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Abstract
We study the problem of robust linear regression with response variable corruptions. We consider
the oblivious adversary model, where the adversary corrupts a fraction of the responses in complete
ignorance of the data. We provide a nearly linear time estimator which consistently estimates the
true regression vector, even with 1 ´ op1q fraction of corruptions. Existing results in this setting
either don’t guarantee consistent estimates or can only handle a small fraction of corruptions. We
also extend our estimator to robust sparse linear regression and show that similar guarantees hold in
this setting. Finally, we apply our estimator to the problem of linear regression with heavy-tailed
noise and show that our estimator consistently estimates the regression vector even when the noise
has unbounded variance (e.g., Cauchy distribution), for which most existing results don’t even apply.
Our estimator is based on a novel variant of outlier removal via hard thresholding in which the
threshold is chosen adaptively and crucially relies on randomness to escape bad fixed points of the
non-convex hard thresholding operation.
Keywords: Robust regression, heavy tails, hard thresholding, outlier removal.

1. Introduction

We study robust least squares regression, where the goal is to robustly estimate a linear predictor
from data which is potentially corrupted by an adversary. We focus on the setting where response
variables are corrupted via an oblivious adversary. Such a setting has numerous applications such
as click-fraud in a typical ads system, ratings-fraud in recommendation systems, as well as the less
obvious application of regression with heavy tailed noise.

For the problem of oblivious adversarial corruptions, our goal is to design an estimator that
satisfies three key criteria: (a) (statistical efficiency) estimates the optimal solution consistently with
nearly optimal statistical rates, (b) (robustness efficiency) allows a high amount of corruption, i.e.,
fraction of corruptions is 1´ op1q, (c) (computational efficiency) has the same or nearly the same
computational complexity as the standard ordinary least squares (OLS) estimator. Most existing
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Figure 1: The first two plots show the parameter error (y-axis) of various estimators as we vary fraction of
corruptions α in the robust regression setting (x-axis); noise variance is 0 for the first plot and 1 for the second.
Plots indicate that AdaCRR is able to tolerate significantly higher fraction of outliers than most existing
methods. The last plot shows parameter error over number of iterations for robust regression, indicating
AdaCRR can be upto 100x faster as compared to Huber regression.

techniques do not even provide consistent estimates in this adversary model (Bhatia et al., 2015;
Nasrabadi et al., 2011; Nguyen and Tran, 2013; Prasad et al., 2018; Diakonikolas et al., 2018;
Wright and Ma, 2010). Bhatia et al. (2017) provides statistically consistent and computationally
efficient estimator, but requires the fraction of corruptions to be less than a small constant (ď 1{100).
Tsakonas et al. (2014) study Huber-loss based regression to provide nearly optimal statistical rate
with nearly optimal fraction of corruptions. But their sample complexity is sub-optimal, and more
critically, the algorithm has super-linear computational complexity (in terms of number of points)
and is significantly slower than the standard least squares estimator.

So the following is still an open question: “Can we design a linear time consistent estimator for
robust regression that allows almost all responses to be corrupted by an oblivious adversary?”

We answer this question in affirmative, i.e., we design a novel outlier removal technique that
can ensure consistent estimation at nearly optimal statistical rates, assuming Gaussian data and
sub-Gaussian noise. Our results hold as long as the number of points n is larger than the input
dimensionality p by logarithmic factors, i.e., n ě p log2 p, and allows n´ n

log logn responses to be
corrupted; the number of corrupted responses can be increased to n ´ n

logn with a slightly worse
generalization error rate.

Our algorithm, which we refer to as AdaCRR 1, uses a similar technique as Bhatia et al. (2015,
2017), where we threshold out points that we estimate as outliers in each iteration. However, we show
that fixed thresholding operators as in Bhatia et al. (2015, 2017) can get stuck at poor fixed-points in
presence of a large number of outliers. Instead, we rely on an adaptive thresholding operator that
uses noise in each iteration to avoid such sub-optimal fixed-points. Similar to Bhatia et al. (2015,
2017), AdaCRR-FC solves a standard OLS problem in each iteration, so the overall complexity is
OpT ¨ TOLSq where T is the number of iterations and TOLS is the time-complexity of an OLS solver.
We show that T “ Oplog 1{εq iterations are enough to obtain ε-optimal solution, i.e., the algorithm is
almost as efficient as the standard OLS solvers. Our simulations also demonstrate our claim, i.e., we
observe that AdaCRR-FC is significantly more efficient than Huber-loss based approaches (Tsakonas
et al., 2014) while still ensuring consistency in presence of a large number of corruptions unlike
existing thresholding techniques (Bhatia et al., 2015, 2017) (see Figure 1).

1. To be more precise, AdaCRR is a framework and we study two algorithms instantiated from this framework, namely
AdaCRR-FC, AdaCRR-GD which differ in how they update w.
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The above result requires n ě p log2 pwhich is prohibitively large for high-dimensional problems.
Instead, we study the problem with sparsity structure on the regression vector (Wainwright, 2009).
That is, we study the problem of sparse linear regression with oblivious response corruptions. We
provide first (to the best of our knowledge) consistent estimator for the problem under standard
RSC assumptions. Similar to the low-d case, we allow 1´ op1q fraction of points to be corrupted,
but the sample complexity requirement is only n ě k˚ log2 p, where k˚ is the number of non-zero
entries in the optimal sparse regression vector. Existing Huber-loss based estimators (Tsakonas et al.,
2014) would be difficult to extend to this setting due to the additional non-smooth L1 regularization
of the regression vector. Existing hard-thresholding based consistent estimators (Bhatia et al.,
2017) marginalize out the regression vector, which is possible only in low-d due to the closed form
representation of the least squares solution, and hence, do not trivially extend to sparse regression.

Finally, we enhance and apply our technique to the problem of regression with heavy-tailed
noise. By treating the tail as oblivious adversarial corruptions, we obtain consistent estimators for a
large class of heavy-tailed noise distributions that might not even have well-defined first or second
moments. Despite being a well-studied problem, to the best of our knowledge, this is the first such
result in this domain of learning with heavy tailed noise. For example, our results provide consistent
estimators with Cauchy noise, for which even the mean is not well defined, with rates which are very
similar to that of standard sub-Gaussian distributions. In contrast, most existing results (Sun et al.,
2018; Hsu and Sabato, 2016) do not even hold for Cauchy noise as they require the variance of the
noise to be bounded. Furthermore, existing results mostly rely on median of means technique (Hsu
and Sabato, 2016; Lecué and Lerasle, 2017; Prasad et al., 2018), while we present a novel but natural
viewpoint of modeling the tail of noise as adversarial but oblivious corruptions.

2. Problem Setup and Main Results

We are given n independent data points x1, . . . ,xn „ D sampled from a Gaussian distribution
D “ N p0,Σq and their corrupted responses y1, . . . , yn, where,

yi “ xTi w
˚ ` εi ` b

˚
i , (1)

w˚ is the true regression vector, εi - the white noise - is independent of xi and is sampled from a
sub-Gaussian distribution with parameter σ, and b˚i is the corruption in the response of xi. tb˚i u

n
i“1

is a sparse corruption set, i.e., }b˚}0 “ |ti, s.t., b˚i ‰ 0u| ď α ¨ n where α ă 1. Also, tb˚i u
n
i“1 is

independent of txi, εiuni“1. Apart from this independence we do not impose any restrictions on the
values of corruptions added by the adversary. Our goal is to robustly estimate w˚ from the corrupted
data txi, yiuni“1. In particular, following are the key criteria in evaluating an estimator’s performance:

• Breakdown point: It is the maximum fraction of corruption, α, above which the estimator is
not guaranteed to recover w˚ with small error, even as nÑ8 (Hampel, 1971).

• Statistical rates and sample complexity: We are interested in the generalization error
(Ex„Drpxx,wy ´ xx,w˚yq2s) of the estimator and its scaling with problem dependent quanti-
ties like n, p, noise variance σ2 as well as the fraction of corruption α.

• Computational complexity: The number of computational steps taken to compute the es-
timator. The goal is to obtain nearly linear time estimators similar to the standard OLS
solvers.
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As discussed later in the section, our AdaCRR estimator is near optimal with respect to all three
criteria above.

Heavy-tailed Regression. We also study the heavy-tailed regression problem where yi “ xTi w
˚`

εi for all xi „ D and i P rns. Noise εi
i.i.d.
„ E where E is a heavy-tailed distribution, such as the

Cauchy distribution which does not even have bounded first moment. The goal is to design an
efficient estimator that provides nearly optimal statistical rates.

Notation. Let X “ rx1,x2, . . .xns
T be the matrix whose ith row is equal to xi P Rp. Let

y “ ry1, y2 . . . yns
T , εεε “ rε1, . . . εns

T , and b˚ “ rb˚1 , . . . b
˚
ns
T . }a}2Σ :“ aTΣa for a positive definite

matrix Σ. }a}0 denotes the L0 norm of a, i.e., the number of non-zero elements in a. b “ rOpaq
implies, b ď Ca log a for a large enough constant C ą 0 independent of a. We use SGpσ2q to
denote the set of random variables whose Moment Generating Function (MGF) is less than the MGF
of N p0, σ2q.

2.1. Main Results

Robust Regression: For robust regression with oblivious response variable corruptions, we propose
the first efficient consistent estimator with break-down point of 1. That is,

Theorem 1 (Robust Regression) Let txi, yiuni“1 be n observations generated from the oblivious
adversary model, i.e., y “ Xw˚ ` εεε` b˚ where εi P SGpσ2q, xi „ N p0,Σq, }b˚}0 ď α ¨ n and
b˚ is selected independently of X,εεε. Suppose AdaCRR-FC is run for T iterations with appropariate
choice of hyperparameters. Then with probability at least 1´ T {n6, the T -th iterate wT produced
by the AdaCRR-FC algorithm satisfies:

}wT ´w˚}Σ ď rO

¨

˝

σ

1´ α

d

p log2 n` plog nq3

n

˛

‚,

for any α ď 1´ Θp1q
log logn , where the number of iterations T “ rO

´

log
´

n
p ¨

}w0´w˚}Σ
σ

¯¯

.

Remarks: a) AdaCRR-FC solves an OLS problem in each iteration and the number of iterations
is « log n, so the overall time complexity of the algorithm is still nearly linear in n. In contrast,
standard Huber-loss or L1 loss based methods (Tsakonas et al., 2014; Nasrabadi et al., 2011) have
iteration complexity of 1{

?
ε for ε-suboptimality and require ε « 1{

?
n, which implies super-linear

Opn1.25q time complexity.

b) Break-down point α of AdaCRR-FC satisfies: αÑ 1 for nÑ8. In contrast, similar consistent
estimator by Bhatia et al. (2017) requires α ă 1{100. In fact, we show that fixed hard thresholding
operators like the ones used by (Bhatia et al., 2015, 2017) cannot provide consistent estimator for
αÑ 1; instead, we propose and analyze a randomized and adaptive thresholding operator to avoid
sub-optimal fixed-points.

c) Generalization error of AdaCRR-FC is Opσ2 ¨ p log2 n{nq, which is information theoretically
optimal up to log2 n factors. In contrast, most of the existing analysis for L1-loss do not guarantee
such consistent estimators (Nasrabadi et al., 2011; Wright and Ma, 2010; Nguyen and Tran, 2013).

e) Sample complexity of AdaCRR-FC is nearly optimal n “ Opp log2 pq and can be improved to
n “ Opk˚ log2 pq for k˚-sparse estimators with the data that satisfies Restricted Strong Convexity
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Paper Breadkdown Point Consistent
Optimal

Sample Comlexity
Computational Rates

Wright and Ma (2010) αÑ 1 No Yes Op1{
?
εq

Nasrabadi et al. (2011) αÑ 1 No Yes Op1{
?
εq

Tsakonas et al. (2014) αÑ 1 Yes No Op1{
?
εq

Bhatia et al. (2017) α “ Θp1q Yes Yes Oplogp1{εqq
This paper αÑ 1 Yes Yes Oplogp1{εqq

Table 1: Comparison of various approaches for regression under oblivious adversary model. The computational
rates represents the time taken by estimator to compute an ε-approximate solution.

and Restricted Strong Smoothness.

See Table 1 for a detailed comparison with the existing works.

Regression with Heavy-tailed Noise: We now present our result for regression with heavy-tailed
noise.

Theorem 2 (Heavy-tailed Regression) Let txi, yiuni“1 be n observations generated from the linear
model, i.e., yi “ xTi w

˚ ` εi where xi „ N p0,Σq, εi’s are sampled i.i.d. from a distribution s.t.

Er|ε|δs ď C for a constant δ ą 0 and are independent of xi. Then, for T “ rO
´

log
´

n
p ¨

}w0´w˚}Σ
σ

¯¯

,

the wT -th iterate of AdaCRR-FC guarantees the following with probability ě 1´ T {n6:

}wT ´w˚}Σ ď O

¨

˝C1{δ

d

p log n` log2 n

n

˛

‚.

Remarks: a) Note that our technique does not even require the first moment to exist. In contrast,
existing results hold only when the variance is bounded (Hsu and Sabato, 2016). In fact, the general
requirement on distribution of ε is significantly weaker and holds for almost every distribution
whose parameters are independent of n. Also, we present a similar result for mean estimation with
symmetric noise ε.

b) For Cauchy noise (Johnson et al., 2005) with location parameter 0, and scale parameter σ, we

can guarantee error rate of « σ

b

p log2 n
n , i.e., we can obtain almost same rate as sub-Gaussian noise

despite unbounded variance which precludes most of the existing results.

c) Similar to robust regression, the estimator is nearly linear in n, p. Moreover, we can extend our
analysis to sparse linear regression with heavy-tailed response noise.
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