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Abstract

Standard Convolutional Neural Networks (CNNs) designed for computer vision
tasks tend to have large intermediate activation maps. These require large working
memory and are thus unsuitable for deployment on resource-constrained devices
typically used for inference on the edge. Aggressively downsampling the images
via pooling or strided convolutions can address the problem but leads to a signifi-
cant decrease in accuracy due to gross aggregation of the feature map by standard
pooling operators. In this paper, we introduce RNNPool, a novel pooling operator
based on Recurrent Neural Networks (RNNs), that efficiently aggregates features
over large patches of an image and rapidly downsamples activation maps. Empirical
evaluation indicates that an RNNPool layer can effectively replace multiple blocks
in a variety of architectures such as MobileNets, DenseNet when applied to stan-
dard vision tasks like image classification and face detection. That is, RNNPool
can significantly decrease computational complexity and peak memory usage for in-
ference while retaining comparable accuracy. We use RNNPool with the standard
S3FD [50] architecture to construct a face detection method that achieves state-of-
the-art MAP for tiny ARM Cortex-M4 class microcontrollers with under 256 KB
of RAM. Code is released at https://github.com/Microsoft/EdgeML.

1 Introduction

Convolutional Neural Networks (CNNs) have become ubiquitous for computer vision tasks such
as image classification and face detection. Steady progress has led to new CNN architectures that
are increasingly accurate, but also require larger memory and more computation for inference. The
increased inference complexity renders these models unsuitable for resource-constrained processors
that are commonplace on the edge in IoT systems and battery-powered and privacy-centric devices.

To reduce inference complexity, several techniques like quantization [44], sparsification [9, 27],
cheaper CNN blocks [37, 22], or neural architecture search [41] have been proposed to train CNN
models with lower inference cost and model size while retaining accuracy. However, these models
still require large working memory for inference. Memory tends to be the most constrained resource
on low power devices as it occupies a large fraction of the device die and has high sustained power
requirement [24]. Most low power ARM Cortex-M* microcontrollers have less than 256 KB RAM.

Typical CNNs have large intermediate activation maps, as well as many convolution layers, which
put together require large amount of RAM for inference (see Proposition 1). A standard approach to
reducing working memory is to use pooling operators or strided convolution to bring down size of the
activation map. In fact, standard CNNs have multiple such layers. However, such pooling operators
aggregate the underlying activation map in a simplistic manner, which can lead to a significant loss of
accuracy. As a result, their use is limited to small receptive fields, typically no larger than 3× 3, and
they can not be used to aggressively reduce the activation map by aggregating larger receptive fields.
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Figure 1: The RNNPool operator applied to
patches of size r × c with stride s. It summarizes
the patch with two RNNs into a vector of size 4h2.

In this paper, we propose a novel pooling op-
erator RNNPool that uses Recurrent Neural
Networks (RNNs) to perform a more refined
aggregation over a large receptive field of the
activation map without compromising on accu-
racy. RNNPool can be applied to any tensor
structured problem, but we focus on 2D images
for ease of exposition. For images, RNNPool
uses RNNs to aggregate information along rows
& columns in a given patch. RNNPool has
three parameters – patch size or receptive field,
stride, and output dimension – to control its ex-
pressiveness and ability to downsample. The
RNNPool operator matches standard pooling
operators syntactically, so can be used to replace them in convolutional networks.

RNNPool allows rapid down-sampling of images and activation maps, eliminating the need for many
memory-intensive intermediate layers. RNNPool is most effective when used to replace multiple
CNN blocks in the initial stages of the network where the activation map sizes are large, and hence,
require the most memory and compute. There, a single layer of RNNPool can down-sample by
a factor of 4 or 8. For example, RNNPool applied to a 640 × 640 × 3 image with patch-size 16,
stride 8, and 32 output channels results in a 80 × 80 × 32 activation map, which can be stored in
about 200 KB, and can be computed one patch at a time without significant memory cost. Replacing
a few blocks using RNNPool reduces peak memory requirement significantly for typical CNN
architectures without much loss of accuracy.

Our experiments demonstrate that RNNPool can be used as an effective replacement for multi-
layered, expensive CNN blocks in a variety of architectures such as MobileNets, DenseNets, S3FD,
and for varied tasks such as image classification and face detection. For example, in a 10-class image
classification task, RNNPool+MobileNetV2 reduces the peak memory requirement of MobileNetV2
by up to 10× and MAdds (MAdds refers to Multiply-Adds as in MobileNetV2 [37]) by about 25%,
while maintaining the same accuracy. Additionally, due to its general formulation, RNNPool can
replace pooling layers anywhere in the architecture. For example, it can replace the final average
pool layer in MobileNetV2 and improve accuracy by ∼ 1%.

Finally, we modify the S3FD [50] architecture with RNNPool to construct an accurate face detection
model which needs only 225 KB RAM – small enough to be deployed on a Cortex-M4 based device –
and achieves 0.78 MAP on the medium category of the WIDER FACE dataset [47] using 80× fewer
MAdds than EXTD [48] – a state-of-the-art resource-constrained face detection method.

In summary, we make the following contributions:

• A novel pooling operator that can rapidly down-sample input in a variety of standard CNN
architectures, e.g., MobileNetV2, DenseNet121 while retaining the expressiveness.

• Demonstrate that RNNPool can reduce working memory and compute requirements for image
classification and Visual Wake Words significantly while retaining comparable accuracy.

• By combining RNNPool with S3FD, we obtain a state-of-the-art face detection model for ARM
Cortex-M4 class devices.

2 Related Work

Pooling: Max-pooling, average-pooling and strided convolution layers [29] are standard techniques
for feature aggregation and for reducing spatial resolution in CNNs. Existing literature on rethinking
pooling [51, 15, 10] focuses mainly on increasing accuracy and does not take compute/memory
efficiency into consideration which is the primary focus of this paper.

Efficient CNN architectures: Most existing research on efficient CNN architectures aims at re-
ducing model size and number of operations per inference. These methods include designing new
architectures such as DenseNet [21], MobileNets [20, 37] or searching for them (ProxylessNAS [3],
EfficientNets [41], SqueezeNAS [38]). These architectures do not primarily optimize for the peak
working memory, which is a critical constraint on devices powered by tiny microcontrollers. Previ-
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ous work on memory-optimized inference manipulates existing convolution operator by reordering
computations [5, 28] or performing them in place [13]. However, most of these methods provide
relatively small memory savings and are validated on low-resolution images like CIFAR-10 [25].
Channel pruning [17] is a method that tries to reduce memory requirement by pruning out multiple
convolution kernels in every layer. While effective, channel/filter pruning does not tackle gradual
spatial downsampling and thus is a complementary technique to RNNPool.

Visual Wake Words: Visual cues (visual wake word) to “wake-up" AI-powered home assistant
devices require real-time inference on relatively small devices. Chowdhery et al. [6] proposed a Visual
Wake Words dataset and a resource-constrained setting to evaluate various methods. Section 5.2
discusses the efficient RNNPool based models and their performance for this task.

Face-detection on tiny devices: Recent work including EXTD [48], LFFD [18], FaceBoxes [49]
and EagleEye [52] address the problem of accurate real-time face detection on resource-constrained
devices. EXTD and LFFD are the most accurate but have high compute and memory requirements.
On the other hand, EagleEye and FaceBoxes have lower inference complexity but also suffer from
lower MAP scores. Face detection using RNNPool is discussed in Section 5.3.

RNNs for Computer Vision: RNNs have been successful for sequential tasks but haven’t been
extensively explored in the context of computer vision. An early work, ReNet [42], uses RNN based
layer as a replacement for a convolution layer but does not aim at improving efficiency. RNNPool
contrasts with ReNet as follows:

a. ReNet is designed to replace a convolutional layer by capturing the global context and leaves the
local context to be captured by flattening non-overlapping patches. RNNPool, on the other hand,
uses overlapping patches and strongly captures local features and relies on subsequent standard
convolutions to capture the global context. Hence, RNNPool and ReNet are complementary
methods and can be combined.

b. Semantically, RNNPool is a generalized pooling operator and can replace any pooling layer or
strided convolution. However, ReNet does not correspond to any pooling abstraction, making
it hard to combine with existing CNN models. For example, RNNPool can modify S3FD
architecture to achieve state-of-the-art real-time face detection with < 1 MB RAM while ReNet
fails to fit in that context as a replacement layer since the receptive field of the output of ReNet
layer varies across spatial positions.

c. ReNet can still be used as a rapid downsampling layer. Table 2 shows that RNNPool out-
performs ReNet with lower model size and fewer MAdds across datasets and architectures.
E.g. ReNet+MobileNetV2 applied to ImageNet-1K is almost 4% less accurate than RNNPool
+MobileNetV2, despite the same working RAM requirement and more MAdds per inference.

Inside-Outside Net [2] uses a ReNet based layer for extracting context features in object detection
while PiCANet [31] uses it as a global attention function for salient object detection. L-RNN [45]
inserts multiple ReNet based layers but in a cascading fashion. See Appendix B for more discussion.

PolygonRNN [1], CNN-RNN [43] and Conv-LSTM [46] also use RNNs in their architectures but
only to model certain sequences in the respective tasks rather than tackling pooling and efficiency.

3 What is RNNPool?

Consider the output of an intermediate layer in a CNN of size R× C × f , where R and C are the
number of rows and columns and f is the number of channels. A typical 2× 2 pooling layer (e.g.
max or average) with stride 2 would halve the number of rows and columns. So, reducing dimensions
by a factor of 4 would require two such blocks of convolutions and pooling. Our goal is to reduce the
activation of size R × C × f to, say, R/4 × C/4 × f ′ or smaller in a single layer while retaining
the information necessary for the downstream task. We do so using an RNNPoolLayer illustrated in
Figure 1 that utilizes strided RNNPool operators.

3.1 The RNNPool Operator and the RNNPoolLayer

An RNNPool operator of size (r, c, k, h1, h2) takes as input an activation patch of size r × c × k
corresponding to k input channels, and uses a pair of RNNs – RNN1 of hidden dimension h1 and
RNN2 with hidden dimension h2 – to sweep the patch horizontally and vertically to produce a
summary of size 1× 1× 4h2.

3



Algorithm 1 RNNPool Operation

Input: X : [x1,1 . . .xr,c];xi,j ∈ Rk

Output: RNNPool(X)

1: function FastGRNN(P,x)
2: [W,U,bz,bh]← P , h0← randn
3: for k ← 1 to length(x) do
4: z← σ(Wxk +Uhk−1 + bz)

5: h̃k ← tanh(Wxk +Uhk−1 + bh)

6: hk ← z� hk−1 + (1− z)� h̃k

7: end for
8: return hT

9: end function

10: RNNi(_)← FastGRNN(Pi, _), for i ∈ {1, 2}
11: function RNNPool(X)
12: pr

i ← RNN1(Xi,1≤j≤c), for all 1 ≤ i ≤ r
13: qr1 ← RNN2(p

r
1≤i≤r)

14: p̃r ← reverse(pr), qr2 ← RNN2(p̃
r
1≤i≤r)

15: pc
j ← RNN1(X1≤i≤r,j), for all 1 ≤ j ≤ c

16: qc1 ← RNN2(p
c
1≤j≤c)

17: p̃c← reverse(pc), qc2 ← RNN2(p̃
c
1≤j≤c)

18: return [qr1 ,qr2 ,qc1 ,qc2 ]
19: end function

Algorithm 1 describes the RNNPool operator
wich applies two parallel pipelines to a patch
and concatenates their outputs. In the first,
RNN1 traverses each row and summarizes the
patch horizontally (Line 12) and then RNN2

trverses the outputs of RNN1 (Lines 13-14) bi-
directionally. In the second pipeline RNN1 first
traverses along columns to summarize the patch
vertically (Line 15) and then RNN2 (Lines 16-
17) summarizes bi-directionally.

While it is possible to use GRU [4] or
LSTM [19] for the two instances of RNN in
RNNPool, we use FastGRNN [26] for its com-
pact size and fewer MAdds (see Appendix H).

An RNNPoolLayer consists of a single
RNNPool operator strided over an input acti-
vation map and takes as input two more pa-
rameters: patch size and the stride length.
Note that there are only two RNNs (RNN1

& RNN2) in an RNNPool operator, thus
weights are shared for both the row-wise
and column-wise passes (RNN1) and all bi-
directional passes (RNN2) across every instance
of RNNPool in an RNNPoolLayer.

3.2 Probing the Efficacy of RNNPool

Capturing edges, orientations, and shapes: To demonstrate the capabilities of RNNs as spatial
operators for vision tasks such as capturing edges, orientations, and shapes, we performed experiments
on synthetic data. RNNPool learns how to capture edges, orientations, and shapes as effectively
as convolutional layers which reinforces the choice of RNNs as spatial operators. Appendix C.1
provides further details of these experiments.

Comparing performance with pooling operators: We also performed experiments to contrast
the down-sampling power of RNNPool against standard pooling operators on CIFAR-10 [25]. As
discussed in Appendix C.2, RNNPool significantly outperforms standard pooling operators in terms
of accuracy.

4 How to use the RNNPoolLayer?
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DenseNet121-RNNPool

DenseNet121

Figure 2: DenseNet121-RNNPool: obtained by re-
placing P1, D1, T1 and D2 blocks in DenseNet121
with an RNNPoolLayer.

RNNPool can be used to modify standard CNN
architectures and reduce their working memory
as well as computational requirements. Typi-
cally, such modifications involve replacing one
or more stacks of convolutions and pooling lay-
ers of the “base” (original) architecture with an
RNNPoolLayer and retraining from scratch. We
describe architecture modification strategies here
and demonstrate their effectiveness through exten-
sive experimentation in Section 5.

Replacement for a Sequence of Blocks: Consider the DenseNet121 [21] architecture in Figure 2.
It consists of one convolutional layer, followed by repetitions of “Dense” (D), “Transition” (T) and
“Pooling” (P) blocks which gradually reduce the size of the image while increasing the number of
channels. Of all these layers, the first block following the initial convolutional layer (D1) requires
the most working memory and compute as it works on large activation maps that are yet to be
down-sampled. Further, the presence of 6 layers within each dense block makes it harder to work
with small memory (see Proposition 1). This is also true of other architectures such as MobileNetV2,
EfficientNet, and ResNet.
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Table 1: Comparison of inference complexity and accuracy with and without RNNPoolLayer on ImageNet-10.

Model
Base

RNNPool
Accuracy

(%) Parameters Memory Optimised Standard Calculation [6, 37]

Peak RAM MAdds Peak RAM MAdds Accuracy (%) Parameters Peak RAM MAdds

MobileNetV2 94.20 2.20M 0.38 MB 1.00G 2.29 MB 0.30G 94.40 2.00M 0.24 MB 0.23G
EfficientNet-B0 96.00 4.03M 0.40 MB 1.09G 2.29 MB 0.39G 96.40 3.90M 0.25 MB 0.33G
ResNet18 94.80 11.20M 0.38 MB 21.58G 3.06 MB 1.80G 94.40 10.60M 0.38 MB 0.95G
DenseNet121 95.40 6.96M 1.53 MB 24.41G 3.06 MB 2.83G 94.80 5.60M 0.77 MB 1.04G
GoogLeNet 96.00 9.96M 1.63 MB 3.32G 3.06 MB 1.57G 95.60 9.35M 0.78 MB 0.81G

We can use an RNNPoolLayer to rapidly down-sample the image size and bypass intermediate large
spatial resolution activations. In DenseNet121, we can replace 4 blocks - P1, D1, T1, D2 - spanning
39 layers with a single RNNPoolLayer to reduce the activation map from size 112× 112× 64 to
28 × 28 × 128 (see Figure 2). The replacement RNNPoolLayer can be executed patch-by-patch
without re-computation, thus reducing the need to store the entire activation map across the image.
These two factors greatly reduce the working memory size as well as the number of computations.
DenseNet121-RNNPool achieves an accuracy of 94.8% on ImageNet-10 (see Appendix A for dataset
details) which is comparable to 95.4% of the original DenseNet121 model.

A similar replacement of functional blocks with RNNPoolLayer can be performed for MobileNetV2
as specified in Table 10 of Appendix F, and leads to a similar reduction in the size of the largest
activation map while retaining accuracy. These results extend to other networks like EfficientNet,
ResNet and GoogLeNet [40], where residual connection based functional blocks in the initial parts
can be effectively replaced with the RNNPoolLayer with improvements in working memory and
compute, while retaining comparable accuracy. These results are listed in Table 1. Appendix H
presents further ablation studies on RNNPool and its base model.

Replacement for Pooling Layers: RNNPool has the same input and output interface as any pooling
operator and hence, RNNPoolLayer can replace any standard pooling layer while providing more
accurate aggregation. For example, DenseNet121-RNNPool has three pooling layers one each in T2,
T3, and the final average pool layer. Table 1 shows that, on ImageNet-10, DensetNet121-RNNPool
loses 0.6% accuracy compared to its base model. But, replacing all three remaining pooling layers
in DenseNet121-RNNPool with a RNNPoolLayer results in almost the same accuracy as the base
DenseNet121 but with about 2× and 4× lower compute and RAM requirement respectively. We can
further drop 14 dense layers in D3 and 10 layers in D4 to bring down MAdds and RAM requirement
to 0.79G MAdds and 0.43 MB, respectively, while still ensuring 94.2% accuracy.

Replacement in Face Detection models: As in the above architectures, we can use RNNPoolLayer
to rapidly down-sample the image by a factor of 4 × 4 in the early phase of an S3FD face detec-
tor [50]. The resulting set of architectures (with different parameters) are described in Appendix
F.2. For example, the RNNPool-Face-Quant model has a state-of-the-art MAP for methods that are
constrained to at most 256 KB of working RAM (Table 4).

Inference memory requirements: Computing exact memory and compute requirement of a large
CNN model is challenging as the execution order of activations in various layers can be re-organized
to trade-off memory and compute. For example, in the memory-optimized column of Table 1 we
present the compute usage of a variety of baseline architectures when their execution order (EO) is
restricted to using no more memory than the corresponding RNNPool based architecture. That is, we
identify the memory bottleneck layers in various architectures whose activation map size is almost
same as that of the corresponding RNNPool-based model. We then compute every voxel of this
layer by re-computing the required set of convolutions, without storing them. CNNs, in general, have
significant compute requirement and such re-compute intensive optimizations make the architecture
infeasible even for large devices, e.g. DenseNet121 requires 24.41G MAdds in this scheme (Table 1).

A standard approach is to restrict execution orders that do not require any re-computation of intermedi-
ate activation maps. A straightforward and standard EO is the one where the computation is executed
layer-by-layer [6, 37]. The memory requirement of such a scheme would correspond to the largest
activation map in the architecture, except the output of 1x1 convolution layers which can be computed
on the fly. This approach mimics the memory requirement of existing platforms like TF-lite [11]
and is proposed as a standard benchmark for comparing resource-constrained inference methods [6].
Following this prior convention, we list the inference complexity for various architectures under the
compute-optimized columns in Table 1, unless the operation is easy to compute on the fly like 1x1
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Table 2: Impact of various downsampling and pooling operators on the accuracy, inference complexity and
the model size of three base architectures: MobileNetV2 and DenseNet121 for ImageNet-10 dataset, and
MobileNetV2-0.35x for Visual Wake Word dataset. First block of the table represents the base network and a
modified network where the last average pooling layer in the network is replaced by RNNPoolLayer. Second
block represent modified networks where the image is passed through a convolution layer followed by various
downsampling methods to reduce the size of image by a factor of 4× 4. The last row represents the architecture
from the second block with RNNPoolLayer with an additional RNNPool replacing the last layer. Peak RAM
usage computed using standard convention of [6] is the same for all methods in the second block. Note that
RNNPoolLayer +Last layer RNNPool has accuracy similar to the base network while other methods like
ReNet are 2-3% less accurate.

Method
ImageNet-10 Visual Wake Words

MobileNetV2 DenseNet121 MobileNetV2-0.35×
Accuracy (%) MAdds Parameters Accuracy (%) MAdds Parameters Accuracy (%) MAdds Parameters

Base Network 94.20 0.300G 2.2M 95.40 2.83G 6.96M 90.20 53.2M 296K
Last layer RNNPool 95.00 0.334G 2.9M 95.40 3.05G 7.41M 91.14 53.4M 300K

Average Pooling 90.80 0.200G 2.0M 92.80 0.71G 5.59M 86.85 31.9M 255K
Max Pooling 92.80 0.200G 2.0M 93.40 0.71G 5.59M 86.92 31.9M 255K
Strided Convolution 93.00 0.258G 2.1M 93.80 1.33G 6.38M 88.08 39.2M 264K
ReNet 92.20 0.296G 2.3M 93.00 1.35G 6.41M 88.10 46.4M 277K
RNNPoolLayer 94.40 0.226G 2.0M 94.80 1.04G 5.60M 89.57 37.7M 255K
RNNPoolLayer +
Last layer RNNPool

95.60 0.260G 2.7M 95.00 1.26G 6.06M 89.65 37.9M 259K

convolution or patch-by-patch computation of RNNPool. Appendix E.2 provides more details about
these calculations.

The above scheme is easy to implement and allows an inference pipeline that is more modular and
easy to debug and could allow faster inference on neural network accelerators [23]. But, in principle,
one can design execution orders (EO) that do not re-compute any intermediate layers, but are still
not required to store entire activation maps, especially the largest ones. So, a rigorous quantification
of the memory requirement of a model (without any re-compute) needs to show that any valid
execution order requires a certain amount of working memory at some point in its execution, and also
demonstrate a valid EO with the same memory requirement as a matching upper bound. We achieve
this with the following proposition, whose proof and corollaries are in Appendix D.

Proposition 1 Consider an l-layer (l > 1) convolutional network with a final layer of size m× n.
Suppose the for each node in the output layer, the size of receptive field in intermediate layer q ∈ [l−1]
is (2kq+1)× (2kq+1), kq > 0 and that this layer has cq channels and stride 1. Any serial execution
order of this network that disallows re-computation requires at least 2

∑l−1
q=1 cqkq×min(m−1, n−1)

memory for nodes in the intermediate layers.

The above proposition shows that for a CNN with receptive field kq at the q-th layer, the memory
requirement scales linearly with the height/width of the activation map and with the number of layers.
As networks like MobileNetV2 or DenseNet have blocks with a significant number of convolution
layers and large receptive field, this proposition implies that it is not possible to significantly reduce
the memory requirement over the standard layer-by-layer approach. For example, our un-optimized
calculations for RNNPool architectures still give us 3− 4x reduction in peak RAM usage when com-
pared to the minimum RAM requirement of the corresponding base architecture (see Appendix E.1).
Further, similar optimization can be applied to RNNPool based architectures, so the relative reduction
in memory by RNNPool does not change significantly. The implications of the above proposition,
i.e., the peak memory of various networks without re-compute is calculated in Appendix E.1.

5 Evaluation of RNNPool on Vision Tasks

We present empirical evidence that RNNPool operator is compatible with popular CNN architectures
for vision tasks, and can push the envelope of compute/memory usage vs accuracy curve. Further, we
show that RNNPool combined with MobileNetV2 [37] generates accurate models for Visual wake
words and face detection problems that can be deployed on tiny Cortex-M4 microcontrollers. See
Appendix G for more details about model training and hyperparameters used for the experiments.
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5.1 RNNPool for Image Classification

We first focus on ImageNet-10, a 10 class subset of ImageNet-1K [7] where the classes correspond
to the categories in CIFAR-10 [25]. We study this dataset because in several realistic tiny devices
scenario, like intrusion detection, we are interested in identifying the presence/absence of a few,
rather than 1000, classes of objects. The dataset is divided into 1300 images for training and 50 for
validation per class. More details and rationale about the dataset can be found in the Appendix A.

Table 2 compares RNNPoolLayer against other standard pooling operators as used in MobileNetV2
and DenseNet121 base networks (see Appendix F.1 for description of the architecture). It shows that
with the same memory usage, RNNPool is up to 4% more accurate than the standard pooling opera-
tors. While standard pooling operators are cheaper than RNNPool, the overall compute requirement
of RNNPool based architectures is similar to pooling based architectures. Furthermore, replacing
the last average pooling layer in the base network with RNNPool further increases accuracy, thus
demonstrating the flexibility of RNNPoolLayer. Table 2 also contrasts RNNPool with ReNet [42]
as a downsampling layer. We observe that RNNPool is a much better alternative for downsampling
layers in terms of accuracy (better by up to 2%), model size, and MAdds for the same amount of
working memory.

Next, we study the compatibility of RNNPool with different architectures. Table 1 shows that
RNNPool based architectures maintain the accuracy of base models while significantly decreasing
memory and compute requirement. See Section 4 and Appendix E for a discussion on the calculation
of memory and compute requirements of different models.

Table 3: Comparison of resources and accuracy with
MobileNets for ImageNet-1K.

Method Peak RAM Parameters MAdds Accuracy (%)

MobileNetV1 3.06MB 4.2M 569M 69.52
MobileNetV1-ReNet 0.77MB 4.2M 487M 66.90
MobileNetV1-RNNPool 0.77MB 4.1M 417M 69.39

MobileNetV2 2.29MB 3.4M 300M 71.81
MobileNetV2-ReNet 0.24MB 3.6M 296M 66.72
MobileNetV2-RNNPool 0.24MB 3.2M 226M 70.14

Finally, Table 3 presents results on the complete
ImageNet-1K [7] dataset with MobileNetV1
and MobileNetV2 as the base architectures.
ReNet and RNNPool based models are con-
structed in a manner similar to the models in
Table 1. See Table 10 for the complete specifi-
cation of the MobileNetV2+RNNPool model.
MobileNetV1+RNNPool model is constructed
similarly with h1 = h2 = 16. Consistent with

the results on ImageNet-10, RNNPool retains almost same accuracy as the base models while
decreasing memory usage significantly. Furthermore, RNNPool based models are also 3− 4% more
accurate than ReNet based models. In this work, we focus on state-of-the-art resource-constrained
models that do not require neural architecture search (NAS); we leave extension of RNNPool for
NAS based architectures like EfficientNets [41] for future work.

5.2 RNNPool for Visual Wake Words
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Figure 3: Visual Wake Word: MobileNetV2-RNNPool requires
8× less RAM and 40% less compute than baselines. We cap the
number of parameters at ≤ 250K instead of the 290K allowed by
MobileNetV2 (0.35×). ProxylessNAS has 242K parameters.

The Visual Wake Words challenge [6]
presents a relevant use case for com-
puter vision on tiny microcontrollers.
It requires detecting the presence of a
human in the frame with very little re-
sources — no more than 250 KB peak
RAM usage and model size, and no
more than 60M MAdds/image. The
existing state-of-the-art method [6]
is MobileNetV2-0.35× with 8 chan-
nels for the first convolution and
320 channels for the last convolu-
tion layer. We use this as our base-
line and replace convolutions with an
RNNPoolLayer. After training a floating-point model with the best validation accuracy, we perform
per-channel quantization to obtain 8-bit integer weights and activations.

Table 2 compares the accuracy of the baseline and new architectures on this task. Replacing the last
average pool layer with RNNPool increases the accuracy by ≥ 1%. Inserting RNNPool both at the
beginning of the network and at the end provides a model whose accuracy is within 0.6% of the
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Table 4: Comparison of memory requirement, no. of parameters and validation MAP of various Face Detection
architectures when applied to 640× 480 RGB images from the Wider Face dataset. RNNPool-Face-C achieves
higher accuracy than the baselines despite using 3× less RAM and 4.5× less MAdds. RNNPool-Face-Quant
enables deployment on Cortex-M4 class devices with 6-7% accuracy gains over the cheapest baselines.

Method Peak RAM Parameters MAdds MAP MAP for ≤ 3 faces

Easy Medium Hard Easy Medium Hard

EXTD 18.75 MB 0.07M 8.49G 0.90 0.88 0.82 0.93 0.93 0.91
LFFD 18.75 MB 2.15M 9.25G 0.91 0.88 0.77 0.83 0.83 0.82
RNNPool-Face-C 6.44 MB 1.52M 1.80G 0.92 0.89 0.70 0.95 0.94 0.92
FaceBoxes 1.76 MB 1.01M 2.84G 0.84 0.77 0.39 - - -
RNNPool-Face-B 1.76 MB 1.12M 1.18G 0.87 0.84 0.67 0.91 0.90 0.88

EagleEye 1.17 MB 0.23M 0.08G 0.74 0.70 0.44 0.79 0.78 0.75
RNNPool-Face-A 1.17 MB 0.06M 0.10G 0.77 0.75 0.53 0.81 0.79 0.77
RNNPool-Face-Quant 225 KB 0.07M 0.12G 0.80 0.78 0.53 0.84 0.83 0.81

baseline but with far smaller memory requirement (250→ 33.68 KB), model size, and MAdds. Peak
memory usage is calculated using the same convention as [6].

Further, we sweep across input image resolutions of {96, 128, 160, 192, 224} to trade-off between
accuracy and efficiency. Figure 3 shows that RNNPool models are significantly cheaper during
inference in terms of compute and memory while offering the same accuracy as the baselines. For
example, peak memory usage of MobileNetV2-0.35× with the lowest resolution images is ∼40 KB,
while our model requires only 34 KB RAM despite using the highest resolution image and providing
∼4% higher accuracy. Note that ProxylessNAS [14] was the winner of the Visual Wake Words
challenge. We report it’s accuracy on the final network provided by the authors. To be consistent, we
train the model only on the training data provided, instead of pretraining with ImageNet-1K used by
ProxylessNAS in the wake word challenge.

5.3 RNNPool for Face Detection

We experiment with multiple architectures we call RNNPool-Face-* for face detection suggested in
Section 4 and described in greater detail in Appendix F.2. We train and validate these architectures
with the WIDER FACE dataset [47]. Versions Quant, A, B, and C of the RNNPool-Face use
RNNPoolLayer of hidden dimensions 4, 4, 6 and 16, respectively.

Table 4 compares validation Mean Average Precision (MAP) for easy, medium, and hard subsets.
MAP is a standard metric for face detection and measures the mean area under the precision-recall
curve. We report MAP scores for baselines based on the official open-source code or pre-trained
models. For Eagle-Eye [52], we re-implemented the method as the source code was not available. For
EXTD [48], we report MAdds of the EXTD-32 version - the computationally cheapest. EXTD and
LFFD [18] are accurate but are computationally expensive. In contrast, RNNPool-Face-C achieves
better MAP in the easy and medium subsets despite using ∼ 4.5× less compute and ∼ 3× less RAM.

FaceBoxes [49] and Eagle-Eye reduce MAdds and peak memory usage by aggressively down-
sampling the image or by decreasing the number of channels leading to inaccurate models. In
contrast, RNNPool-Face-A and RNNPool-Face-B achieve significantly higher MAPs than these
methods while still ensuring smaller MAdds and peak RAM usage. We also compare MAP scores for
images that have≤ 3 faces, which is a more realistic face-detection setting for tiny devices. Here also,
RNNPool-Face-C is more accurate than all the baselines. Finally, RNNPool-Face-Quant uses byte
quantization to reduce the model size so it can be deployed on Cortex-M4 devices which typically
have ≤ 256 KB RAM, while still having > 0.80 MAP accuracy on images with ≤ 3 faces. See
Appendix I for a qualitative evaluation of our method against the baselines.

5.4 RNNPool based Model for ARM Cortex-M4 Microcontrollers

Finally, we develop a face detection model for conference/class room settings that can be deployed on
ARM Cortex-M4 class devices. To this end, we develop a more compact version of the face detection
model, RNNPool-Face-M4 (Table 15 in Appendix F.2), which has only 4 MBConv blocks. For
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Table 5: Comparison of resources and MAP on the SCUT-HEAD dataset. RNNPool-Face-M4 can be effectively
deployed on an M4 device with <256 KB RAM in contrast to MobileNetV2-SSDLite low-cost detection model.

Model MAP Peak RAM MAdds Model Size

MobileNetV2-SSDLite 0.63 3.51 MB 540M 11.32 MB
RNNPool-Face-M4 0.58 188 KB 70M 160 KB

further reduction in MAdds and model-size, we train the RNNPool parameters to be sparse. That is,
W matrix of RNN1 is 50% non-zeros while the rest of the matrices in RNNPool are 30% non-zeros.

To not overshoot RAM for storing input image, we use 320×240×1 monochrome images for training
and testing. For evaluation, we first train on the WIDER FACE dataset and then fine-tune on the
SCUT-HEAD dataset [35] which consists of images in conference/class rooms. We then use the
SeeDot [12] compiler to quantize our model to 8 bits and generate C code for deployment. Table 5
compares the resource requirements and MAP on the SCUT-HEAD validation set (random 80%-20%
split) of RNNPool-Face-M4 against a similarly trained MobileNetV2-SSDLite model which is a
state-of-the-art architecture for low-cost detection.

Note that MobileNetV2-SSDLite cannot be deployed on a Cortex-M4 device even with 8-bit quanti-
zation as the peak RAM requirement is much more than the 256 KB limit of the device. RNNPool-
Face-M4 model processes a single image in 10.45 seconds on an ARM Cortex-M4 microcontroller
based STM32F439-M4 device clocked at 168 MHz.

6 Conclusions

In this paper, we proposed RNNPool, an efficient RNN-based pooling operator that can be used
to rapidly downsample activation map sizes thus significantly reduce inference-time memory and
compute requirements for a variety of standard CNNs. Due to syntax level similarity with pooling
layers, we can use RNNPool in most existing CNN based architectures. These replacements retain
accuracy for tasks like image classification and visual wake words. Our S3FD based RNNPool model
for face detection provided accurate models that can be deployed on tiny Cortex-M4 microcontrollers.
Finally, we showed with Proposition 1 that calculations of minimum memory requirement for
standard architectures can be made rigorous and demonstrate that despite such optimizations of
standard CNNs, RNNPool based models can be significantly more efficient in terms of inference-
time working memory. Using neural architecture search for RNNPool based models to further reduce
inference cost is an immediate and interesting direction.

Broader Impact

Pros: ML models are compute-intensive and are typically served on power-intensive cloud hardware
with a large resource footprint that adds to the global energy footprint. Our models can help reduce
this footprint by (a) allowing low power edge sensors with small memory to analyze images and
admit only interesting images for cloud inference, and (b) reducing the inference complexity of the
cloud models themselves. Further, edge-first inference enabled by our work can reduce reliance on
networks and also help provide privacy guarantees to end-user. Furthermore, vision models on tiny
edge devices enables accessible technologies, e.g., Seeing AI [33] for people with visual impairment.

Cons: While our intentions are to enable socially valuable use cases, this technology can enable
cheap, low-latency and low-power tracking systems that could enable intrusive surveillance by
malicious actors. Similarly, abuse of technology in certain wearables is also possible.

Again, we emphasize that it depends on the user to see the adaptation to either of these scenarios.
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