lemma 23. For a (ν2, α) sub-exponential random variable, we have the following tail bound

P(|X − E [X] | ≥ t) ≤ e−
1
2 min{t2/ν2,t/α}.
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