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Abstract

This paper studies first order methods for solving smooth minimax optimization
problems minx maxy g(x, y) where g(·, ·) is smooth and g(x, ·) is concave for each
x. In terms of g(·, y), we consider two settings – strongly convex and nonconvex –
and improve upon the best known rates in both. For strongly-convex g(·, y), ∀y,
we propose a new direct optimal algorithm combining Mirror-Prox and Nesterov’s
AGD, and show that it can find global optimum in Õ

(
1/k2) iterations, improving

over current state-of-the-art rate of O(1/k). We use this result along with an
inexact proximal point method to provide Õ

(
1/k1/3) rate for finding stationary

points in the nonconvex setting where g(·, y) can be nonconvex. This improves
over current best-known rate of O(1/k1/5). Finally, we instantiate our result for
finite nonconvex minimax problems, i.e., minx max1≤i≤m fi(x), with nonconvex
fi(·), to obtain convergence rate of O(m1/3√logm/k1/3).

1 Introduction

In this paper we study smooth minimax problems of the form:

min
x∈X

max
y∈Y

g(x, y) , g : X × Y → R, g is smooth i.e., gradient Lipschitz. (1)

The problem has applications in several domains such as machine learning [15, 29], optimization [5],
statistics [3], mathematics [23], and game theory [31]. Given the importance of these problems, there
is an extensive body of work that studies various algorithms and their convergence properties. The
vast majority of existing results for this problem focus on the convex-concave setting, where g(·, y) is
convex for every y and g(x, ·) is concave for every x. The best known convergence rate in this setting
is O(1/k) for the primal-dual gap, achieved for example by Mirror-Prox [34]. This rate is also known
to be optimal for the class of smooth convex-concave problems [41]. A natural question is whether
we can achieve a faster convergence if we have strong convexity (as opposed to just convexity) of
g(·, y). We answer this in the affirmative, by introducing an algorithm that achieves a convergence
rate of Õ

(
1/k2) for the general smooth, strongly-convex–concave minimax problem. The algorithm

we propose is a novel combination of Mirror-Prox and Nesterov’s accelerated gradient descent. This
matches the known lower bound of Ω(1/k2) from [41], closing the gap up to a poly-logarithmic factor.
There also exists a conceptually simple smoothing technique based indirect algorithm, which prefixes
the tolerance of ε. However, our goal is to find a direct algorithm which does not prefix the tolerance.
Other known methods that obtain a rate of O(1/k2) in this context are for very special cases, where
x and y are connected through a bi-linear term or g(x, ·) is linear in y [35, 20, 14, 8, 49, 16, 48].
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Setting Optimality
notion

Previous
state-of-the-art

Our
results

Smoothing
schemes

Lower
bound

Convex Primal-dual gap O
(
k−1) [34] - - Ω(k−1) [41]

Strongly
convex Primal-dual gap O

(
k−1) [34] Õ

(
k−2) Õ

(
k−2) Ω(k−2) [41]

Nonconvex Approx. stat. point O
(
k−1/5) [18] Õ

(
k−1/3) Õ

(
k−1/3) [26] -

Table 1: Comparison of our results with previous state-of-the-art. We assume that g(·, ·) is smooth
(i.e., has Lipschitz gradients) and g(x, ·) is concave ∀x ∈ X . Convexity, strong convexity and
nonconvexity in the first column refers to g(·, y) for fixed y. Smoothing schemes are indirect methods
using the smoothing technique [36].

While most theoretical results focus on the convex-concave setting, several real world problems
fall outside this class. A slightly larger class, which captures several more applications, is the
class of smooth nonconvex–concave minimax problems, where g(x, ·) is concave for every x but
g(·, y) can be nonconvex. For example, finite minimax problems, i.e., minx maxmi=1 fi(x) =
minx max0�y�1,

∑m

i=1
yi=1

∑
i yi · fi(x) := g(x, y) belong to this class, and so do smooth non-

convex constrained optimization problems [25]. In addition, several machine learning problems with
non-decomposable loss functions [22] also belong to this class.

In this general nonconvex concave setting however, we cannot hope to find global optimum efficiently
as even the special case of nonconvex optimization is NP-hard. Similar to nonconvex optimization,
we might hope to find an approximate stationary point [37].

Our second contribution is a new algorithm and a faster rate for the general smooth nonconvex–
concave minimax problem. Our algorithm is an inexact proximal point method for the nonconvex
function f(x) := maxy∈Y g(x, y). The key insight is that the proximal point problem in each
iteration results in a strongly-convex concave minimax problem, for which we use our improved
algorithm to obtain the overall computation/iteration complexity of Õ

(
1/k1/3) thus improving

over the previous best known rate of O(1/k1/5) [18]1. More recently, independent to our work, a
smoothing based algorithm has also been proposed to achieve the same O

(
k−1/3) rate [26].

Finally, we specialize our result to finite minimax problems, i.e., minx max1≤i≤m fi(x) where
fi(x) can be nonconvex function but each fi is a smooth function; nonconvex constrained opti-
mization problems can be reduced to such finite minimax problems. For these, we obtain a rate of
Õ
(
m1/3√logm/k1/3) total gradient computations which improves upon the state-of-the-art rate

O(m1/4/k1/4) [11] in this setting as well.

Summary of contributions: See also Table 1.
1. Optimal Õ

(
1/k2) convergence rate for smooth, strongly-convex – concave problems, improving

upon the previous best known rate of O (1/k) for a direct algorithm and,
2. Õ

(
1/k1/3) convergence rate for smooth, nonconvex – concave problems, improving upon the

previous best known rate of O
(
1/k1/5).

Related works: For strongly-convex-concave minimax problems with special structures, several
algorithms have been proposed. In an increasing order of generality, [14, 49, 50] study optimizing a
strongly convex function with linear constraints, which can be posed as a special case of minimax
optimization, [35, 8] study a minimax problem where x and y are connected only through a bi-linear
term yTAx, and [16, 20] study a case where g(x, ·) is linear in y. In all these cases, it is shown that
O(1/k2) convergence rate is achievable if g(·, y) is strongly-convex ∀ y. Recently, [12] showed linear
convergence of gradient descent ascent for strongly-convex–concave problem with bilinear coupling
when A has full row rank. However, it has remained an open question if the fast rate of O(1/k2)
can be achieved for general strongly-convex-concave minimax problems. See [32, 9, 7, 17, 51, 1]

1While [18] gives a rate of O
(
1/k1/4) with an approximate maximization oracle for maxy∈Y g(x, y),

taking into account the cost of implementing such a maximization oracle gives a rate of O
(
1/k1/5).
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for detailed surveys on the results for the convex-concave minimax problems. For examples and
application of saddle point problems refer [36, 19, 20, 7, 43].

For nonconvex-concave minimax problems, [42] considers both deterministic and stochastic settings,
and proposes inexact proximal point methods for solving smooth nonconvex–concave problems.
In the deterministic setting, their result guarantees an error of O(1/k1/6). We note that there
have also been other notions of stationarity proposed in literature for nonconvex-concave minimax
problems [28, 40]. These notions however are weaker than the one considered in this paper, in the
sense that, our notion of stationarity implies these other notions (without loss in parameters). For one
such weaker notion, [40] proposes an algorithm with a convergence rate of O

(
k−1/3.5). Since the

notion they consider is weaker, it does not imply the same convergence rate in our setting.

We would also like to highlight the works [6, 13, 33, 46, 34, 47, 10] designing efficient algorithms for
solving monotone variational inequalities which generalizes the convex-concave minimax problems.

Notations: R is the real line and for any natural number p, Rp is the real vector space of dimension p.
‖·‖ is a norm on some metric space which would be evident from the context. For a convex setX ⊆ Rp
and x ∈ Rp, PX (x) = arg minx′∈X ‖x − x′‖ is the projection of x on to X . For a differentiable
function g(x, y), ∇xg(x, y) is its gradient with respect to x at (x, y). We use the standard big-O
notations. For functions T, S : R → R such that 0 < lim infx→∞ T (x), 0 < lim infx→∞ S(x),
(a) T (x) = O(S(x)) means lim supx→∞ T (x)/S(x) < ∞; (b) T (x) = Θ(S(x)) means T (x) =
O(S(x)) and S(x) = O(T (x)); and (c) T (x) = Õ (S(x)) means that T (x) = O(S(x)R(x)) for
some poly-logarithmic function R : R→ R.

Paper organization: In Section 2, we present preliminaries and all relevant background. In Section 3,
we present our results for strongly-convex–concave setting and in section 4, results for nonconvex–
concave setting. In Section 5, we present empirical evaluation of our algorithm for nonconvex-concave
setting and compare it to a state-of-the-art algorithm. We conclude in Section 6. Several technical
details are presented in the appendix.

2 Preliminaries and background material

In this section, we will present some preliminaries, describing the setup and reviewing some back-
ground material that will be useful in the sequel.

2.1 Minimax problems

We are interested in the minimax problems of the form (1) where g(x, y) is a smooth function.
Definition 1. A function g(x, y) is said to be L-smooth if:

max {‖∇xg(x, y)−∇xg(x′, y′)‖, ‖∇yg(x, y)−∇yg(x′, y′)‖} ≤ L (‖x− x′‖+ ‖y − y′‖) .

Throughout, we assume that g(x, .) is concave for every x ∈ X . For g(·, y) behavior in terms of x,
there are broadly two settings:

2.1.1 Convex-concave setting

In this setting, g(·, y) is convex ∀ y ∈ Y . Given any g and ∀(x̂, ŷ), the following holds trivially:

min
x∈X

g(x, ŷ) ≤ g(x̂, ŷ) ≤ max
y∈Y

g(x̂, y),

which then implies that maxy∈Y minx∈X g(x, y) ≤ minx∈X maxy∈Y g(x, y). The celebrated min-
imax theorem for the convex-concave setting [44] says that if Y is a compact set then the above
inequality is in fact an equality, i.e., maxy∈Y minx∈X g(x, y) = minx∈X maxy∈Y g(x, y). Further-
more, any point (x∗, y∗) is an optimal solution to (1) if and only if:

min
x∈X

g(x, y∗) = g(x∗, y∗) = max
y∈Y

g(x∗, y). (2)

Hence, our goal is to find ε-primal-dual pair (x̂, ŷ) with small primal-dual gap: maxy∈Y g(x̂, y)−
minx∈X g(x, ŷ).
Definition 2. For a convex-concave function g : X ×Y → R , (x̂, ŷ) is an ε-primal-dual-pair of g if
the primal-dual gap is less than ε: maxy∈Y g(x̂, y)−minx∈X g(x, ŷ) ≤ ε.
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2.1.2 Nonconvex-concave setting

In this setting the function g(·, y) need not be convex. One cannot hope to solve such problems in
general, since the special case of nonconvex optimization is already NP-hard [39]. Furthermore,
the minimax theorem no longer holds, i.e., maxy∈Y minx∈X g(x, y) can be strictly smaller than
minx∈X maxy∈Y g(x, y), and therefore the order of min and max might be important for a given
application i.e., we might be interested only in minimax but not maximin (or vice versa). So, the
primal-dual gap may not be a meaningful quantity to measure convergence. In this paper we will
focus on the minimax problem: minx∈X maxy∈Y g(x, y). One approach, inspired by nonconvex
optimization, to measure convergence is to consider the function f(x) = maxy∈Y g(x, y) and
consider the convergence rate to approximate first order stationary points (i.e.,∇f(x) is small)[42, 18].
But as f(x) could be non-smooth, ∇f(x) might not even be defined. It turns out that whenever
g(x, y) is smooth, f(x) is weakly convex (Definition 4) for which first order stationarity notions are
well-studied and are discussed below.

Approximate first-order stationary point for weakly convex functions: We first need to general-
ize the notion of gradient for a non-smooth function.
Definition 3. The Fréchet sub-differential of a function f(·) at x is defined as the set, ∂f(x) =
{u | lim inf

x′→x
f(x′)− f(x)− 〈u, x′ − x〉/‖x′ − x‖ ≥ 0}.

In order to define approximate stationary points, we also need the notion of weakly convex function
and Moreau envelope.
Definition 4. A function f : X → R ∪ {∞} is L-weakly convex if,

f(x) + 〈ux, x′ − x〉 −
L

2 ‖x
′ − x‖2 ≤ f(x′) , (3)

for all Fréchet subgradients ux ∈ ∂f(x), for all x, x′ ∈ X .
Definition 5. For a proper lower semi-continuous (l.s.c.) function f : X → R ∪ {∞} and λ > 0
(X ⊆ Rp), the Moreau envelope function is given by

fλ(x) = min
x′∈X

f(x′) + 1
2λ‖x− x

′‖2 . (4)

Lemma 4 (in Appendix B.2) provides some useful properties of the Moreau envelope for weakly
convex functions. Now, first order stationary point of a non-smooth nonconvex function is well-
defined, i.e., x∗ is a first order stationary point (FOSP) of a function f(x) if, 0 ∈ ∂f(x∗) (see
Definition 3). However, unlike smooth functions, it is nontrivial to define an approximate FOSP. For
example, if we define an ε-FOSP as the point x with minu∈∂f(x) ‖u‖ ≤ ε, there may never exist
such a point for sufficiently small ε, unless x is exactly a FOSP. In contrast, by using above properties
of the Moreau envelope of a weakly convex function, it’s approximate FOSP can be defined as [11]:
Definition 6. Given an L-weakly convex function f , we say that x∗ is an ε-first order stationary
point (ε-FOSP) if, ‖∇f 1

2L
(x∗)‖ ≤ ε, where f 1

2L
is the Moreau envelope with parameter 1/2L.

Using Lemma 4, we can show that for any ε-FOSP x∗, there exists x̂ such that ‖x̂− x∗‖ ≤ ε/2L and
minu∈∂f(x̂) ‖u‖ ≤ ε. In other words, an ε-FOSP is O(ε) close to a point x̂ which has a subgradient
smaller than ε. We note that other notions of FOSP have also been proposed recently such as in [40].
However, it can be shown that an ε-FOSP according to the above definition is also an ε-FOSP with
[40]’s definition as well, but the reverse is not necessarily true.

2.2 Mirror-Prox

Mirror-Prox [34] is a popular algorithm proposed for solving convex-concave minimax problems (1).
It achieves a convergence rate ofO (1/k) for the primal dual gap. The original Mirror-Prox paper [34]
motivates the algorithm through a conceptual Mirror-Prox (CMP) method, which brings out the main
idea behind its convergence rate of O (1/k). CMP for Euclidean norm (after ignoring projections to
X and Y) does the following update:

(xk+1, yk+1) = (xk, yk) + 1
β

(−∇xg (xk+1, yk+1) ,∇yg (xk+1, yk+1)) . (5)
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The main difference between CMP and standard gradient descent ascent (GDA) is that in the kth step,
while GDA uses gradients at (xk, yk), CMP uses gradients at (xk+1, yk+1). The key observation
of [34] is that if g(·, ·) is smooth, it can be implemented efficiently. CMP is analyzed as follows:
Implementability of CMP: Let (x(0)

k , y
(0)
k ) = (xk, yk). For β < 1

L , the iteration

(x(i+1)
k , y

(i+1)
k ) = (xk, yk) + 1

β

(
−∇xg

(
x

(i)
k , y

(i)
k

)
,∇yg

(
x

(i)
k , y

(i)
k

))
. (6)

can be shown to be 1√
2 -contraction (when g(·, ·) is smooth) and that its fixed point is (xk+1, yk+1).

So, in log 1
ε iterations of (6), we can obtain an accurate version of the update required by CMP. In

fact, [34] showed that just two iterations of (6) suffice [30].
Convergence rate of CMP: Using CMP update with simple manipulations leads to the following:

g(xk+1, y)− g(x, yk+1) ≤ β

2
(
‖x− xk‖2 − ‖x− xk+1‖2 + ‖y − yk‖2 − ‖y − yk+1‖2) , ∀x ∈ X , y ∈ Y.

O (1/k) convergence rate follows easily using the above result.

Finally, our method and analysis also requires Nesterov’s accelerated gradient descent method (see
Algorithm 3 in Appendix A)and it’s per-step analysis by [2] (Lemma 2 in Appendix A).

3 Strongly-convex concave saddle point problem

We first study the minimax problem of the form:

min
x∈X

[ f(x) = max
y∈Y

g(x, y) ] , (P1)

where g(x, ·) is concave, g(·, y) is σ-strongly-convex, g(·, ·) is L-smooth, i.e., 0 < σ ≤ L. X = Rp
and Y ⊂ Rq is a convex compact sub-set of Rq and let the function f take a minimum value
f∗(> −∞). Let DY = maxy,y′∈Y ‖y − y′‖ be the diameter of Y .

Our objective here is to find an ε-primal-dual pair (x̂, ŷ) (see Definition 2). Now the fact that f(x̂)−
f∗ ≤ maxy∈Y g(x̂, y)−minx∈X g(x, ŷ) implies that if (x̂, ŷ) is an ε-primal-dual-pair, then x̂ is also
an ε-approximate minima of f . Furthermore, by Sion’s minimax theorem [24], strong-convexity–
concavity of g(·, ·) ensures that: minx[f(x) := maxy g(x, y)] = maxy[h(y) := minx g(x, y)].
Hence, one approach to efficiently solving the problem is by optimizing the dual problem maxy h(y).
By Lemma 6 (in Appendix B.6), h(y) is an (L+ L2

σ )-smooth function. So we can use AGD to ensure
that h(yk) − h(y∗) = O(1/k2). Now, each step of AGD requires computing arg minx g(x, yk)
which can be done efficiently (i.e., logarithmic number of steps) as g(·, yk) is strongly-convex and
smooth. So, the overall first-order oracle complexity is h(yk)− h(y∗) = Õ

(
1/k2).

So does this simple approach give us our desired result? Unfortunately that is not the case, as the above
bound on the dual function h does not translate to the same error rate for primal function f , i.e., the
solution need not be Õ

(
1/k2)-primal-dual pair. E.g., consider minx∈R maxy∈[−1,1][g(x, y) = xy +

x2/2], where minx maxy g(x, y) = 0, f(x) = x2/2 + |x| and h(y) = −y2/2. If h(yk) = Θ(k−2),
then xk ∈ argminx g(x, yk) = Θ(1/k) and so f(xk) is Θ(k−1). This is due to the non-smoothness
of arg maxy∈Y g(x, y) w.r.t. x.

Instead of using AGD, we introduce a new method to solve the dual problem that we refer to as
DIAG, which stands for Dual Implicit Accelerated Gradient. DIAG combines ideas from AGD
[38] and Nemirovski’s original derivation of the Mirror-Prox algorithm [34], and can ensure a fast
convergence rate of Õ(k−2) for the primal-dual gap. We note that there also exists a conceptually
simpler smoothing technique based indirect algorithm, which prefixes the tolerance of ε (Appendix D).
However, our goal is to find a direct algorithm which does note require prefixing the tolerance at
ε. For better exposition, we first present a conceptual version of DIAG (C-DIAG), which is not
implementable exactly, but brings out the main new ideas in our algorithm. We then present a detailed
error analysis for the inexact version of this algorithm, which is implementable.

3.1 Conceptual version: C-DIAG

Consider the following updates which is a modified version of AGD (see Algorithm 3 in Appendix A):
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(a) wk = (1− τk)yk + τkzk

(b) Choose xk+1, yk+1 ensuring:
xk+1 ∈ arg minx g(x, yk+1), and yk+1 = PY(wk + 1

β∇yg(xk+1, wk))
(c) zk+1 = PY(zk + ηk∇yg(xk+1, wk))

Complete pseudocode for C-DIAG algorithm is presented in Algorithm 4 in Appendix B.4. The main
idea of the algorithm is in Step (b) above (i.e., Step 4 of Algorithm 4 in Appendix B.4), where we
simultaneously find xk+1 and yk+1 satisfying the following requirements:

• xk+1 is the minimizer of g(·, yk+1), and
• yk+1 corresponds to an AGD step (see Algorithm 3 in Appendix A) for g(xk+1, ·)

Implementability: The first question is whether it is easy enough to implement such a step? It turns
out that it is indeed possible to quickly find points xk+1 and yk+1 that approximately satisfy the
above requirements. The reason is that:

• Since g(·, y) is smooth and strongly convex for every y ∈ Y , we can find ε-approximate
minimizer for a given y in O

(
log 1

ε

)
iterations.

• Let x∗(y) := argminx∈X g(x, y). The iteration yi+1 = PY
(
wk + 1

β∇yg(x∗(yi), wk)
)

is
a 1/2-contraction with a unique fixed point satisfying the update step requirements (i.e., Step
4 of Algorithm 4 in Appendix B.4). See Lemma 5 in Appendix B.5 for a proof. This means
that only O

(
log 1

ε

)
iterations again suffice to find an update that approximately satisfies the

requirements.

Convergence rate: Since yk+1 and zk+1 correspond to an AGD update for g(xk+1, ·), we can use the
potential function decrease argument for AGD (Lemma 2 in Appendix A) to conclude that ∀y ∈ Y ,

(k + 1)(k + 2) (g(xk+1, y)− g(xk+1, yk+1)) + 2β · ‖y − zk+1‖2

≤ k(k + 1) (g(xk+1, y)− g(xk+1, yk)) + 2β · ‖y − zk‖2

≤ k(k + 1) (g(xk+1, y)− g(xk, y)) + k(k + 1) (g(xk, y)− g(xk, yk)) + 2β · ‖y − zk‖2,
where the last step follows from the fact that xk = argminx g(x, yk) and so g(xk, yk) ≤ g(xk+1, yk).
Noting that we can further recursively bound k(k + 1) (g(xk, y)− g(xk, yk)) + 2β · ‖y − zk‖2 as
above, we obtain

(k + 1)(k + 2) (g(xk+1, y)− g(xk+1, yk+1)) + 2β · ‖y − zk+1‖2

≤ k(k + 1)g(xk+1, y)−
k∑
i=1

(2i) · g(xi, y) + 2β · ‖y − z0‖2

⇒
k+1∑
i=1

(2i) · g(xi, y)− (k + 1)(k + 2)g(xk+1, yk+1) ≤ 2β · ‖y − z0‖2.

Since g(xk+1, yk+1) ≤ g(x, yk+1) for every x ∈ X , we have
k+1∑
i=1

(2i) · g(xi, y)− (k + 1)(k + 2)g(x, yk+1) ≤ 2β · ‖y − z0‖2

⇒ g(x̄k+1, y)− g(x, yk+1) ≤ 2β · ‖y − z0‖2

(k + 1)(k + 2) ,

where x̄k+1 := 1
(k+1)(k+2)

∑k+1
i=1 (2i) · xi. Since x and y are arbitrary above, this gives a O

(
1/k2)

convergence rate for the primal dual gap.

3.2 Error analysis

The main issue with Algorithm 4 is that the update step is not exactly implementable. However, as
we noted in the previous section, we can quickly find updates that almost satisfy the requirements.
Algorithm 1 presents this inexact version. The following theorem states our formal result and a
detailed proof is provided in Appendix B.5.
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Algorithm 1: Dual Implicit Accelerated Gradient (DIAG) for strongly-convex–concave
programming

Input: g, L, σ, DY , x0, y0, K, {ε(k)
step}Kk=1

Output: x̄K , yK
1 Set β ← 2L

2

σ , z0 ← y0
2 for k = 0, 1, . . . ,K − 1 do
3 τk ← 2

(k+2) , ηk ← (k+1)
2β , wk ← (1− τk)yk + τkzk

4 xk+1, yk+1 ← Imp-STEP(g, L, σ, x0, wk, β, ε(k+1)
step ), ensuring:

g(xk+1, yk+1) ≤ min
x
g(x, yk+1) + ε

(k+1)
step , yk+1 = PY

(
wk + 1

β
∇yg(xk+1, wk)

)
5 zk+1 ← PY (zk + ηk∇yg(xk+1, wk)), x̄k+1 ← 2

(k+1)(k+2)
∑k+1
i=1 i · xi

6 return x̄K , yK

7 Imp-STEP(g, L, σ, x0, w, β, εstep):
8 Set εmp ← 2σ

5L

√
2εstep
L , R← dlog2

2DY
εmp
e, εagd ←

σβ2ε2
mp

32L2 , y0 ← w

9 for r = 0, 1, . . . , R do
10 Starting at x0 use AGD [38] for strongly-convex g(·, yr), to compute x̂r such that:

g(x̂r, yr) ≤ min
x
g(x, yr) + εagd, (7)

11 yr+1 ← PY
(
w + 1

β∇yg(x̂r, w)
)

12 return x̂R, yR+1

Theorem 1 (Convergence rate of DIAG). Let g : X × Y → R be a L-smooth, σ-strongly-convex–
concave function on X = Rp and a convex compact sub-set Y ⊂ Rq (with diameter DY ). Then,
after K iterations, DIAG (Algorithm 1) with a tolerance schedule of {ε(k)

step}Kk=1 for its Imp-STEP
sub-routine, finds (x̄K , yK) s.t.:

max
ỹ∈Y

g(x̄K , ỹ)−min
x̃∈X

g(x̃, yK) ≤
4L

2

σ D
2
Y +

∑K
k=1 k(k + 1) ε(k)

step

K(K + 1) . (8)

In particular, setting ε(k)
step = L2D2

Y
σk3(k+1) we have: maxỹ∈Y g(x̄K , ỹ)−minx̃∈X g(x̃, yK) ≤ 6L2

σ D
2
Y

K(K+1) .

Furthermore, for this setting the total first order oracle complexity is given by: O(
√

L
σK log2(K)).

Remark 1: Theorem 1 shows that DIAG needs Õ((DYL/
√
σε) · (

√
L/σ)) gradient queries for

finding a ε-primal-dual-pair, while current best-known rate is O(1/ε) achieved by Mirror-Prox. This
dependence in ε and DY is optimal, as it is shown in [41, Theorem 10] that Ω(DY(L − σ)/

√
σε)

gradient queries are necessary to achieve ε error in the primal-dual gap.

Remark 2: Unlike standard AGD for h(y), which only updates yk in the outer-loop, DIAG’s outer-
step updates both xk and yk thus allowing us to better track the primal-dual gap. However, DIAG’s
dependence on the condition number L/σ seems sub-optimal and can perhaps be improved if we do
not compute Imp-STEP nearly optimally allowing for inexact updates; we leave further investigation
into improved dependence on the condition number for future work.

4 Nonconvex concave saddle point problem

We study the nonconvex concave minimax problem (1) where g(x, ·) is concave, g(·, y) is nonconvex,
and g(·, ·) is L-smooth, X = Rp (such that ProjX (x) = x) and Y is a convex compact sub-set of Rq .
As mentioned in Section 2, we measure the convergence to an approximate FOSP of this problem
(see Definition 6) but it requires weak-convexity of f(x) := maxy∈Y g(x, y). The following lemma
guarantees weak convexity of f given smoothness of g.
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Lemma 1. Let g(·, y) be continuous and Y be compact. Then f(x) = maxy∈Y g(x, y) is L-weakly
convex, if g is L-weakly convex in x (Definition 1), or if g is L-smooth in x .

See Appendix B.3 for the proof. The arguments of [18] easily extend to show that applying subgradient
method on f(x), [11] gives a convergence rate of O

(
1/k1/5). Instead, we exploit the smooth

minimax form of f(·) to design a faster converging scheme. The main intuition comes from the
proximal viewpoint that gradient descent can be viewed as iteratively forming and optimizing local
quadratic upper bounds. As f is weakly convex, adding enough quadratic regularization should ensure
that the resulting sequence of problems are all strongly-convex–concave. We then exploit DIAG to
efficiently solve such local quadratic problems to obtain improved convergence rates. Concretely, let

f̂(x;xk) = max
y

g(x, y) + L‖x− xk‖2 . (9)

By L-weak-convexity of f , f̂(x;xk) is strongly-convex–concave (Lemma 3) that can be solved using
DIAG up to certain accuracy to obtain xk+1. We refer to this algorithm as Prox-DIAG and provide a
pseudo-code for the same in Algorithm 2. The following theorem gives convergence guarantees for

Algorithm 2: Proximal Dual Implicit Accelerated Gradient (Prox-DIAG) for nonconvex
concave programming

Input: g, L, ε, x0, y0
Output: xk

1 Set ε̃← ε2

64L
2 for k = 0, 1, . . . ,K do
3 Using DIAG for strongly convex concave minimax problem,

min
x

max
y∈Y

[ĝ(x, y;xk) = g(x, y) + L‖x− xk‖2] (10)

find xk+1 such that,

max
y∈Y

g(xk+1, y) + L‖xk+1 − xk‖2 ≤ min
x

max
y∈Y

g(x, y) + L‖x− xk‖2 + ε̃

4 (11)

if maxy∈Y g(xk, y)− 3ε̃
4 ≤ maxy∈Y g(xk+1, y) + L‖xk+1 − xk‖2 then

4 return xk

Prox-DIAG.
Theorem 2 (Convergence rate of Prox-DIAG). Let g(x, y) be L-smooth, g(x, ·) be concave, X be
Rp, Y be a convex compact subset of Rq , and the minimum value of function f(x) = maxy∈Y g(x, y)
be bounded below, i.e. f(x) ≥ f∗ > −∞. Then Prox-DIAG (Algorithm 2) after,

K =
⌈

44L(f(x0)− f∗)
3ε2

⌉
steps outputs an ε-FOSP. The total first-order oracle complexity to output ε-FOSP is:
O
(L2DY(f(x0)−f∗)

ε3 log2 ( 1
ε

))
.

A proof is provided in Appendix B.7. Note that Prox-DIAG solves the quadratic approximation
problem to higher accuracy of O(ε2) which then helps bounding the gradient of the Moreau envelope.
Also due to the modular structure of the argument, a faster inner loop for special settings, e.g.,
when g(x, y) is a finite-sum, can ensure more efficient algorithm. While our algorithm is able to
significantly improve upon existing state-of-the-art rate of O(1/ε5) in general nonconvex-concave
setting [18], it is unclear if the rate can be further improved. In fact, precise lower-bounds for this
setting are mostly unexplored and we leave further investigation into lower-bounds as a topic of
future research.

We also specialize the Prox-DIAG algorithm, as Prox-FDIAG (Algorithm 5 in Appendix C), for the
case of minimizing a weakly convex f(x), with the special structure of finite max-type function:

min
x

[
f (x) = max

1≤i≤m
fi(x)

]
, (P3)

8



where fi’s could be nonconvex but are L-smooth, G-Lipschitz and bounded from below. For this case,
we improve the current known best rate of O

(
m/ε4) and obtain a faster rate of O(m log3/2m/ε3)

using the Prox-FDIAG algorithm. Please refer to Appendix C for more details.

5 Experiments

We empirically verify the performance of Prox-FDIAG (Algorithm 5 in Appendix C) on a syn-
thetic finite max-type nonconvex minimization problem (P3). We consider the following problem.
minx∈R2

[
f(x) = max1≤i≤m=9 fi(x)

]
where fi(x) = q(−1, (X(1)

i
,X

(2)
i

), Ci)
(x) for all 1 ≤ i ≤ 8,

where q(a,b,c)(x) = a‖x − b‖22 + c, X(1)
i , X(2)

i , and ci are randomly generated. Thus each fi is
smooth with parameter L = 1, which implies that f is L-weakly convex. We implement three
algorithms: Prox-FDIAG (Algorithm 5, red circles), Adaptive Prox-FDIAG (Algorithm 6, black dots),
and subgradient method [11] (blue triangles). Adaptive Prox-FDIAG is a practically faster variant of
Prox-FDIAG, with the same first-order oracle complexity guarantee (up to an O(log(1/ε)) factor).
In Figure 1, we plot the norm of gradient of Moreau envelope ‖∇f 1

2L
(xk)‖2 against the number

100 101 102 103 104 105 106 107

10 8

10 6

10 4

10 2

100

102
Sub-gradient method
Prox-FDIAG (ours)
Adaptive Prox-FDIAG (ours)

Norm of the gradient
of Moreau envelope

‖∇f 1
2L

(xk)‖2

number of gradient oracle accesses k

Figure 1: For small target accuracy ε regime, Adaptive Prox-FDIAG (ours) has the fastest convergence
rate followed by Prox-FDIAG (ours) and subgradient method.

of iterations k in log-log scale. We see that, Prox-FDIAG and Adaptive Prox-FDIAG have a faster
convergence rate than subgradient method, and Adaptive Prox-FDIAG is almost always faster than
Prox-FDIAG. We provide more details about the algorithms and the experiments in Appendix E.

6 Conclusion

In this paper, we study smooth minimax problems, where the maximization is concave but the
minimization is either strongly convex or nonconvex. In both of these settings, we present new
algorithms improving state-of-the-art. The key ideas are i) a novel way to combine Mirror-Prox and
Nesterov’s AGD for strongly convex case that can tightly bound primal-dual gap and ii) an inexact
prox method with good convergence rate to stationary points for the nonconvex case. While we
only present our results for the Euclidean setting, generalizing it to non-Euclidean settings with the
framework of Bregman divergences should be straight forward. Finally, we showcase the empirical
superiority of our nonconvex algorithm over state-of-the-art subgradient method for a case of finite
max-type nonconvex minimization problems. Some of the more interesting questions would be
to understand the optimality of the rates that we obtain and dependence on the strong convexity
parameter. Further extensions of these results to the stochastic setting would also be quite interesting.
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Appendix

A Nesterov’s accelerated gradient descent

Algorithm 3: Nesterov’s accelerated gradient ascent

Input: Smooth concave function h(·), learning rate 1
β , initial points y0 and z0

Output: yk
1 for k = 0, 1, . . . do
2 wk ← (1− τk)yk + τkzk, yk+1 ← PY

(
wk + 1

β∇h(wk)
)

,
zk+1 ← PY (zk + ηk∇h(wk))

Nesterov’s accelerated gradient descent [38] is an optimal method for minimizing smooth convex
functions (or equivalently maximizing smooth concave functions). In order to simplify the exposition
in the sequel, we will consider the algorithm for maximizing concave functions. The pseudocode for
this is presented in Algorithm 3. Fix any point y ∈ Y .

A.1 Smooth concave function

Consider the potential function

Φ(k) := k(k + 1) (h(y)− h(yk)) + 2β · ‖y − zk‖2.
The following lemma (from [2]) is the key result that helps us obtain the convergence rate of
Algorithm 3. Here PY (·) denotes projection onto Y .
Lemma 2. [2] Suppose h(·) is an L-smooth concave function and the parameters of Algorithm 3
are chosen so that β > L, ηk = k+1

2β and τk = 2
k+2 . Then, we have

Φ(k + 1) ≤ Φ(k).

Proof of Lemma 2. Writing

Φ(k + 1)− Φ(k) =(k + 1)(k + 2) (h(wk)− h(yk+1)) (12)
− k(k + 1) (h(wk)− h(yk)) + 2(k + 1) (h(y)− h(wk))
+ 2β

(
‖zk+1 − y‖2 − ‖zk − y‖2

)
, (13)

we bound the three terms appearing in separate lines above. Firstly, for the third term, ‖zk+1 − y‖2 ≤
‖zk + ηk∇h(wk)− y‖2 − ‖zk+1 − zk − ηk∇h(wk)‖2 due to Pythagoras theorem and so

‖zk+1 − y‖2 − ‖zk − y‖2 ≤ 2ηk〈∇h(wk), zk − y〉+ η2
k‖∇h(wk)‖2 − ‖zk+1 − zk − ηk∇h(wk)‖2

≤ 2ηk〈∇h(wk), zk+1 − y〉−‖zk+1 − zk‖2. (14)

For the second term, we have

− k(k + 1) (h(wk)− h(yk)) + 2(k + 1) (h(y)− h(wk))
≤ −k(k + 1)〈∇h(wk), wk − yk〉+ 2(k + 1)〈∇h(wk), y − wk〉 = 2(k + 1)〈∇h(wk), y − zk〉

(15)

Finally, for the first term, we have h(yk+1) − h(wk) ≥ 〈∇h(wk), yk+1 − wk〉 − β
2 ‖yk+1 − wk‖2.

Since yk+1 = argmaxȳ∈Y〈∇h(wk), ȳ−wk〉− β
2 ‖ȳ − wk‖

2, we have for v := (1−τk)yk+τkzk+1 ∈
Y ,

h(yk+1)− h(wk) ≥ 〈∇h(wk), yk+1 − wk〉 −
β

2 ‖yk+1 − wk‖2

≥ 〈∇h(wk), v − wk〉 −
β

2 ‖v − wk‖
2 = τk〈∇h(wk), zk+1 − zk〉 −

βτ2
k

2 ‖zk+1 − zk‖2, (16)

where we used wk = (1 − τk)yk + τkzk in the last step. Substituting (16), (15) and (14) in (13)
proves the lemma.
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B Proofs

B.1 Auxiliary lemma

Lemma 3. If f(x) is a L-weakly convex function and f̃(x) is a σ̃(≥ L)-strongly convex differentiable
function, then f(x) + f̃(x) is (σ̃ − L)-strongly convex.

Proof. Since f is L-weakly convex and f̃ is σ-strongly convex we get that,

f(x′) ≥ f(x) + 〈ux, x′ − x〉 −
L

2 ‖x
′ − x‖2 ,

f̃(x′) ≥ f̃(x) +
〈
∇f̃(x), x′ − x

〉
+ σ̃

2 ‖x
′ − x‖2 ,

=⇒ f(x′) + f̃(x′) ≥ f(x) + f̃(x) +
〈
ux +∇f̃(x), x′ − x

〉
+ σ̃ − L

2 ‖x′ − x‖2 . (17)

where ux ∈ ∂f(x). We finish the proof by noting that ∂(f + f̃) = ∂f + ∇f̃ [27, Corollary
1.12.2.].

B.2 Properties of Moreau envelope

The following lemma provides some useful properties of the Moreau envelope for weakly convex
functions.
Lemma 4. For an L-weakly convex proper l.s.c. function f : X → R ∪ {∞} such that X = Rp and
L < 1/λ, the following hold true,

(a) The minimizer x̂λ(x) = arg minx′∈X f(x′) + 1
2λ‖x − x′‖2 is unique and f(x̂λ(x)) ≤

fλ(x) ≤ f(x). Furthermore, arg minx f(x) = arg minx fλ(x).

(b) fλ is
( 1
λ + 1

λ(1−λL)
)
-smooth and thus differentiable, and

(c) minu∈∂f(x̂λ(x)) ‖u‖ ≤ (1/λ)‖x̂λ(x)− x‖ = ‖∇fλ(x)‖.

Proof. We re-write fλ(x) as minimum value of a ( 1
λ − L)-strong convex function φλ,x, as f is

L-weakly convex (Definition 3) and 1
2λ‖x− x

′‖2 is differentiable and 1
λ -strongly convex (Lemma 3),

fλ(x) = min
x′∈X

[
φλ,x(x′) = f(x′) + 1

2λ‖x− x
′‖2
]
. (18)

Then first part of (a) follows trivially by the strong convexity. For the second part notice the following,

min
x
fλ(x) = min

x
min
x′

f(x′) + 1
2λ‖x− x

′‖2

= min
x′

min
x
f(x′) + 1

2λ‖x− x
′‖2

= min
x′

f(x′)

Thus arg minx fλ(x) = arg minx f(x). For (b) we can re-write the Moreau envelope fλ as,

fλ(x) = min
x′

f(x′) + 1
2λ‖x− x

′‖2

= ‖x‖
2

2λ −
1
λ

max
x′

(xTx′ − λf(x′)− ‖x
′‖2

2 )

= ‖x‖
2

2λ −
1
λ

(
λf(·) + ‖ · ‖

2

2

)∗
(x) (19)

where (·)∗ is the Fenchel conjugation operator. Since L < 1/λ, using L-weak convexity of f , it is
easy to see that λf(x′) + ‖x′‖2

2 is (1− λL)-strongly convex, therefore its Fenchel conjugate would
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be 1
(1−λL) -smooth [21, Theorem 6]. This, along with 1

λ -smoothness of first quadratic term implies
that fλ(x) is

( 1
λ + 1

λ(1−λL)
)
-smooth, and thus differentiable.

For (c) we again use the reformulation of fλ(x) as minx′∈X φλ,x(x′) (18). Then by first-order
necessary condition for optimality of x̂λ(x), we have that x− x̂λ(x) ∈ λ∂f(x). Further, from proof
of part (a) we have that φλ,x(x′) (1− λL)-strongly-convex in x′ and it is quadratic (and thus convex)
in x. Then we can use Danskin’s theorem [4, Section 6.11] to prove that,∇fλ(x) = (x− x̂λ(x))/λ ∈
∂f(x). Refer [45, Section B.1] for other proofs of the same result.

B.3 Proof of Lemma 1

It is easy to see that g(·, y) is L-weakly convex if it is L-smooth: g(x′, y) ≥ g(x, y) +
〈∇xg(x, y), x′ − x〉 − L

2 ‖x
′ − x‖2. Thus we only need to prove the case of L-weakly convex

g(·, y). Since g(·, y) is L-weakly convex we get that,

g(x′, y) ≥ g(x, y) + 〈ux,y, x′ − x〉 −
L

2 ‖x
′ − x‖2

=⇒ g(x′, y) + L

2 ‖x
′‖2 ≥ g(x, y) + L

2 ‖x‖
2 + 〈ux,y + Lx, x′ − x〉

where ux,y ∈ ∂xg(x, y). This means that g̃(x, y) := g(x, y) + L
2 ‖x‖

2 is convex, since ∂xg̃(x, y) =
∂xg(x, y) + Lx [27, Corollary 1.12.2.].

Let f̃(x) = maxy∈Y g̃(x, y). Since g̃(x, y) is convex in x and smooth (Definition 1), and Y is
compact set we use Danskin’s theorem [4, Section 6.11] to prove that,

∂f̃(x) = conv{∂xg̃(x, y∗) | y∗ ∈ arg max
y∈Y

g̃(x, y)} ,

=⇒ ∂f(x) + Lx = conv{∂xg(x, y∗) + Lx | y∗ ∈ arg max
y∈Y

g(x, y)} ,

=⇒ ∂f(x) = conv{∂xg(x, y∗) | y∗ ∈ arg max
y∈Y

g(x, y)} . (20)

where the second to last step comes from the facts that ∂f̃ = ∂f + Lx, ∂xg̃(x, y) =
∂xg(x, y) +Lx [27, Corollary 1.12.2.], and arg maxy∈Y g̃(x, y) = arg maxy∈Y g(x, y) + L

2 ‖x‖
2 =

arg maxy∈Y g(x, y). Let ux,y ∈ ∂xg(x, y) and y∗ arg maxy∈Y g(x, y)then,

f(x′) ≥ g(x′, y∗)
(a)
≥ g(x, y∗) + 〈ux,y∗ , x′ − x〉 −

L

2 ‖x
′ − x‖2

(b)=⇒ f(x′) ≥ f(x) + 〈vx, x′ − x〉 −
L

2 ‖x
′ − x‖2

where (a) uses L-weak convexity of g(·, y), and (b) uses (20) and vx ∈ ∂f(x).

B.4 Pseudocode for Conceptual DIAG algorithm

The pseudocode for C-DIAG algorithm is presented in Algorithm 4.

B.5 Proof of Theorem 1

A cursory glance of the DIAG (Algorithm 1) reveals that it is a modified version of projected
accelerated gradient ascent (Algorithm 3) on some function of y with a modified step given by
Imp-STEP, which is inspired from the conceptual Mirror-Prox method of [34]. In the following
lemma we analyze the Imp-STEP sub-routine, which is the most non-trivial step of the algorithm.

Lemma 5. If β = 2L
2

σ , the sub-routine Imp-STEP(g, L, σ, w, β, εstep) of Algorithm 1, returns a
pair of points (x̂R, yR+1) ∈ X × Y , such that,

g(x̂R, yR+1) ≤ min
x
g(x, yR) + εstep, and, yR = PY

(
w + 1

β
∇yg(x̂R−1, w)

)
(21)

in R = dlog2
(
(5LDY/σ)

√
L/2εstep

)
e iterations with O

(√
L/σ log

(
1/εstep

))
gradient compu-

tations per iterations.
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Algorithm 4: Conceptual Dual Implicit Accelerated Gradient (C-DIAG) for strongly-
convex–concave programming

Input: g, L, σ, x0, y0, K
Output: x̄K , yK

1 Set β ← 2L
2

σ , z0 ← y0
2 for k = 0, 1, . . . ,K − 1 do
3 τk ← 2

(k+2) , ηk ← (k+1)
2β , wk ← (1− τk)yk + τkzk

4 Choose xk+1, yk+1 ensuring:

g(xk+1, yk+1) = min
x
g(x, yk+1), yk+1 = PY

(
wk + 1

β
∇yg(xk+1, wk)

)
5 zk+1 ← PY (zk + ηk∇yg(xk+1, wk)), x̄k+1 ← 2

(k+1)(k+2)
∑k+1
i=1 i · xi

6 return x̄K , yK

A proof for this lemma is provided in Appendix B.5.1. The above lemma guarantees
that the Imp-STEP sub-routine converges fast (linear time), in O(log(1/εstep)) steps with
O(
√
L/σ log2(1/εstep)) number of gradient computations.

In the rest of the proof we will utilize the recently proposed potential-function based proof for
accelerated gradient decent (AGD) [2, Section 5.2]. Analyzing AGD using potential-function has
an advantage over the standard analysis because, even though AGD does not decrease the function
value monotonically the former constructs a potential-function which monotonically decreases over
the iterations. Given the guarantees (Lemma 5) for the Imp-STEP sub-routine we can re-write an
iteration of the DIAG algorithm by the following steps:

τk = 2
(k + 2) , ηk = (k + 1)

2β
wk = (1− τk)yk + τkzk

yk+1 = PY
(
wk + 1

β
∇yhxk+1(wk)

)
zk+1 = PY

(
zk + ηk∇yhxk+1(wk)

)

(22)

(23)

(24)

(25)

where hk+1(y) := g(xk+1, y) such that g(xk+1, yk+1) ≤ minx∈X g(x, yk+1) + εstep. That is at
iteration k, DIAG executes the k-th step of the accelerated gradient ascent for the concave function
hk+1 = g(xk+1, ·) (Algorithm 3). As in (12), for the concave function hk : Y → R and an arbitrary
reference point ỹ ∈ Y , we define the following potential function for iteration j,

Φhk(j) = j(j + 1)(hk(ỹ)− hk(yj)) + 2β‖zj − ỹ‖2 (26)

Since g(x, ·) is L-smooth, it is also 2L2

σ -smooth (σ ≤ L). Then, using Lemma 2 , we see that
for a step-size of 1

β = σ
2L2 , the potential function Φhk(k) decrease at step of k of the algorithm:
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Φhk+1(k + 1) ≤ Φhk+1(k). Thus,

Φhk+1(k + 1) ≤ Φhk+1(k)
= k(k + 1)(hk+1(ỹ)− hk+1(yk)) + 2β‖zk − ỹ‖2

= k(k + 1)(hk(ỹ)− hk(yk)) + 2β‖zk − ỹ‖2+
k(k + 1)(hk+1(ỹ)− hk(ỹ)) + k(k + 1)(hk(yk)− hk+1(yk))

= Φhk(k) + k(k + 1)(g(xk+1, ỹ)− g(xk, ỹ)) + k(k + 1)(g(xk, yk)− g(xk+1, yk))
(a)
≤ Φhk(k) + k(k + 1)(g(xk+1, ỹ)− g(xk, ỹ)) + k(k + 1)ε(k)

step (27)

(b)=⇒ ΦhK (K) ≤ Φh0(0) +
K−1∑
k=0

k(k + 1)(g(xk+1, ỹ)− g(xk, ỹ)) +
K−1∑
k=1

k(k + 1)ε(k)
step

≤ Φh0(0) + (K − 1)Kg(xK , ỹ)−
K−1∑
k=1

2k g(xk, ỹ) +
K−1∑
k=1

k(k + 1)ε(k)
step (28)

Where (a) follows from Lemma 5 and g(xk, yk)−g(xk+1, yk) ≤ g(xk, yk)−minx g(x, yk) ≤ ε(k)
step,

(b) is obtained summing (27) over k = {0, . . . ,K − 1}. Rearranging the terms of (28) we get,

Φh0(0) +
K−1∑
k=1

k(k + 1)ε(k)
step ≥

K−1∑
k=1

2k g(xk, ỹ) + ΦhK (K)− (K − 1)Kg(xK , ỹ)

≥
K−1∑
k=1

2k g(xk, ỹ) +K(K + 1)(g(xK , ỹ)− g(xK , yK))+

2β‖zK − ỹ‖2 − (K − 1)Kg(xK , ỹ)

≥
K∑
k=1

2k g(xK , ỹ)−K(K + 1)g(xK , yK)

(a)
≥ K(K + 1)[g(x̄K , ỹ)− g(xK , yK)]
(b)
≥ K(K + 1)[g(x̄K , ỹ)− g(x̃, yK)− ε(K)

step] (29)

where (a) uses the x̄K = 1
K(K+1)

∑K
k=1(2i)xi and convexity of g(·, ỹ), and (b) uses Lemma 6.

Thus we get that,

g(x̄K , ỹ)− g(x̃, yK) ≤ Φh0(0)
K(K + 1) +

K∑
k=1

k(k + 1)
K(K + 1)ε

(k)
step

= 2β‖y0 − ỹ‖2

K(K + 1) +
K∑
k=1

k(k + 1)
K(K + 1)ε

(k)
step (30)

Finally we get the desired general statement by taking minimum and maximum over x̃ and ỹ

respectively. By selecting ε(k)
step = L2D2

Y
σk3(k+1) we get,

max
ỹ∈Y

g(x̄K , ỹ)−min
x̃∈X

g(x̃, yK) ≤
6L

2

σ D
2
Y

K(K + 1) (31)

Further, using Lemma 5 and ε(k)
step = L2D2

Y
σk3(k+1) , we get that the total number of gradient computations

at iteration k is at most O
(√

L
σ log2(k)

)
:⌈

log2 5k2
√
L

σ

⌉
O
(√L

σ
log
(
k4)) (32)

Note that in updating yk+1 in Eq. (24) and xk+1 in Imp-STEP sub-routine, we were applying the
principle of conceptual Mirror-Prox, where the update needs to satisfy some fixed point equation.
This is critical in proving the above fast convergence rate.
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B.5.1 Proof of Lemma 5

For brevity, we define the following operations,

x∗(y) = arg min
x∈X

g(x, y) (33)

y+ = PY
(
w + 1

β
∇yg(x∗(y), w)

)
(34)

x∗(y) is unique since g(·, y) is strongly convex. We first prove that, x∗(y) is L
σ -Lipschitz continuous

as follows.

σ‖x∗(y2)− x∗(y1)‖2
(a)
≤ 〈∇xg(x∗(y2), y2)−∇xg(x∗(y1), y2), x∗(y2)− x∗(y1)〉
(b)
≤ 〈−∇xg(x∗(y1), y2), x∗(y2)− x∗(y1)〉
(c)
≤ 〈∇xg(x∗(y1), y1)−∇xg(x∗(y1), y2), x∗(y2)− x∗(y1)〉
(d)
≤ L‖y1 − y2‖‖x∗(y2)− x∗(y1)‖ (35)

where (a) uses σ-strong convexity of g(·, y), (b) and (c) use the necessary first order optimality
conditions for x∗(y1) and x∗(y2): 〈∇xg(x∗(y), y), x− x∗(y)〉 ≥ 0, and (d) uses Cauchy-Schwarz
inequality andL-smoothness of g (Definition 1). Next we prove that the operation (·)+ is a contraction
as follows,

‖y+
1 − y

+
2 ‖ = ‖PY

(
w + 1

β
∇yg(x∗(y1), w)

)
− PY

(
w + 1

β
∇yg(x∗(y2), w)

)
‖

(a)
≤ 1

β
‖∇yg(x∗(y1), w)−∇yg(x∗(y2), w)‖

(b)
≤ L

β
‖x∗(y1)− x∗(y2)‖

(c)
≤ L

β

L

σ
‖y1 − y2‖

(d)
≤ 2−1‖y1 − y2‖ (36)

where (a) uses Pythagorean theorem and (34), (b) uses L-smoothness of g, (c) uses (35), and (d)
uses β ≥ 2LLσ . Therefore, (·)+ is a contraction by Banach’s fixed point theorem, and thus it has a
unique fixed point ỹ: (ỹ)+ = ỹ, as Y is a compact (and hence complete) metric space. Now we will
prove that the output of Imp-STEP, (x̂R, yR+1) satisfies (21). Notice that if εagd is small then x̂r is
close to x∗(yr):

σ

2 ‖x̂r − x
∗(yr)‖2

(a)
≤ g(x̂r, yr)−min

x
g(x, yr)

(b)=⇒ ‖x̂r − x∗(yr)‖ ≤
√

2εagd

σ
= βεmp

4L (37)

where (a) uses σ-strong convexity and optimality of x∗(yr), and (b) uses (7), and (c) uses εagd =
σβ2εmp/(32L2). Next we see that ‖yr − ỹ‖ decreases to ε exponentially fast.

‖yr − ỹ‖
(a)= ‖PY

(
w + 1

β
∇yg(x̂r−1, w)

)
− (ỹ)+‖

(b)
≤ ‖y+

r−1 − (ỹ)+‖+ ‖PY
(
w + 1

β
∇yg(x∗(yr−1), w)

)
− PY

(
w + 1

β
∇yg(x̂r−1, w)

)
‖

(c)
≤ 2−1‖yr−1 − ỹ‖+ L

β
‖x∗(yr−1)− x̂r−1‖

(d)
≤ 2−1‖yr−1 − ỹ‖+ εmp

4 (38)

(e)
≤ 2−r‖y0 − ỹ‖+ εmp

2 (39)

where (a) uses yr+1 = PY
(
w + 1

β∇yg(x̂r, w)
)

and the fact that ỹ = (ỹ)+ is a fixed point, (b)
uses triangular inequality and (34), (c) uses (36), Pythagorean theorem and L-smoothness of g
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(Definition 1), (d) uses (37), and (e) just unrolls the recurrence relation in (38) . Next, we prove that
the minimizer at yR+1, x∗(yR+1) is not far from x̂R.

‖x∗(yR+1)− x̂R‖
(a)
≤ ‖x∗(yR+1)− x∗(ỹ)‖+ ‖x∗(ỹ)− x∗(yR)‖+ ‖x∗(yR)− x̂R‖
(b)
≤ L

σ
(‖yR+1 − ỹ‖+ ‖yR − ỹ‖) + βεmp

4L
(c)
≤ L

σ
(εmp + εmp) + βεmp

4L = (2L
σ

+ β

4L )εmp (40)

where (a) uses triangle inequality, and (b) uses (35) and 37, and (c) uses (39) and the fact that
R = dlog2

2DY
εmp
e. Finally, we prove that (xR, yR+1) satisfies (21).

g(x̂R, yR+1)
(a)
≤ g(x∗(yR+1), yR+1) + 〈∇xg(x∗(yR+1), yR+1), x̂R − x∗(yR+1), 〉+ L

2 ‖x
∗(yR+1)− x̂R‖2

(b)
≤ min

x
g(x, yR+1) + 0 +

25LL2ε2
mp

8σ2
(c)= min

x
g(x, yR+1) + εstep (41)

where (a) uses L-smoothness of g(·, y), (b) uses necessary first order optimality condition:

〈∇xg(x∗(y), y), x− x∗(y)〉 = 0 and (40), and (c) uses εmp = 2σ
5L

√
2εstep
L .

Let the number of gradient computations done per iteration of Imp-STEP (a run of accelerated
gradient ascent) be Tr and κ =

√
L/σ. Then, from guarantee on AGD ([2, Eqn. (5.68)]), we get that,

g(x̂r, yr)− g(x∗(yr), yr) ≤
(

1 + 1√
κ− 1

)−Tr(
g(x0, yr)− g(x∗(yr), yr) + σ

2 ‖x0 − x∗(yr)‖2
)

≤ e−Tr/
√
κ 2 (g(x0, yr)− g(x∗(yr), yr))

≤ e−Tr/
√
κ 2 (f(x0)− h(yr))

≤ e−Tr/
√
κ 2 (f(x0)− min

y′∈DY
h(y′)) , (42)

where miny′∈DY h(y′) is well-defined since Y is compact and h is smooth (Lemma 6). This means
that if we want g(x̂r, yr)− g(x∗(yr), yr) ≤ εagd, then required number of steps Tr is at most,⌈√

L

σ
log

2(f(x0)−miny′∈DY h(y′))
εagd

⌉
=
⌈√

L

σ
log

50L(f(x0)−miny′∈DY h(y′))
σεstep

⌉
= O

(√L

σ
log
( 1
εstep

))
(43)

B.6 Smoothness of dual of strongly-convex–concave minimax problem

Lemma 6. For a σ-strongly-convex–concave L-smooth function g(·, ·), h(u) = minx∈X g(x, u) is
an
(
L+ L2

σ

)
-smooth concave function.

Proof. We know that h(y) = minx∈X g(x, y), where g(·, y) is σ-strongly convex, g(x, ·) is con-
cave, g is L-smooth (Definition 1). Since g(·, y) is strongly convex, the minimizer x∗(y) =
arg minx∈X g(x, y) unique. Then by Danskin’s theorem [4, Section 6.11], h is differentiable and
∇h(y) = ∇yg(x∗(y), y). Then h can be show to be smooth as follows,

‖∇h(y1)−∇h(y1)‖ = ‖∇yg(x∗(y1), y1)−∇yg(x∗(y2), y2)‖
≤ ‖∇yg(x∗(y1), y1)−∇yg(x∗(y1), y2)‖+ ‖∇yg(x∗(y1), y2)−∇yg(x∗(y2), y2)‖
(a)
≤ L‖y1 − y2‖+ L‖x∗(y1)− x∗(y2)‖
(b)
≤ L‖y1 − y2‖+ L

L

σ
‖y1 − y2‖ =

(
L+ LL

σ

)
‖y1 − y2‖ (44)

where (a) uses L-smoothness of g and (b) uses (35).
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B.7 Proof of Theorem 2

We first note that by Lemma 3 and L-weak convexity of g(·, y) and 2L-strong convexity of
L‖x − xk‖2, ĝ(x, y;xk) := g(x, y) + L‖x − xk‖2 is L-strongly-convex. Similarly, f̂(·;xk) :=
maxy∈Y [ĝ(x, y;xk) = g(x, y) + L‖x− xk‖2] is also L-strongly-convex.

We now divide the analysis of each iteration of our algorithm into two cases:

Case 1: f̂(xk+1;xk)≤f(xk)− 3ε̃/4. As every instance of Case 1 ensures f(xk+1) ≤
f̂(xk+1;xk) ≤ f(xk) − 3ε̃/4, we can have only

⌈
4(f(x0)−f∗)

3ε̃

⌉
Case 1 steps before termination.

This claim requires monotonic decrease in f(xk) which holds until f(xk+1) ≥ f(xk), after which
f̂(xk+1;xk) ≥ f(xk), which in-turn imply that Prox-DIAG terminates (see termination condition of
Prox-DIAG).

Case 2: f̂(xk+1;xk)>f(xk)− 3ε̃/4: In this case, we show that xk is already an ε-FOSP and the
algorithm returns xk.

f(xk)− 3ε̃
4 < f̂(xk+1;xk) ≤ min

x
f̂(x;xk) + ε̃

4 =⇒ f(xk) < min
x
f̂(x;xk) + ε̃ (45)

Define x∗k as the point satisfying x∗k = arg minx f̂(x;xk). By L-strong convexity of f̂(·;xk) (9), we
prove that xk is close to x∗k:

f̂(x∗k;xk) + L

2 ‖xk − x∗k‖2 ≤ f̂(xk;xk) = f(xk)
(a)
< f̂(x∗k;xk) + ε̃ =⇒ ‖xk − x∗k‖ <

√
2ε̃
L

(46)

where (a) uses (45). Now consider any x̃ ∈ X , such that 4
√
ε̃/L ≤ ‖x̃− xk‖. Then,

f(x̃) + L‖x̃− xk‖2 = max
y∈Y

g(x̃, y) + L‖x̃− xk‖2 = f̂(x̃;xk)
(a)
≥ f̂(x∗k;xk) + L

2 ‖x̃− x
∗
k‖2

(b)
≥ f(xk)− ε̃+ L

2 (‖x̃− xk‖ − ‖xk − x∗k‖)2
(c)
≥ f(xk) + ε̃, (47)

where (a) uses uses L-strong convexity of f̂(·;xk) at its minimizer x∗k, (b) uses (45), and (b) and (c)
use triangle inequality, (46) and 4

√
ε̃/L ≤ ‖x̃− xk‖.

Now consider the Moreau envelope, f 1
2L

(x) = minx′∈X φ 1
2L ,x

(x′) where φλ,x(x′) = f(x′)+L‖x−
x′‖2. Then, we can see that φ 1

2L ,xk
(x′) achieves its minimum in the ball {x′ ∈ X | ‖x′ − xk‖ ≤

4
√
ε̃/L} by (47) and Lemma 4(a). Then, with Lemma 4(b,c) and ε̃ = ε2

64L , we get that,

‖∇f 1
2L

(xk)‖ ≤ (2L)‖xk − x̂ 1
2L

(xk)‖ = 8
√
Lε̃ = ε, (48)

i.e., xk is an ε-FOSP.

By combining the above two cases, we establish that O
(⌈ 4(f(x0)−f∗)

3ε̃
⌉)

“outer” iterations ensure
convergence to a ε-FOSP. We now compute the first-order complexity of each of these “outer"
iterations. Recall that we use use the DIAG (Algorithm 1) algorithm for L-strongly-convex concave
2L-smooth minimax problem to solve the inner optimization problem. So, if for each iteration of
inner problem, DIAG algorithm takes K steps then, by ε̃ = ε2

64L and Theorem 1,

6(2L)2D2
Y

LK2 ≤ ε̃

4 = ε2

28L
=⇒ O

(
LDY
ε

)
≤ K (49)

Therefore the number of gradient computations required for each iteration of inner problem is
O
(
LDY
ε log2

(
1
ε

))
(Theorem 1), which along with the bound on the number of outer iterations

establishes the Theorem’s upper bound on the number of first-order oracle calls.

C Minimizing finite max-type function with smooth components

As a special case of nonconvex–concave minimax problem, consider minimizing a weakly convex
f(x), with a special structure of finite max-type function:

min
x

[
f (x) = max

1≤i≤m
fi(x)

]
, (P3)
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where x ∈ Rp, the functional components fi(x)’s could be nonconvex but are L-smooth and G-
Lipschitz. Suppose f itself takes a minimum value f∗ > −∞. For this problem, we propose and
study a proximal (Prox-FDIAG) algorithm (Algorithm 5 presented in Appendix C.1) that is inspired
by Algorithm 2 with the inner problem-solver replaced by Nesterov’s finite convex minimax scheme
[37, Section 2.3.1] instead of Algorithm 1. Using same proof technique as Theorem 2, we get:
Corollary 1 (Convergence rate of Prox-FDIAG). If the functional components fi(x)’s are G-
Lipschitz and L-smooth, and the optimal solution is bounded below, i.e. f(x) ≥ f∗ > −∞, then

after: K =
⌈

44L(f(x0)−f∗)
3ε2

⌉
outer steps, Prox-FDIAG outputs an ε-FOSP. The total first-order

oracle complexity to find ε-FOSP is:
⌈

44L(f(x0)−f∗)
3ε2

⌉
·
⌈

24G
ε (m log3/2m)

⌉
.

See Appendix C.1 for a proof. Current best rate for this problem is achieved by subgradient
methods. As the subgradient of a finite minimax function ∇i∗f(x) is easy to evaluate, where
i∗ ∈ arg maxi fi(x), a rate of O(m/ε4) first-order oracle and function calls is achieved by the
state-of-the-art subgradient method in [11]. We can obtain a similar result using Algorithm 1 but it
requires extension to non-Euclidean settings with the framework of Bregman divergences. This is
fairly standard and will be updated in the next version of the paper.

Algorithm 5: Proximal Finite Dual Implicit Accelerated Gradient (Prox-FDIAG) for finite
nonconvex concave minimax optimization

Input: functional components {fi}mi=1, Lipschitzness G, smoothness L, domain X , target
accuracy ε, initial point x0

Output: xk
1 ε̃← ε2

64L
2 for k = 0, 1, . . . do
3 Using excessive gap technique [35, Problem (7.11)] for strongly convex components, find

xk+1 ∈ X such that,

f̂(xk+1;xk) ≤ min
x
f̂(x;xk) + ε̃/4 (50)

if f(xk)− 3ε̃/4 < f̂(xk+1;xk) then
4 return xk

C.1 Proof of Corollary 1

Let

f̂(x;xk) = max
1≤i≤m

fi(xk) + 〈∇fi(xk), x− xk〉+ L

2 ‖x− xk‖
2 (51)

be a quadratic approximation of the finite max-type function f(x) at xk. Then, f̂(·;xk) is L-strongly
convex, since it is a maximum of convex functions and the quadratic term in (51) is independent of i.

Proof is similar to that of Theorem 2. We divide the analysis of each iteration of our algorithm into
two cases.

Case 1: f̂(xk+1;xk)≤f(xk)− 3ε̃/4. This ensure that at iteration k the objective value decreases
by at least 3ε̃/4 since, f(xk+1) ≤ f̂(xk+1;xk)≤f(xk)− 3ε̃/4. One cannot have more than⌈

4(f(x0)−f∗)
3ε̃

⌉
instances of Case 1, before termination.

Case 2: f̂(xk+1;xk)>f(xk)− 3ε̃/4: We show that xk is an ε-FOSP as follows.

f(xk)− 3ε̃
4 < f̂(xk+1;xk) ≤ min

x
f̂(x;xk) + ε̃

4 =⇒ f(xk) < min
x
f̂(x;xk) + ε̃ (52)
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Define x∗k as the point satisfying x∗k = arg minx f̂(x;xk). By L-strong convexity of f̂(·, xk) (51),
we prove that xk is close to x∗k:

f̂(x∗k;xk) + L

2 ‖xk − x
∗
k‖2 ≤ f̂(xk;xk) = f(xk)

(a)
< f̂(x∗k;xk) + ε̃

=⇒ ‖xk − x∗k‖ <
√

2ε̃
L

(53)

where (a) uses (52). Now consider any x̃ ∈ X , such that 4
√
ε̃/L ≤ ‖x̃− xk‖. Then,

f(x̃) + L‖x̃− xk‖2 = max
i
fi(x̃) + L‖x̃− xk‖2

(a)
≥ max

i
fi(x̃) + 〈∇fi(xk), x̃− xk〉+ L

2 ‖x̃− xk‖
2

(b)= f̂(x̃;xk)
(c)
≥ f̂(x∗k;xk) + L

2 ‖x̃− x
∗
k‖2

(d)
≥ f(xk)− ε̃+ L

2 (‖x̃− xk‖ − ‖xk − x∗k‖)2

(e)
≥ f(xk)− ε̃+ 2ε̃ = f(xk) + ε̃ (54)

where (a) uses weak convexity of fi, (b) uses (51), (c) uses L-strong convexity of f̂(·;xk) at its
minimizer x∗k, (d) uses (52), and (b) and (e) use triangle inequality, (53) and 4

√
ε̃/L ≤ ‖x̃− xk‖.

Now consider the Moreau envelope, f 1
2L

(x) = minx′∈X φ 1
2L ,x

(x′) where φλ,x(x′) = f(x′)+L‖x−
x′‖2. Then, we can see that φ 1

2L ,xk
(x′) achieves its minimum in the ball {x′ ∈ X | ‖x′ − xk‖ ≤

4
√
ε̃/L} by (54) and Lemma 4(a). Thus, with Lemma 4(b,c), we get that,

‖∇f 1
2L

(xk)‖ ≤ (2L)‖xk − x̂1/2L(xk)‖ = 8
√
Lε̃ = ε (55)

Now we use the excessive gap technique for non-smooth strongly convex functions with max-structure

to solve the inner optimization problem in 4G(m logm)
√

logm
ε̃L computations [35, Problem (7.11)].

Putting these together we see that the total number of inner steps to reach ε-FOSP is,⌈
4(f(x0)− f∗)

3ε̃

⌉⌈
2G(m logm)

√
logm
Lε̃

⌉
=
⌈

44L(f(x0)− f∗)
3ε2

⌉⌈
25G

ε
(m log3/2m)

⌉
(56)

C.2 Adaptive Prox-FDIAG algorithm

In this section, we provide the Adaptive Prox-FDIAG (Algorithm 6) to find an ε-FOSP of the finite
max-type nonconvex minimax problem P3 with L-smooth components. Adaptive Prox-FDIAG
is a variation of the Prox-FDIAG (Algorithm 5). Adaptive Prox-FDIAG uses Prox-FDIAG as a
sub-routine and successively finds ε′-FOSPs, for geometrically decreasing values of ε′ starting from
ε0 (≥ ε) until ε′ becomes equal to ε. It uses the ε′-FOSP as the starting point to find an ε′/2-FOSP.
In the following corollary, we show that Adaptive Prox-FDIAG has the same the first-order oracle
complexity (up to a O(log( 1

ε )) factor) as the Prox-FDIAG.
Corollary 2 (Convergence rate of Adaptive Prox-FDIAG). If the functional components fi(x)’s are
G-Lipschitz and L-smooth, and the optimal solution is bounded below, i.e. f(x) ≥ f∗ > −∞, then

after: K =
⌈

log2
ε0
ε

⌉
outer steps, Adaptive Prox-FDIAG outputs an ε-FOSP. The total first-order

oracle complexity to find ε-FOSP is:
⌈

log2
ε0
ε

⌉⌈
44L(f(x0)−f∗)

3ε2

⌉
·
⌈

24G
ε (m log3/2m)

⌉
.

Proof. Notice that, each iteration of Adaptive Prox-FDIAG for finding an ε′-FOSP, is a run of Prox-

FDIAG (Algorithm 5), which has a maximum first-order oracle complexity of
⌈

44L(f(x0)−f∗)
3ε2

⌉
·
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⌈
24G
ε (m log3/2m)

⌉
for finding an ε′-FOSP (Corollary 1), as ε ≤ ε′. Further, since ε′ starts at ε0 and

halves after each iteration until ε′ becomes less than or equal to ε, the total number of outer iterations

is K =
⌈

log2
ε0
ε

⌉
.

Therefore, Adaptive Prox-FDIAG has the same first-order oracle complexity as Prox-FDIAG, up
to a O(log( 1

ε )) factor. However, we observe that Adaptive Prox-FDIAG converges faster than
Prox-FDIAG in our experiments.

Algorithm 6: Adaptive Proximal Finite Dual Implicit Accelerated Gradient (Adaptive
Prox-FDIAG) for finite nonconvex concave minimax optimization

Input: functional components {fi}mi=1, Lipschitzness G, smoothness L, domain X , target
accuracy ε, initial point x0, initial accuracy ε0

Output: xk
1 ε′ ← max(ε0, ε)
2 for k = 0, 1, . . . do
3 Using Prox-FDIAG (Algorithm 5) initialized at xk, find xk+1 ∈ X such that xk+1 is an

ε′-FOSP (Definition 6) of the function f(x) = max1≤i≤m fi(x)
4 if ε = ε′ then
5 k ← k + 1
6 return xk
7 else
8 ε′ ← max( ε

′

2 , ε)

D Smoothing technique for strongly-convex–concave minimax problem

In this section we propose and analyze a smoothing technique [36] based indirect algorithm for
solving the L-smooth σ-strongly-convex–concave minimax problem. The basic idea is to solve
a smoothed (perturbed) version of the original function, g̃(x, y) = g(x, y) − ε‖y‖2/2D2

Y , which
would be a strongly-convex–strongly-concave minimax problem. [1] proposes solving a strongly-
convex–strongly-concave problem in linear rate using inexact accelerated gradient descent on its dual,
whose main guarantee is given in the theorem below.

Theorem 3. [1] Inexact accelerated gradient ascent on the dual problem can find an ε-primal dual
pair of an L-smooth σx-strongly-convex–σy-strongly-concave problem: minx maxy g(x, y), with

Õ

(√
L+L2

σx

σy

√
L
σx

)
calls to the first order gradient oracle of g.

Now using this algorithm on the function g̃ can recover the same rate as DIAG method as follows.
Plugging in L = O(L), σx = σ, and σy = ε/D2

Y into the algorithm complexity of Theorem 3 gives
you a complexity of,

Õ

(
LDY√
σε

√
L

σ

)
,

finding an ε-primal dual pair, (x̄, ȳ), of g̃. Since maxy∈Y g(x̄, y) ≤ maxy∈Y g̃(x̄, y) + ε/2 and
g̃(x, ȳ) ≤ g(x, ȳ), we get that,

max
y∈Y

g(x̄, y)−min
x∈X

g(x, ȳ) ≤ max
y∈Y

g̃(x̄, y)−min
x∈X

g̃(x, ȳ) +O (ε) .

Using these two facts, we see that smoothing technique has the same algorithmic complexity,

Õ
(
LDY√
σε

√
L
σ

)
, as that of DIAG. However the drawback for this method over the direct DIAG is that

smoothing technique requires a prefixed tolerance parameter ε.
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E Experimental details

We consider the following problem.

min
x∈R2

[
f(x) = max

1≤i≤m=9
fi(x)

]
(57)

where fi(x) = q(−1, (X(1)
i
,X

(2)
i

), Ci)
(x) for all 1 ≤ i ≤ 8, where q(a,b,c)(x) = a‖x− b‖22 + c, X(1)

i

and X(2)
i are generated from the interval [−3.0, 3.0] uniformly at random, and Ci is generated from

the interval [1.0, 5.0] uniformly at random. We fix the last component f9(x) = q(0.5, (0,0), 0)(x).
Each fi is smooth with parameter L = 1, which implies that f is L-weakly convex.

We implement three algorithms: Prox-FDIAG (Algorithm 5), Adaptive Prox-FDIAG (Algorithm 6),
and subgradient method [11]. In Prox-FDIAG, we use excessive gap technique [35, Problem (7.11)]
(a primal-dual algorithm) to solve the inner sub-problem. As the stopping criteria f̂(xk+1;xk) ≤
minx f̂(x;xk) + ε̃/4 cannot be directly checked, we instead check a sufficient condition; we stop the
excessive gap technique when the primal-dual gap is less than ε̃/4, which can be checked efficiently.
Adaptive Prox-FDIAG is a variant of Prox-FDIAG, where we adaptively and successively decrease the
tolerance parameter ε′ starting from a large tolerance ε0. It has the same first-order oracle complexity
guarantee as Prox-FDIAG (up to an O(log(1/ε)) factor). However, in Figure 1, we observe that
Adaptive Prox-FDIAG can converge faster in practice. We set the initial tolerance ε0 as 10.0. For a
description of the algorithm we refer to Appendix C.2.

All the algorithms are initialized with the point x0 = (4, 4) and are given a Lipschitzness parameter of
G = 2L ‖x0‖2. We run the algorithms ten times with randomly generated instances of the objective
function f(x). In Figure 1, we plot the norm of gradient of Moreau envelope ‖∇f 1

2L
(xk)‖2 against

the number of iterations k in log-log scale. We compute the gradient of the Moreau envelope at any
point x, by solving the corresponding convex-concave saddle point problem (18) using Mirror-Prox
[34] method with appropriate primal-dual gap based stopping criteria and then using Lemma 4(c). For
Prox-FDIAG (red circles), we show in a scatter plot the gradient norm ‖∇f 1

2L
(xK(ε))‖2 at the final

output of Prox-FDIAG xK(ε) versus the total number of inner iterations (of excessive gap technique)
taken, for ε = 100, 10−1, 10−2, 10−3 over the 10 functions. For Adaptive Prox-FDIAG (black dots)
in a scatter plot, we plot the gradient norm ‖∇f 1

2L
(x′)‖2 at the output x′ of each inner sub-problem

(excessive gap technique) of each inner Prox-FDIAG step versus the total number of inner iterations
(of excessive gap technique) taken to reach that point from the beginning, for ε = 10−7 over the
10 functions. For Prox-FDIAG and Adaptive Prox-FDIAG, using solid red and black (respectively)
lines we also plot the best linear function (in log-scale) which fits the scatter points (using default
parameters of scipy.stats.linregress2). For the subgradient method (blue triangles), we plot
the mean and standard error of gradient norm max0≤k′≤k ‖∇f 1

2L
(xk̂(k′))‖2 over the 10 instances at

iterations k = 100, 101, . . . , 107. The estimate at each iteration is the best one so far in the function
value, i.e. k̂(k) ∈ arg min0≤k′≤kf(xk′). We see that, Prox-FDIAG and Adaptive Prox-FDIAG have
a faster convergence rate than subgradient method. Further, in the same vein as analogous variants in
convex non-smooth optimization, Adaptive Prox-FDIAG is faster than Prox-FDIAG almost always.

Subgradient method has a theoretical convergence rate of O( 1√
K

) for a fixed number of iterations K

and a constant step-size γ/
√
K + 1 [11, Corollary 2.2]. However, similar to the case of convex non-

smooth problems, we observe that fixed step-size results in a slow convergence. In our experiments,
we achieve a faster convergence for the subgradient method by using a diminishing, non-summable
but square-summable step-size, γ/

√
k + 1, which varies with the iteration number k. This step-size

has convergence rate of O( log(k)√
k

) [11, Theorem 2.1], but in practice we observe a faster convergence

rate than the constant step-size. After a very simple parameter search, we set γ as 0.1×G× L3/2.
We ran subgradient method for a total of K = 107 number of iterations. Since, subgradient method is
not a descent method, at any iteration k, we keep track of the best point among all the points we have
observed so far, {x0, · · · , xk−1}. Ideally, we should keep track of the point with the minimum norm
for the gradient of the Moreau envelope, ‖∇f 1

2L
(xk)‖2, but since the computation of the gradient of

Moreau envelope is costly, we only keep track of the point with the minimum function value we have
observed so far.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

24

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

	Introduction
	Preliminaries and background material
	Minimax problems
	Convex-concave setting
	Nonconvex-concave setting

	Mirror-Prox

	Strongly-convex concave saddle point problem
	Conceptual version: C-DIAG
	Error analysis

	Nonconvex concave saddle point problem
	Experiments
	Conclusion
	Nesterov's accelerated gradient descent
	Smooth concave function

	Proofs
	Auxiliary lemma
	Properties of Moreau envelope
	Proof of Lemma 1
	Pseudocode for Conceptual DIAG algorithm
	Proof of Theorem 1
	Proof of Lemma 5

	Smoothness of dual of strongly-convex–concave minimax problem
	Proof of Theorem 2

	Minimizing finite max-type function with smooth components
	Proof of Corollary 1
	Adaptive Prox-FDIAG algorithm

	Smoothing technique for strongly-convex–concave minimax problem
	Experimental details

