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Abstract

In this paper, we study the problem of learning a mixture of Gaussians with stream-
ing data: given a stream of N points in d dimensions generated by an unknown
mixture of k spherical Gaussians, the goal is to estimate the model parameters using
a single pass over the data stream. We analyze a streaming version of the popular
Lloyd’s heuristic and show that the algorithm estimates all the unknown centers of
the component Gaussians accurately if they are sufficiently separated. Assuming
each pair of centers are Cσ distant with C = Ω((k log k)1/4σ) and where σ2 is
the maximum variance of any Gaussian component, we show that asymptotically
the algorithm estimates the centers optimally (up to certain constants); our center
separation requirement matches the best known result for spherical Gaussians [18].
For finite samples, we show that a bias term based on the initial estimate decreases
at O(1/poly(N)) rate while variance decreases at nearly optimal rate of σ2d/N .
Our analysis requires seeding the algorithm with a good initial estimate of the true
cluster centers for which we provide an online PCA based clustering algorithm.
Indeed, the asymptotic per-step time complexity of our algorithm is the optimal
d · k while space complexity of our algorithm is O(dk log k).
In addition to the bias and variance terms which tend to 0, the hard-thresholding
based updates of streaming Lloyd’s algorithm is agnostic to the data distribution
and hence incurs an approximation error that cannot be avoided. However, by
using a streaming version of the classical (soft-thresholding-based) EM method
that exploits the Gaussian distribution explicitly, we show that for a mixture of
two Gaussians the true means can be estimated consistently, with estimation error
decreasing at nearly optimal rate, and tending to 0 for N →∞.

1 Introduction

Clustering data into homogeneous clusters is a critical first step in any data analysis/exploration task
and is used extensively to pre-process data, form features, remove outliers and visualize data. Due
to the explosion in amount of data collected and processed, designing clustering algorithms that
can handle large datasets that do not fit in RAM is paramount to any big-data system. A common
approach in such scenarios is to treat the entire dataset as a stream of data, and then design algorithms
which update the model after every few points from the data stream. In addition, there are several
practical applications where the data itself is not available beforehand and is streaming in, for example
in any typical online system like web-search.

For such a model, the algorithm of choice in practice is the so-called streaming k-means heuristic.
It is essentially a streaming version of the celebrated k-means algorithm or Lloyd’s heuristic [8].
The basic k-means algorithm is designed for offline/batch data where each data point is assigned to
the nearest centroid and the centroids are then updated based on the assigned points; this process is
iterated till the solution is locally optimal. The streaming version of the k-means algorithm assigns
the new point from the stream to the closest centroid and updates this centroid immediately. That is,
unlike offline k-means which first assigns all the points to the respective centroids and then updates
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the centroids, the streaming algorithm updates the centroids after each point, making it much more
space efficient. While streaming k-means and its several variants are used heavily in practice, their
properties such as solution quality, time complexity of convergence have not been studied widely. In
this paper, we attempt to provide such a theoretical study of the streaming k-means heuristic. One
of the big challenges is that even the (offline) k-means algorithm attempts to solve a non-convex
NP-hard problem. Streaming data poses additional challenges because of the large noise in each
point that can deviate the solution significantly.

In the offline setting, clustering algorithms are typically studied under certain simplifying assumptions
that help bypass the worst-case NP-hardness of these problems. One of the most widely studied
setting is when the data is sampled from a mixture of well-separated Gaussians [5, 18, 1], which is
also the generative assumption that we impose on the data in this work. However, the online/streaming
version of the k-means algorithm has not been studied in such settings. In this work, we design and
study a variant of the popular online k-means algorithm where the data is streaming-in, we cannot
store more than logarithmically many data points, and each data point is sampled from a mixture of
well-separated spherical Gaussians. The goal of the algorithm is then to learn the means of each of
the Gaussians; note that estimating other parameters like variance, and weight of each Gaussian in
the mixture becomes simple once the true means are estimated accurately.

Our Results. Our main contribution is the first bias-variance bound for the problem of learning
Gaussian mixtures with streaming data. Assuming that the centers are separated by Cσ where
C = Ω(

√
log k) and if we seed the algorithm with initial cluster centers that are ≤ Cσ/20 distance

away from the true centers, then we show that the error in estimating the true centers can be
decomposed into three terms and bound each one of them: (a) the bias term, i.e., the term dependent
on distance of true means to initial centers decreases at a 1/poly(N) rate, where N is the number
of data points observed so far, (b) the variance term is bounded by σ2

(
d logN
N

)
where σ is the

standard deviation of each of the Gaussians, and d is the dimensionality of the data, and (c) an offline
approximation error: indeed, note that even the offline Lloyd’s heuristic will have an approximation
error due to its hard-thresholding nature. For example, even when k = 2, and the centers are separated
by Cσ, around exp(−C

2

8 ) fraction of points from the first Gaussian will be closer to the second
center, and so the k-means heuristic will converge to centers that are at a squared distance of roughly
O(C2) exp(−C

2

8 )σ2 from the true means. We essentially inherit this offline error up to constants.

Note that the above result holds at a center separation of Ω(
√

log kσ) distance, which is substantially
weaker than the currently best-known result of Ω(σk1/4) for even the offline problem [18]. However,
as mentioned before, this only holds provided we have a good initialization. To this end, we show
that when C = Ω(σ(k log k)1/4), we can combine an online PCA algorithm [9, 11] with the batch
k-means algorithm on a small seed sample of around O(k log k) points, to get such an initialization.
Note that this separation requirement nearly matches the best-known result offline results [18].

Finally, we also study a soft-version of streaming k-means algorithm, which can also be viewed
as the streaming version of the popular Expectation Maximization (EM) algorithm. We show that
for mixture of two well-separated Gaussians, a variant of streaming EM algorithm recovers the
above mentioned bias-variance bound but without the approximation error. That is, after observing
infinite many samples, streaming EM converges to the true means and matches the corresponding
offline results in [3, 6]; to the best of our knowledge this is also first such consistency result for the
streaming mixture problem. However, the EM updates require that the data is sampled from mixture
of Gaussians, while the updates of streaming Lloyd’s algorithm are agnostic of the data distribution
and hence same updates can be used to solve arbitrary mixture of sub-Gaussians as well.

Technical Challenges. One key technical challenge in analyzing streaming k-means algorithm in
comparison to the standard streaming regression style problems is that the offline problem itself is
non-convex and moreover can only be solved approximately. Hence, a careful analysis is required to
separate out the error we get in each iteration in terms of the bias, variance, and inherent approximation
error terms. Moreover, due to the non-convexity, we are able to guarantee decrease in error only if
each of our iterates lies in a small ball around the true mean. While this is initially true due to the
initialization algorithm, our intermediate centers might escape these balls during our update. However,
we show using a delicate martingale based argument that with high probability, our estimates stay
within slightly larger balls around the true means, which turns out to be sufficient for us.
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Related Work. A closely related work to ours is an independent work by [17] which studies a
stochastic version of k-means for data points that satisfy a spectral variance condition which can be
seen as a deterministic version of the mixture of distributions assumption. However, their method
requires multiple passes over the data, thus doesn’t fit directly in the streaming k-means setting.
In particular, the above mentioned paper analyzes the stochastic k-means method only for highly
accurate initial set of iterates which requires a large burn-in period of t = O(N2) and hence needs
O(N) passes over the data, where N is the number of data points. Tensor methods [1, 10] can also
be extended to cluster streaming data points sampled from a mixture distribution but these methods
suffer from large sample/time complexity and might not provide reasonable results when the data
distribution deviates from the assumed generative model.

In addition to the gaussian mixture model, clustering problems are also studied under other models
such as data with small spectral variance [12], stability of data [4], etc. It would be interesting to
study the streaming versions in such models as well.

Paper Outline. We describe our models and problem setup in Section 2. We then present our
streaming k-means algorithm and its proof overview in Sections 3 and 4. We then discuss the
initialization procedure in Section 5. Finally we describe our streaming-EM algorithm in Section 6.

2 Setup and Notation

We assume that the data is drawn from a mixture of k spherical Gaussians distributions, i.e.,

xt i.i.d∼
∑
i

wiN (µ?i , σ
2I),µ?i ∈ Rd ∀i = 1, 2, . . . k (1)

where µ?i ∈ Rd is the mean of the i-th mixture component, mixture weights wi ≥ 0, and
∑
i wi = 1.

All the problem parameters (i.e., the true means, the variance σ2 and the mixture weights) are
unknown to the algorithm. Using the standard streaming setup, where the tth sample xt ∈ Rd is
drawn from the data distribution, our goal is to produce an estimate µ̂i of µ?i for i = 1, 2, . . . k in a
single pass over the data using bounded space.

Center Separation. A suitable notion of signal to noise ratio for our problem turns out to be the ratio
of minimum separation between the true centers and the maximum variance along any direction. We
denote this ratio by C = mini,j

‖µ?i−µ
?
j ‖

σ . For convenience, we also denote
‖µ?i−µ

?
j ‖

σ by Cij . Here
and in the rest of the paper, ‖y‖ is the Euclidean norm of a vector y. We use η to denote the learning
rate of the streaming updates and µti to denote the estimate of µ?i at time t.

Remarks. For a cleaner presentation, we assume that all the mixture weights are 1/k, but our results
hold with general weights as long as an appropriate center separation condition is satisfied. Secondly,
our proofs also go through when the Gaussians have different variances σi2, as long as the separation
conditions are satisfied with σ = maxi σi. We furnish details in the full version of this paper [14].

3 Algorithm and Main Result

In this section, we describe our proposed streaming clustering algorithm and present our analysis of
the algorithm. At a high level, we follow the approach of various recent results for (offline) mixture
recovery algorithms [18, 12]. That is, we initialize the algorithm with an SVD style operation which
de-noises the data significantly in Algorithm 1 and then apply our streaming version of Lloyd’s
heuristic in Algorithm 2. Note that the Lloyd’s algorithm is agnostic to the underlying distribution
and does not include distribution specific terms like variance etc.

Intuitively, the initialization algorithm first computes an online batch PCA in the for-loop. After this
step, we perform an offline distance-based clustering on the projected subspace (akin to Vempala-
Wang for the offline algorithm). Note that since we only need estimates for centers within a suitable
proximity from the true centers, this step only uses few (roughly k log k) samples. These centers are
fed as the initial centers for the streaming update algorithm. The streaming algorithm then, for each
new sample, updates the current center which is closest to the sample, and iterates.
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Figure 1: Illustration of optimal K-means error

Algorithm 1 InitAlg(N0)

U ← random orthonormal matrix ∈ Rd×k
B = Θ(d log d), S = 0
for t = 1 to N0 − k log k do

if mod(t, B) = 0 then
U ← QR(S · U), S ← 0

end if
Receive xt as generated by the input stream
S = S + xt(xt)T

end for
X0 = [xN0−k log k+1, . . . ,xN0 ]
Form nearest neighbor graph using UTX0 and
find connected components
[ν0

1 , . . . , ν
0
k ] ← mean of points in each compo-

nent
Return: [µ0

1, . . . ,µ
0
k] = [Uν0

1 , . . . , Uν
0
k ]

Algorithm 2 StreamKmeans(N,N0)

1: Set η ← 3k log 3N
N .

2: Set {µ0
1, . . . ,µ

0
k} ← InitAlgo(N0).

3: for t = 1 to N do
4: Receive xt+N0 given by the input stream
5: x = xt+N0

6: Let it = arg mini ‖x− µt−1
i ‖.

7: Set µtit = (1− η)µt−1
it

+ ηx

8: Set µti = µt−1
i for i 6= it

9: end for
10: Output: µN1 , . . . ,µ

N
k

We now present our main result for the streaming clustering problem.
Theorem 1. Let xt, 1 ≤ t ≤ N +N0 be generated using a mixture of Gaussians (1) with wi = 1/k,
∀i. LetN0, N ≥ O(1)k3d3 log d and C ≥ Ω((k log k)1/4). Then, the mean estimates (µN1 , . . . ,µ

N
k )

output by Algorithm 2 satisfies the following error bound:

E

[∑
i

‖µNi − µ?i ‖2
]
≤ maxi ‖µ?i ‖2

NΩ(1)︸ ︷︷ ︸
bias

+O(k3)

σ2 d logN

N︸ ︷︷ ︸
variance

+ exp(−C2/8)(C2 + k)σ2︸ ︷︷ ︸
≈offline k−means error

 .

Our error bound consists of three key terms: bias, variance, and offline k-means error, with bias and
variance being standard statistical error terms: (i) bias is dependent on the initial estimation error
and goes down at Nζ rate where ζ > 1 is a large constant; (ii) variance error is the error due to
noise in each observation xt and goes down at nearly optimal rate of ≈ σ2 d

N albeit with an extra
logN term as well as worse dependence on k; and (iii) an offline k-means error, which is the error
that even the offline Lloyds’ algorithm would incur for a given center separation C. Note that while
sampling from the mixture distribution, ≈ exp(−C2/8) fraction of data-points can be closer to the
true means of other clusters rather than their own mean, because the tails of the distributions overlap.
Hence, in general it is not possible to assign back these points to the correct cluster, without any
modeling assumptions. These misclassified points will shift the estimated centers along the line
joining the means. See Figure 3 for an illustration. This error can however be avoided by performing
soft updates, which is discussed in Section 6.

Time, space, and sample complexity: Our algorithm has nearly optimal time complexity of O(d ·k)
per iteration; the initialization algorithm requires about O(d4k3) time. Space complexity of our
algorithm is O(dk · log k) which is also nearly optimal. Finally, the sample complexity is O(d3k3),
which is a loose upper bound and can be significantly improved by a more careful analysis. To
compare, the best known sample complexity for the offline setting is Õ(kd) [2], which is better by a
factor of (dk)2.
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Analysis Overview. The proof of Theorem 1 essentially follows from the two theorems stated below:
a) update analysis given a good initialization; b) InitAlg analysis for showing such an initialization.
Theorem 2 (Streaming Update). Let xt, N0 + 1 ≤ t ≤ N + N0 be generated using a mixture of
Gaussians (1) with wi = 1/k, ∀i, and N = Ω(k3d3 log kd). Also, let the center-separation C ≥
Ω(
√

log k), and also suppose our initial centers µ0
i are such that for all 1 ≤ i ≤ k, ‖µ0

i −µ?i ‖ ≤ Cσ
20 .

Then, the streaming update of StreamKmeans(N,N0) , i.e, Steps 3-8 of Algorithm 2 satisfies:

E

[∑
i

‖µNi − µ?i ‖2
]
≤ maxi ‖µ?i ‖2

NΩ(1)
+O(k3)

(
exp(−C2/8)(C2 + k)σ2 +

logN

N
dσ2

)
.

Note that our streaming update analysis requires only C = Ω(
√

log k) separation but needs appropri-
ate initialization that is guaranteed by the below result.
Theorem 3 (Initialization). Let xt, 1 ≤ t ≤ N0 be generated using a mixture of Gaussians (1)
with wi = 1/k, ∀i. Let µ0

1,µ
0
2, . . .µ

0
k be the output of Algorithm 1. If C = Ω

(
(k log k)1/4

)
and

N0 = Ω
(
d3k3 log dk

)
, then w.p. ≥ 1− 1/poly(k), we have maxi ‖µ0

i − µ?i ‖ ≤ C
20σ.

4 Streaming Update Analysis

At a high level our analysis shows that at each step of the streaming updates, the error decreases on
average. However, due to the non-convexity of the objective function we can show such a decrease
only if the current estimates of our centers lie in a small ball around the true centers of the gaussians.
Indeed, while the initialization provides us with such centers, due to the added noise in each step,
our iterates may occasionally fall outside these balls, and we need to bound the probability that this
happens. To overcome this, we start with initial centers that are within slightly smaller balls around
the true means, and use a careful Martingale argument to show that even if the iterates go a little
farther from the true centers (due to noise), with high probability, the iterates are still within the
slightly larger ball that we require to show decrease in error.

We therefore divide our proof in two parts: a) first we show in Section 4.1 that the error decreases in
expectation, assuming that the current estimates lie in a reasonable neighborhood around the true
centers; and b) in Section 4.2) we show using a martingale analysis that with high probability, each
iterate satisfies the required neighborhood condition if the initialization is good enough.

We formalize the required condition for our per-iteration error analysis below. For the remainder of
this section, we fix the initialization and only focus on Steps 3-8 of Algorithm 2.

Definition 1. For a fixed initialization, and given a sequence of points ωt = (xt′+N0+1 : 0 ≤ t′ <
t), we say that condition It is satisfied at time t if maxi ‖µt

′

i − µ?i ‖ ≤ Cσ
10 holds for all 0 ≤ t′ ≤ t.

Note that given a sequence of points and a fixed initialization, Algorithm 2 is deterministic.

We now define the following quantities which will be useful in the upcoming analysis. At any
time t ≥ 1, let ωt = (xt′+N0+1 : 0 ≤ t′ < t) denote the sequence of points received by our
algorithm. For all t ≥ 0, let Ẽit = ‖µti − µ?i ‖2 denote the random variable measuring the current
error for cluster i, and let Ṽt = maxi Ẽ

i
t to be the maximum cluster error at time t. Now, let

Êit+1 = Ext+N0+1

[
‖µt+1

i − µ?i ‖2 |ωt
]

be the expected error of the ith cluster center after receiving
the (t + 1)th, conditioned on ωt. Finally, let Eit = E

[
‖µti − µ?i ‖2 | It

]
be the expected error

conditioned on It, and let Et =
∑
iE

i
t .

4.1 Error Reduction in Single Iteration

Our main tool toward showing Theorem 2 is the following theorem which bounds the expected error
after updating the means on arrival of the next sample.
Theorem 4. If It holds and C ≥ Ω(

√
log k), then for all i, we have

Êit+1 ≤(1− η

2k
)Ẽit +

η

k5
Ṽt +O(1)η2dσ2 +O(k)η(1− η) exp(−C2/8)(C2 + k)σ2 .
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Proof sketch of Theorem 4. In all calculations in this proof, we first assume that the candidate centers
satisfy It, and all expectations and probabilities are only over the new sample xt+N0+1, which we
denote by x after omitting the superscript. Now recall our update rule: µt+1

i = (1− η)µti + ηx if µti
is the closest center for the new sample x; the other centers are unchanged. To simplify notations, let:

gti(x) = 1 iff i = arg min
j
‖x− µtj‖, gti(x) = 0 otherwise. (2)

By definition, we have for all i,

µt+1
i = (1− η)µti + η

(
gti(x)x + (1− gti(x))µti

)
= µti + ηgti(x)(x− µti).

Our proof relies on the following simple yet crucial lemmas. The first bounds the failure probability
of a sample being closest to an incorrect cluster center among our candidates. The second shows
that if the candidate centers are sufficiently close to the true centers, then the failure probability of
mis-classifying a point to a wrong center is (upto constant factors) the probability of mis-classification
even in the optimal solution (with true centers). Finally the third lemma shows that the probability of
gti(x) = 1 for each i is lower-bounded. Complete details and proofs appear in [14].

Lemma 1. Suppose condition It holds. For any i, j 6= i, let x ∼ Cl(j) denote a random point from
cluster j. Then Pr

[
‖x− µti‖ ≤ ‖x− µtj‖

]
≤ exp(−Ω(C2

ij)).

Lemma 2. Suppose max(‖µti − µ?i ‖, ‖µti − µ?i ‖) ≤ σ/Cij . For any i, j 6= i, let x ∼ Cl(j) denote
a random point from cluster j. Then Pr

[
‖x− µti‖ ≤ ‖x− µtj‖

]
≤ O(1) exp(−C2

ij/8).

Lemma 3. If It holds and C = Ω(
√

log k), then for all i, then Pr [gti(x) = 1] ≥ 1
2k .

And so, equipped with the above notations and lemmas, we have

Êit+1 = Ex

[
‖µt+1

i − µ?i ‖2
]

= (1− η)2‖µti − µ?i ‖2 + η2E
[
‖gti(x)(x− µ?i ) + (1− gti(x))(µti − µ?i )‖2

]
+ 2η(1− η)E

[〈
µti − µ?i ,

(
gti(x)(x− µ?i ) + (1− gti(x))(µti − µ?i )

) 〉]
≤ (1− η

2k
)Ẽit + η2 E

[
‖gti(x)(x− µ?i )‖2

]︸ ︷︷ ︸
T1

+2η(1− η)E
[〈

µti − µ?i ,
(
gti(x)(x− µ?i )

) 〉]
︸ ︷︷ ︸

T2

The last inequality holds because of the following line of reasoning: (i) firstly, the cross
term in the second squared norm evaluates to 0 due to the product gti(x)(1 − gti(x)), (ii)
η2E

[
(1− gti(x))‖µti − µ?i ‖2

]
≤ η2Ẽit , (iii) 2η(1 − η)E [〈µti − µ?i , (1− gti(x))(µti − µ?i )〉] ≤

2η(1− η)Ẽit Pr [gti(x) = 0] ≤ 2η(1− η)Ẽit(1− 1/2k) by Lemma 3, and finally (iv) by collecting
terms with coefficient Ẽit .

The proof then roughly proceeds as follows: suppose in an ideal case, gti(x) is 1 for all points x
generated from cluster i, and 0 otherwise. Then, if x is a random sample from cluster i, T1 would be
dσ2, and T2 would be 0. Of course, the difficulty is that gti(x) is not always as well-behaved, and so
the bulk of the analysis is in carefully using Lemmas 1and 2, and appropriately “charging” the various
error terms we get to the current error Ẽit , the variance, and the offline approximation error.

4.2 Ensuring Proximity Condition Via Super-Martingales

In the previous section, we saw that condition It = 1 is sufficient to ensure that expected one-step
error reduces at time step t+ 1. Our next result shows that IN = 1 is satisfied with high probability.
Theorem 5. Suppose maxi ‖µ0

i − µ?i ‖ ≤ C
20σ, then IN = 1 w.p ≥ 1− ( 1

poly(N) ).

Our argument proceeds as follows. Suppose we track the behaviour of the actual error terms Ẽit
over time, and stop the process (call it a failure) when any of these error terms exceeds C2σ2/100
(recall that they are all initially smaller than C2σ2/400). Assuming that the process has not stopped,
we show that each of these error terms has a super-martingale behaviour using Theorem 4, which

6



says that on average, the expected one-step error drops. Moreover, we also show that the actual
one-step difference, while not bounded, has a sub-gaussian tail. Our theorem now follows by using
Azuma-Hoeffding type inequality for super-martingale sequences.

4.3 Wrapping Up

Now, using Theorems 4 and 5, we can get the following theorem.
Theorem 6. Let γ = O(k)η2dσ2 + O(k2)η(1 − η)exp(−C2/8)(C2 + k)σ2. Then if C ≥
Ω(
√

log k), for all t, we have Et+1 ≤ (1− η
4k )Et + γ. It follows that EN ≤ (1− η

4k )NE0 + 4k
η γ.

Proof. Let E
i

t+1 = E
[
‖µt+1

i − µ?i ‖2
∣∣∣It] to be the average over all sample paths of Ẽit+1 condi-

tioned on It. Recall that Et+1 is very similar, except the conditioning is on It+1. With this notation,
let us take expectation over all sample paths where It is satisfied, and use Theorem 4 to get

E
i

t+1 ≤(1− η

2k
)Eit +

η

k5
Et +O(1)η2dσ2 +O(k)η(1− η) exp(−C2/8)(C2 + k)σ2 .

And so, summing over all i we will get

Et+1 ≤(1− η

3k
)Et +O(k)η2dσ2 +O(k2)η(1− η) exp(−C2/8)(C2 + k)σ2 .

Finally note that Et+1 and Et+1 are related as Et+1 Pr [It+1] ≤ Et+1 Pr [It], and so Et+1 ≤
Et+1(1 + 1

N2 ) since Pr [It+1] ≥ 1− 1/N5 by Theorem 5.

Proof of Theorem 2. From Theorem 5 we know that the probability of IN being satisfied is 1−1/N5,
and in this case, we can use Theorem 6 to get the desired error bound. In case IN fails, then the
maximum possible error is roughly maxi,j ‖µ?i − µ?j‖2 · N (when all our samples are sent to the
same cluster), which contributes a negligible amount to the bias term.

5 Initialization for streaming k-means

In Section 4 we saw that our proposed streaming algorithm can lead to a good solution for any
separation Cσ ≥ O(

√
log k)σ if we can initialize all centers such that ‖µ0

i − µ?i ‖ ≤ C
20σ. We now

show that InitAlg (Algorithm 1) is one such procedure. We first approximately compute the top-k
eigenvectors U of the data covariance using a streaming PCA algorithm [9, 13] on O(k3d3 log d)
samples. We next store k log k points and project them onto the subspace spanned by U . We then
perform a simple distance based clustering [18] that correctly clusters the stored points (assuming
reasonable center separation), and finally we output these cluster centers.

Proof of Theorem 3. Using an argument similar to [9] (Theorem 3), we get that U obtained by the
online PCA algorithm (Steps 1:4 of Algorithm 1) satisfies (w.p. ≥ 1− 1/poly(d)):

‖UUTµ?i − µ?i ‖2 ≤ .01σ2, ∀1 ≤ i ≤ k. (3)

Now, let µ̂∗i = UTµ?i . For any x sampled from mixture distribution (1), UTx ∼
∑
i wiN (µ̂∗i , σ

2I).
Hence, if UTxt, UTxt

′
both belong to cluster i, then (w.p. ≥ 1− 1/kα):

‖UTxt
′
− UTxt

′
‖2 = ‖UT (zt − zt

′
)‖22 ≤ (k + 8α

√
k log k)σ2, (4)

where xt = µ?i + zt and xt
′

= µ?i + zt
′
. The last inequality above follows by using standard χ2

random variable tail bound. Similarly if UTxt, UTxt
′

belong to cluster i and j, i.e., xt = µ?i + zt

and xt
′

= µ?j + zt
′

then (w.p. ≥ 1− 1/kα):

‖UTxt
′
− UTxt

′
‖2 = ‖µ̂∗i − µ̂∗j‖2 + ‖UT (zt − zt

′
)‖22 + 2(µ̂∗i − µ̂∗j )

TUT (zt − zt
′
)

≥ (C2 − .2C + 8α
√
k log k − 16αC

√
log k)σ2, (5)

where the above equation follows by using (3), setting α = C/32 and using C = Ω((k log k)1/4).
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Using (4), (5), w.h.p. all the points from the same cluster are closer to each other than points from
other clusters. Hence, connected components of nearest neighbor graph recover clusters accurately.

Now, we estimate µ̂i = 1
|Cluster(i)|

∑
t∈Cluster(i) U

Txt for each i. Since, our clustering is com-

pletely accurate, we have w.p. ≥ 1− 2m2/kC/32,

‖µ̂i − µ̂∗i ‖2 ≤ σ
√

log k√
|Cluster(i)|

. (6)

As wi = 1/k for all i, |Cluster(i)| ≥ m
k − C

√
m
k w.p. ≥ 1− 1/kC/32. Theorem now follows by

setting m = O(k log k) and by using (3), (6) along with C = Ω((k log k)1/4).

Remark 1. We would like to emphasize that our analysis for the convergence of streaming algo-
rithms works even for smaller separations C = O(

√
log k), as long as we can get a good enough

initialization. Hence, a better initialization algorithm with weaker dependence of C on k would lead
to an improvement in the overall algorithm.

6 Soft thresholding EM based algorithm

In this section, we study a streaming version of the Expectation Maximization (EM) algorithm [7]
which is also used extensively in practice. While the standard k-means or Lloyd’s heuristic is known
to be agnostic to the distribution, and the same procedure can solve the mixture problem for a variety
of distributions [12], EM algorithms are designed specifically for the input mixture distribution. In
this section, we consider a streaming version of the EM algorithm when applied to the problem of
mixture of two spherical Gaussians with known variances. In this case, the EM algorithm reduces to
a softer version of the Lloyd’s algorithm where a point can be partially assigned to the two clusters.
Recent results by [6, 3, 19] show convergence of the EM algorithm in the offline setting for this
simple setup. In keeping with earlier notation, let µ?1 = µ? and µ?2 = −µ? and the center separation
C =

2‖µ?‖
σ . Hence, xt i.i.d∼ 1

2N (µ?, σ2I) + 1
2N (−µ?, σ2I).

Algorithm 3 StreamSoftUpdate(N,N0)

Set η = 3 logN
N .

Set µ0
i ← InitAlgo(N0).

for t = 1 to N do
Receive xt+N0 as generated by the input stream.
x = xt+N0

Let wt =
exp
(
−‖x−µt‖2

σ2

)
exp
(
−‖x−µt‖2

σ2

)
+exp

(
−‖x+µt‖2

σ2

)
Set µt+1 = (1− η)µt + η[2wt − 1]x.

end for

In our algorithm, wt(x) is an estimate of the probability that x belongs to the cluster with µt, given
that it is drawn from a balanced mixture of gaussians at µt and −µt. Calculating wt(x) corresponds
to the E step and updating the estimate of the centers corresponds to the M step of the EM algorithm.
Similar to the streaming Lloyd’s algorithm presented in Section 3, our analysis of streaming soft
updates can be separated into streaming update analysis and analysis InitAlg (which is already
presented in Section 5). We now provide our main theorem, and the proof is presented in Appendix C.
Theorem 7 (Streaming Update). Let xt, 1 ≤ t ≤ N + N0 be generated using a mixture two
balanced spherical Gaussians with variance σ2. Also, let the center-separation C ≥ 4, and also
suppose our initial estimate µ0 is such that ‖µ0 − µ?‖ ≤ Cσ

20 . Then, the streaming update of
StreamSoftUpdate(N,N0) , i.e, Steps 3-8 of Algorithm 3 satisfies:

E
[
‖µN − µ?‖2

]
≤ ‖µ

?‖2

NΩ(1)︸ ︷︷ ︸
bias

+O(1)
logN

N
dσ2︸ ︷︷ ︸

variance

.
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Remark 2. Our bias and variance terms are similar to the ones in Theorem 1 but the above bound
does not have the additional approximation error term. Hence, in this case we can estimate µ?

consistently but the algorithm applies only to a mixture of Gaussians while our algorithm and result
in Section 3 can potentially be applied to arbitrary sub-Gaussian distributions.

Remark 3. We note that for our streaming soft update algorithm, it is not critical to know the
variance σ2 beforehand. One could get a good estimate of σ by taking the mean of a random
projection of a small number of points. We provide the details in the full version of this paper [14].

7 Conclusions
In this paper, we studied the problem of clustering with streaming data where each data point is
sampled from a mixture of spherical Gaussians. For this problem, we study two algorithms that use
appropriate initialization: a) a streaming version of Lloyd’s method, b) a streaming EM method. For
both the methods we show that we can accurately initialize the cluster centers using an online PCA
based method. We then show that assuming Ω((k log k)1/4σ) separation between the cluster centers,
the updates by both the methods lead to decrease in both the bias as well as the variance error terms.
For Lloyd’s method there is an additional estimation error term, which even the offline algorithm
incurs, and which is avoided by the EM method. However, the streaming Lloyd’s method is agnostic
to the data distribution and can in fact be applied to any mixture of sub-Gaussians problem. For future
work, it would be interesting to study the streaming data clustering problem under deterministic
assumptions like [12, 16]. Also, it is an important question to understand the optimal separation
assumptions needed for even the offline gaussian mixture clustering problem.
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